XARC:
Adaptive Resource-Centric
Computing for Exascale

Steven Hofmeyr John Kubiatowicz
LBNL UC Berkeley

The X-Stack & OSR Principal Investigators (PI)
Meeting
Dec 8™ 2015

¢
I’J)f,-(,'o

O SWARM | A3

ssssssss

X-ARCC Project

 Goals
- Discover and demonstrate useful mechanisms for exascale OS

- Experimental research, not engineering effort (no production
code)

* Collaboration between LBNL and UCB SwarmLab

- Converging trends between HPC, Cloud, Mobile & Swarm

- Energy is key limitation

- Massive parallelism in dynamic, unpredictable environments
* Continuation of Tessellation OS project

- Collaboration between LBNL and UCB Parlab

- Focused on single node multicore

. A I,
cecee &8
BERKELEY LAB O SWARM | A3

ssssssss

Exascale Systems will be Dynamic

 Changing hardware resources: loss of nodes, addition
of new nodes, DVFS, etc

 New asynchronous, massively parallel programming
models

* Applications can change on the fly, e.g. visualization
to steer simulation

Address with Adaptive Resource-Centric Computing
(ARCC):

Change resource allocations dynamically according to
current application behavior & system state to maximize
performance & utilization for all applications

¢
r;’r;r;o

O SWARM | A3

ssssssss

Exascale Systems will be Complex

* Applications

- Multiple components, each with different resource
requirements, different scheduling, etc

- Complex pipelines, e.g. genome assembly
- In-situ & in-transit analytics and visualization
- Node-local services, e.g scalable checkpoint/restart

 Hardware
- Heterogeneity, e.g. fat & thin cores
- Deep memory hierarchies

Resource allocation will be an ongoing complex
optimization problem

This is addressed by the ARCC feedback control loop

. A I,
: r"_"}| ""l Q0 (Jo
BERKELEY LAB O SWARM | A3

ssssssss

ARCC Feedback Control Loop

Mechanisms for dynamically allocating resources to
multiple competing apps based on performance
requirements

Performance monitoring
&-feedback (heartbeats)

Policy
Engine
Application Application
Allocation i
decisions Grant resources
Kernel
Resources

Implemented in the XARC Operating System (0OS)
’\| A &8

BERKELEY LAB O SWARM | A3

ssssssss

XARC Experimental OS

* Support for running multiple apps on a single node
while maintaining performance predictability

- Cooperative apps, e.g. simulation + in-situ analytics,
multicomponent

- Disparate, competing apps, e.g. system services
- Improve flexibility & utilization of overall system
 Each app runs in a cell:

- Guaranteed resources & enforced performance isolation

- Services provide QoS guaranteed access to shared hardware
resources

- Services also run in cells and can use other services
- Communication between cells via secure channels

. A I,
cecee &8
BERKELEY LAB O SWARM | A3

ssssssss

Two-Level Scheduling

« Separate allocation of resources to cells (1 level)
from management of resources within cells (2" level)

* First Level (traditional OS role)

- Manage conflicting resource
demands of multiple apps

- Space-time partitioning with
gang-scheduling (predictability
& flexibility of resource allocation) SPacg

 Second-level (runtimes role)
- Manage resources for single app or set of cooperating apps

— Customization through user-level scheduling & memory
management

- Minimize OS & other interference to make runtime design &
implementation simpler & performance modeling possible
\| A &8

BERKELEY LAB O SWARM | A3

ssssssss

Space

Time

Implementation of XARC

* Lightweight implementation based on XEN VMM
- Supports both bare-metal runtimes & full virtual machines

* First level (hypervisor):
- Gangi scheduler for cells

CELL CELL CELL CELL
B MUItlple SChEdUIlng pO“CIeS: resource application application | system %”:Slig\l;el
gang, best-effort, EDF, broker service | schedulers
dedicated, event-driven (Cellos) (Linw) | (CellOS)
chan@
 Second level (VM): <:
- CellOS: lightweight runtime HYPERVISOR g;hg\i’e'
based on Xen Mini-OS . | Schedler
. . Resources HARDWARE Resources
- Customizable scheduling e.g cores e.g.net

- Simple memory management (no virtual memory)
- Services include networking, file system, block, log & gui
’\| A &8

BERKELEY LAB O SWARM | A3

ssssssss

Monitoring Energy Usage in XARC

* Need to treat energy as first class resource
- Must accurately measure & attribute energy usage to cells
- But energy measurements are coarse-grained, e.g. Intel RAPL
counters are package level & wall metering is at node level

« XeMPower
- Based on socket-level energy measurements with RAPL

- Hardware performance counter models account for energy of
simultaneously running cells

- Estimators go from coarse-grained physical measurements to
fine-grained energy attribution

Collaboration with M. Feroni & M Santambrogio (Politecnico Milano)

’\| ﬁl &&
O SWARM ! /A3

BERKELEY LAB
uuuuuuuu

XeMPower Implementation

* Hypervisor instrumentation
- Track context switches in first-

(_ XenKernel Dom0O)
level scheduler = o X,ﬁ N
- Record counters: cycles, LLC, £| |
branch, RAPL e :
» Service running in cell 0 e
2 € [|B2 o -
- Aggregate counters) 5 o E %
g(5) A2 1 g B | 8
- Uses model of energy to split e T DEEB_E sl
socket measurements & % 5/ A < ﬂ
attribute to cells N g |-
. . 3
* Monitoring overhead < 1% . |
+ Connect to MPower energy ") | -

e ev er core,
energy per socket

framework (predictions)

. A I,
”"'_’}H"'l Q0 I’Jo
BERKELEY LAB O SWARM | A3

ssssssss

Advanced Memory Features

* Nephele recoverable memory
- Detects changes to recoverable memory regions

- Replicates memory to remote nodes using RDMA
Architecture

 Simple API:

- Funcs for allocation

RVM Library
Memory management and
- Func to mark detection of changes

consistency points Remote Memory Interface
Memory replication and atomicity

Atomic Copy
Atomic updates to block store

- Minimal app changes

- Implement in cell runtime, e.g. barrier -» consistency point

« Efficient (even unoptimized)
- Replication 5x faster & recovery 10x faster than BLCR

=g ¢
S §od
BERKELEY LAB O SWARM | A3

ssssssss

Scheduling Distributed Services

* Distributed services can be a problem
- Independent decisions generate noise for distributed apps

- e.g. garbage collection (GC)

* Holly prototype

(important for cloud,
not HPC - yet)

other services, e.g. local 1L I11]] HWHHHHHHWHHHHHHHHHHH‘

C/R, analytics, profiling, etc.

(a) Baseline System (no coordination)

Multinode fault-tolerant

framework for coordinating ~ * ﬂﬂHHHHHHHHHHHHHIHHHHHWHHHHW

distributed shared services

. (b) Coordinating GC (Stop the-Universe)
No app changes (unless desired)

First use case: GC in managed languages (Java)

¢
r;’r;r;o

O SWARM | A3

ssssssss

Holly Implementation

* Multinode runtime for services
- Slmple pOIICy DSL descrlbes Application Node 0 H Application Node 1

strategies for coordinating
] | State | | State
services

Runtime System Runtime System

- Inputs: system & app state

- Outputs: policy-based plan

- e.g. when to activate GC
given memory usage

« Scalable & fault tolerant
— Cluster is divided into coordination groups

Memory-
Occupancy,
State

Plan,
Reconfiguration,
State updates

Multi-Node Runtime System

- Each group elects a leader that receives inputs & distributes
the plan

- Distributed consensus protocol to migrate state & ensure
leader exists after node failures

. A l,
: “'F'h| ""| Q0 I’)o
BERKELEY LAB O SWARM | A3

ssssssss

Holly Performance

 Experiments with GC in cloud apps (Java)
- Significant performance improvements in latency & throughput
- e.g. Spark PageRank, reduce time 21% & tail latency 50%

° Managed |anguage 100.0%

99.5%

features for HPC a9,0%

- Productivity, e.g. automatic
memory management

- New style scientific apps,

98.0%

97.0%

Cumulative time

e.g. genome assembly, 96.0% ! S R
machine-learning pipelines 51w1m_muy
° Beyond managed |anguages e 0 UPSﬂTEG:eraﬂuitimel{fm} SR

- Noise reduction through coordination of services in general
- Component of cell runtime

’\| ﬁl &&
O SWARM ! /A3

BERKELEY LAB

ssssssss

XARC at Scale

* Are XARC design principles R T
I d 1 | - e e
meaningful at scale? v
- When does it make sense to ﬂ 00
share resources on a node? 5 04f
- Coupled apps, services, ...? VIR
* Explore issues with simulation = = * _« = =

10

- Space-time partitioning & gang-
scheduling vs batch scheduling 08 1

- Noise, heterogeneity, etc
* Job data from Edison

- 2.6 million jobs over 620 days ool -

- High utilization ~90% T e

- Many small, short jobs: 90% < 32 nodes and < 2 hrs

F\l ﬂ &&
O SWARM ! /A3

Fraction

=1 =1

Ly o
T

=
]
T

BERKELEY LAB

ssssssss

Exploring Global Fairness

 Comparing batch & timesharing
- Batch is FCFS + backfill (simulation very close to real system)
- Timeshare assumes bulk sync & gang-scheduling
- Similar utilization (90%)
 Measuring QoS/fairness
- Stretch = turnaround / DWT (normalized turnaround)

— 4096

- Batch scheduling: 2 | 2048
longer-running, smaller jobs & | o2
have lower stretch - =

. =

- Timeshare: 2 o o
constant stretch fom 16

4m

== p3 = 20

L R L S U S - L LU

Modes

S §od

BERKELEY LAB O SWARM | A3

ssssssss

Scaling Implications

For scalable apps, what concurrency is best on a busy
system to minimize turnaround?

HipMer GTC
T T T T T T T T 128h | | | , : |
Gdh aan [
Jz2h | 3h |
o, T6hL o T6hf
£ B8h| 2 el
F 4nh L = an |
2 =nf E on |
2 ihf 3 nf
T 30m - T s0m L
5 - E mp
|E 1%m | — Timesharg E am | Timeshare
4m | — Batch am | — Batch
2m - — Real 2m | — Real
im 1]]]]]] | | | | | 1m]] | | | | | | i i | |
L S L R - S S S S L L L LIS I S S N LN RN NN LU LU

Nodes Modes

 Batch: turnaround doesn't scale due to bias in stretch
 Timeshare: turnaround scales (as expected)
”"_:}| "nl C)()f,l I’)o

BERKELEY LAB O SWARM | A3

ssssssss

Impact of Noise

* Simple noise model e

HE timeshare

- Each minute, 1/1000 prob. of each oo M fimeshare o syne
node running between (%2, 1) speed

- More benign than turbo-boost?
- Big increase in the long-tail of batch

Average Stretch
[]
3

xS

(=)

(=)
T

scheduled jobs P es
* Noise and programming model T Remar Ca
- Relax assumption about bulk sync for _ i .
timesharing, e.g. async tasking = imeshare no sync

w
o
T

- Noise tolerant & halves stretch

o
T

- Even if async prog models are less
efficient, overall system utilization &
turnaround could still be better

* Next step: extrapolate to exascale Nosy

\| ﬂ &&

BERKELEY LAB O SWARM | A3

ssssssss

75th Percentile Stretch
R x

-y
(=)

o [54]

Conclusions

« XARC: discover & demonstrate potential mechanisms
for an exascale OS

* Several approaches hold promise: energy
measurement, scheduling distributed services,
advanced memory management

« Simulation at scale can illustrate consequences of
different resource allocation strategies and
programming models

cecee &8

BERKELEY LAB O SWARM | A3

ssssssss

