
DEGAS: Dynamic Exascale Global Address Space
Katherine Yelick, Erich Strohmaier, Paul Hargrove, Costin Iancu, Eric Roman, John Shalf, Brian van
Straalen, Sam Williams (LBNL); Vivek Sarkar, John Mellor-Crummey (Rice University); James Demmel,
Krste Asanoviç (UC Berkeley); Mattan Erez (UT Austin); Dan Quinlan (LLNL)

The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop
the next generation of programming models, runtime systems and tools to meet the challenges of Exascale
systems. We will develop a new set of programming concepts based on a hierarchical model of
parallelism and data locality, hierarchical fault containment/recovery for resilience, introspective dynamic
resource management, demonstrate them using extensions to existing languages, and evaluate their utility
for applications. Our solution will address the following key challenges posed by exascale systems:

• Scalability: Efficient communication (extended GASNet) and synchronization mechanisms
combined with compiler (ROSE) and runtime optimizations to minimize both.

• Programmability: Rich set of programming constructs based on a dynamic, resilient Partitioned
Global Address Space (PGAS) model, demonstrated in multiple language dialects (C and
FORTRAN).

• Performance Portability: Non-invasive profiling (IPM), deep code analysis (ROSE) and a
dynamically Adaptive RunTime System (ARTS).

• Resilience: Containment Domains and state capture mechanisms and lightweight, asynchronous
recovery mechanisms.

• Energy Efficiency: Runtime energy adaptation and communication-optimal code generation.
• Interoperability: Runtime and language interoperability with MPI, OpenMP and libraries (Lithe).

The DEGAS team will work with Co-Design centers to drive the programming construct design,
combined with information about hardware platforms as it emerges. We will also leverage ongoing
discussions with other application and vendor stakeholders as well as mainstream language standards
groups, augmented with advisory committees and semi-annual retreats involving broad representation
from all three groups.

Our approach focuses on a vertically integrated programming and execution environment that
incorporates the latest algorithmic approaches and application structures to effectively service ultra-scale
science and energy applications. The primary focus areas of DEGAS are shown in Figure 1 along with
the proposed integrated software stack.

!"#$%$&'"&%()*$+,$%--".,)

/+0#(1)
2+--3."&%4+.567+"0".,)

2+-8"(#$1)
60%847#)9.:#$+8#$%;(#)

<3.4-#1)
=",':>#",':)?.#5@"0#0)

2+--3."&%4+.)
Figure 1: Organization of DEGAS research concepts (left) and software stack (right)

The proposed research addresses key technical challenges throughout the software stack and will results
in an integrated stack that can be used through multiple language interfaces that interoperate. The key
research thrust areas in DEGAS include:

Hierarchical Programming Constructs for Locality and Parallelism: We will develop a new
programming constructs based on a hierarchical model of parallelism and data locality that extends the
Habanero Hierarchical Place Tree (HPT) from a single node to a Distributed Hierarchical Place Tree
(DHPT) model in a PGAS setting. The computations that can be mapped on a DHPT will be specified
using multi-paradigm parallelism, including asynchronous tasks and task teams, and general
multidimensional distributed parallel loops. Further, a rich set of scalable synchronization constructs will
be explored to enable different forms of coordination among computations, including point-to-point
synchronization with asynchronous collectives.

Language Designs: We will express the programming constructs listed above as extensions to three
existing languages --- Fortran, C and possibly Python. Our goal is to demonstrate their utility for high-
end applications, while providing a path to broader adoption of these advanced concepts for mainstream
language standards. The hierarchical Fortran extensions (HCAF) will be based on CAF 2.0, which offers
a ready migration path for existing Fortran applications. The C extensions (Habanero-UPC) will be based
on UPC and Habanero-C, and will provide the quickest path for evaluating mini-applications on new
hardware with specialized processors. We also plan some exploratory work based on Python (PYGAS) as
an option for high level programmability.

Language Implementations (ROSE): We will use the ROSE compiler infrastructure to provide automated
analysis to support dynamic asynchronous execution provided by ARTS, automated model generation and
code instrumentation, and fault resilience/recovery features of containment domains. A new class of
communication-avoiding (and in some cases provably communication-optimal) algorithms will be
available through libraries and from advanced compiler transformations.

Communication Layer (GASNet-EX): Existing partitioned global address space (PGAS) environments
presume a flat, homogeneous distributed memory model, whereas future systems are expected to be
increasingly heterogeneous with disjoint memory spaces. We will enhance PGAS concepts and advanced
programming constructs by extending an existing Global Address Space infrastructure (GASNet) for
internode communication to hierarchical/heterogeneous memories. This work will deliver significant
innovations for the execution model within a node, allowing performance portability across varying
architectural solutions.

Resilience (BLCR+CD): Current bulk-synchronous approaches to checkpoint/restart for resilience are not
scalable, while the likelihood of faults at exascale will increase dramatically. We will therefore deliver
foundational contributions in fault-resilience using containment domains (CD), while developing
advanced asynchronous rollback technology for PGAS languages. Our work will leverages and extend
the low-level mechanisms from Berkeley Lab Checkpoint/Restart (BLCR), which has a history of
delivering production-quality, deployed software infrastructure for fault isolation, state preservation, and
recovery.

Dynamic/Adaptive Runtime (ARTS/Lithe): Existing static runtime systems fail to meet the needs of
increasingly dynamic algorithms and execution environments. Our work will use a composable interface
for parallel libraries called Lithe to manage and schedule resources, while enabling a smooth transition
from legacy programming models. Lithe will be integrated into our novel Adaptive RunTime System
(ARTS) that uses instrumentation and model-based prediction for dynamic adaption to changing runtime
conditions, and automatic code optimization for data locality and energy efficiency.

Performance Feedback and Steering (IPM/Roofline): The control system for an adaptive runtime requires
information to make control decisions and detect failure conditions, but current software environments
fail to provide pervasive/non-invasive monitoring. We will integrate minimally-invasive integrated

performance tools (IPM) to provide always-on feedback from full-scale DOE applications. Our work will
also expand and automate our Roofline performance model to enable multiple levels of bottleneck
analysis across diverse architectures.

