
Milestone 10 Status Report
Award #: DE-SC0008717
Recipient: Intel Federal LLC
Project Title: TRALEIKA GLACIER X-STACK
PI: Shekhar Borkar
Report Date: March 2, 2015
Period Covered by Report: December 1, 2014 to February 28, 2015

Acknowledgment: This material is based upon work supported by the Department of Energy [Office of
Science] under Award Number DE-SC0008717.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

 1 of 21

Contents
Executive Summary ... 3

Intel ... 4

Reservoir Labs - Richard Lethin7

Rice University - Vivek Sarkar ... 9

UCSD - Laura Carrington ... 10

University of Illinois Urbana Campus – David Padua13

University of Illinois Urbana Campus - Josep Torrellas ... 14

Pacific Northwest National Laboratory – Andres Marquez17

2 of 21

Executive Summary
The team’s focus is to mature SW stack and evaluate it with applications on the Traleika Glacier (TG)
architecture. We enhanced our collaboration with the application developers to support evolutionary
applications (traditional C, MPI, etc.) on the OCR platform, continued development of the tools and
simulators for the third version of the architecture, and strive to increase scalability, performance, and
quality. PNNL’s internal OCR version has become an extremely useful test-bed to research novel ideas
with applications since it provides a very competitive environment when compared to other fine grain
runtime systems and models.

A preliminary implementation of the unified CnC front end unifies the CnC language across different
runtime implementation, such as CnC-HC, CnC-OCR, Intel CnC-C++. This allows the user to run the same
application on multiple runtime targets without any changes, hence enhancing user productivity.
Reservoir has extended R-Stream optimizations to larger sections of performance-critical kernels in the
HPGMG benchmark demonstrating performance and productivity benefits by automatic generation of
efficient OCR code for HPGMG kernels. And they are on track to make it capable of scalable automatic
on-the-fly creation and management of data-blocks—ready for the upcoming applications workshop.

To demonstrate interoperability, we conducted two experiments using CnC for coarse grain parallelism,
with HTAs inside the CnC steps for inner parallelism and locality, targeting Cholesky factorization, and a
matrix inversion. Initial results show that if offers slight performance improvement over CnC alone, with
slight impact to programmability.

Significant progress to report in the refactorization of proxy applications for extreme-scale architectures.
We now have several implementations of CoMD that run with OCR, including two versions refactored
directly to the OCR API, and a version that uses CnC to produce OCR code. These are demonstrated on
both, the x86 implementation of OCR for larger scalability, and the TG simulator for architectural
explorations. Another application, namely HPGMG, too, is ported on OCR and tested using the x86-
pthreads target.

Applications Workshop #4 is planned to be held in Hillsboro, OR April 7-8, to test the SW stack with
“hands-on” experience with our DOE colleagues on the proxy applications.

1 11/30/12 Architecture V2 spec & preliminary apps kernal identified for evaluation Intel
2 3/1/13 Simulators V2 functional, tools (C + binutils) in place, IRR V1 identified ETI, Reservoir
3 5/31/13 Selected kernels evaluated for 0(compute) Intel, PNNL
4 8/30/13 Basic timing in simulator, intelligent scheduling in Exec model, tools (LLVM, etc) ETI, Rice, Reservoir
5 11/27/13 Selected kernels evaluated for 0(com), select apps coded with PGM system for IRR UCSD, PNNL
6 2/28/14 Architecture V2.5 spec, system evaluation of V2.0 Intel, UIUC (Josep)
7 5/30/14 Simulators V2.5 functional, tools for V2.5 released ETI, Reservoir
8 8/29/14 System evaluation of V2.5 UIUC (Josep)

9 11/26/14
Arch V3.0 spec (ISA 4.1.0), selected apps evaluation with execution model and
programming system for V2.5 Intel (with all)

10 2/27/15 Simulators V3.0 functional, tools for V3.0 released Intel, Reservoir
11 5/29/15 Release OCR (Open Collaboration Runtime) V1.0 Rice
12 8/28/15 Evaluation of all X-Stack technologies and report Intel

3 of 21

Intel

FSIM and OCR (Romain Cledat)

Introduction
During this quarter, we focused on three main areas: (a) increased collaboration with application
developers to support evolutionary applications (traditional C, MPI, etc.) on the OCR platform, (b)
continued development of the tools and simulators for v3 of the architecture, and (c) increasing the
quality of OCR particularly in the area of performance.

Accomplishments
We have increased collaboration with application developers (see specific section on “Applications”) and
held two internal face-to-face meetings to determine how to support evolutionary applications on OCR.
This effort is motivated by DoE’s ask to support today’s models in our OCR environment. We are
specifically focusing on supporting a traditional C program by porting a libc implementation called
newlib as well as supporting unmodified MPI code by implementing a lightweight wrapper around OCR
to emulate MPI calls. These features are being supported by modifications to the OCR codebase.

We are also working with application developers to develop visualization tools to help in the
understanding and debugging of applications written directly to the OCR platform. We currently have a
timeline visualizer and initial versions of visualizers that allow the inspection of (a) the state of memory,
(b) the data traffic OCR generates as well as (c) the task flow-graph of the application.

We also continued development of the tool-chain and simulators for v3 of the architecture.
Unfortunately, we were not yet able to port OCR to it as the environment is not yet stable. The current
focus is on revamping the simulator for the control engines (CE), validating the execution engines (XE)
using RTL and implementing missing features in the simulator (queue engines, memory engines, power
estimates, etc.)

OCR internals have also been improved. Significant features include a new allocator that is better able to
handle multiple “levels” of memory, a scheduler infrastructure that will enable us to further explore
various scheduling and data placement heuristics. We are also in the process of fixing some of the major
bottlenecks identified till date.

As we prepare for a June release of OCR, several automatic regression suites are also in alpha version to
allow us to track the evolution of the runtime. We are specifically looking at identifying the evolution of
runtime overheads and scaling. The OCR specification is also being finalized with work on the memory
model currently at the forefront.

Plans
For the next milestone, we plan to:

• Port OCR to v3 of the architecture
• Continue internal OCR improvements

4 of 21

• Host the 4th Application Workshop in April (pushed back from end of February due to DoE conflicts).

Issues
None.

Inventions
Several inventions were disclosed with this milestone that will be reported under separate cover.

Publications
None.

Applications (Bill Feiereisen)

Introduction
During the period December 15, 2014 - March 15, 2015 we made significant progress in the
refactorization of proxy applications and “teaching” kernels into the revolutionary programming models
that are based upon the OCR dynamic runtime. We also built upon the unified build structure of the
application and runtime repository that we set up last quarter, by adding a formal regression test
system. This system allows for nightly tests of all the proxies and kernels upon the runtime. This will
assist in the evaluation of the initial public release of the system V1.0 that is planned for this coming
summer. It has already proven its worth in runtime debugging and necessary subtle changes in
applications refactoring.

Accomplishments
Proxies and Kernels: We now have several implementations of CoMD that run upon OCR, including two
versions refactored directly to the OCR API and a version that uses CnC to produce OCR code. These
versions run upon both the x86 implementation of OCR and upon the simulator for the Traleika Glacier
architecture. Work is underway to understand scaling issues related to the memory hierarchy
representation in the simulator.

Work upon HPGMG proceeds on several fronts. We have a refactored version programmed directly to
the OCR API and in addition our colleagues at Reservoir Labs and UCSD have used the R Stream compiler
to optimize a version for OCR. A CnC version to OCR is in work in concert with our colleagues at PNNL
and is expected during the next quarter. Inspired by the visualization tool we have now generated a
timeline visualization of HPGMG in order to understand the individual running tasks. HPGMG is the
subject of investigation also for the implementation of some communication-avoiding ideas.

Application Repository: This repository structure now allows us to run regular app regression tests upon
the Traleika Glacier software and hardware infrastructure, providing a powerful tool for co-development
of the architecture, the simulator and the OCR runtime. This regression framework is in operation and
we are adding applications regularly. Our goal is to provide this repository fully populated to the DOE
for assessment and for use as teaching examples for refactoring codes in the high level programming
notations.

5 of 21

Applications Workshop #4 will be held in Hillsboro, OR April 7-8. This workshop is planned to be “hands-
on” and mostly devoted to joint coding with our DOE colleagues on the proxy applications. We invite our
DOE colleagues to “bring their own codes.” Preparations are ready and we remind our DOE colleagues
to please consider attending. If you should hear about this workshop through this report and and want
to attend, but are not already on our invitation list please contact us immediately.

Plans
During Q2-2015 we will continue to populate the applications repository with the initial versions of all of
the proxy applications, including the original versions for comparison. And we will expand the
implementations of the proxies beyond the current OCR and CnC OCR versions.

Issues
None.

Inventions
None.

Publications
None.

Community Development and Coordination (Wilf Pinfold)

Introduction
We reached agreement between the four large X-Stack programs DEGAS, XPRESS, D-TEC and the smaller
DOE X-Stack projects to evaluate developments and collaborate on common candidates for the
revolutionary programming system. In particular, Intel plans to leverage the programming model ideas
from an evaluation and selection study we are collaboratively conducting. Intel also aims to explore
common learnings from research into distributed dynamics runtimes and work toward a common
Exascale runtime interface "EOCR.".

Accomplishments
Programming Environments Whitepaper: Completed and distributed to Programming System Workshop
attendees for event starting March 9th.

Runtime System Report: All sections filled but considerable editing still to do.

PI meetings: Completed discussions on hardware changes for Exascale and built content into
programming systems and runtime documents.

Plans
• Programming Environment and Runtime Systems Workshops: March 9-13, 2015

Issues
None.

6 of 21

Inventions
None.

Publications
None.

Reservoir Labs - Richard Lethin

Introduction
This research memo describes the contributions of the Reservoir Labs X-Stack team during the period of
December 15, 2014 through March 15, 2015. A summary of our contributions during this period
includes:

● Extending R-Stream optimizations to larger sections of performance-critical kernels in the HPGMG
benchmark to demonstrate performance and productivity benefits offered by R-Stream through
automatic generation of efficient OCR code for HPGMG kernels

● Making R-Stream capability for scalable automatic on-the-fly creation and management of
datablocks robust (It will be made available during Intel’s Exascale Applications Workshop in April)

● Supporting users using R-Stream installed in the Intel X-Stack cluster

Accomplishments
This section details our contributions during this reporting period.

Scalable Datablocks Support in R-Stream
We continued our work on improving R-Stream’s capability to automatically generate scalable OCR
code, especially on improving scalable OCR datablocks support in R-Stream. Previously, R-Stream used
to create one large datablock for each array and then create smaller datablocks within EDTs that fit in
the local scratchpad (for e.g. XE scratchpad in TG architecture) based on the data accessed within an
EDT. The new capability takes in a data partitioning (aka data tiling) specification from the user and
creates datablocks according to the specification. R-Stream automatically figures out the datablocks that
each EDT needs and creates an input slot for each datablock. Within an EDT, the data needed by the EDT
from each of its input datablocks is automatically copied on to temporary local arrays that collectively fit
in the local scratchpad attached to the processing element. This capability eliminates the need to create
one large datablock for each array and provides a pathway to achieve scalable performance.

R-Stream supports automatic generation of OCR code with on-the-fly scalable creation of EDTs. To
compliment this capability, it now supports on-the-fly creation of datablocks. Creating all the datablocks
at the beginning of the execution is non-scalable and adds a huge “startup” overhead (similarly, it incurs
a huge startup overhead when all EDTs are created at the beginning of the execution). A datablock is not
created until it is needed for the first time by an EDT that is ready to execute and uses the datablock for
its computation. R-Stream automatically figures out the dependence between different EDTs and the
dependence between EDTs and datablocks, and automatically generates code for optimal on-the-fly EDT

7 of 21

and datablock creation. R-Stream has a light-weight runtime layer that operates on top of OCR and
handles these capabilities, namely, on- the-fly creation of EDTs and datablocks.

HPGMG Mapping

R-Stream Optimization
In the previous quarters, we identified HPGMG smoothers as main bottleneck areas, and mapped the
GSRB and Chebyshev smoothers to enable automatic parallelization and optimization, and OCR code
generation by the R-Stream compiler. As mentioned in the previous quarterly report, we mapped the
finest grain parallel region and produced OCR code for it. Initial results showed that OCR performance is
better than or comparable to the OpenMP performance.

During this quarter, we worked on optimizing coarser regions of the smoother kernels to exploit the
opportunities in executing these regions in a more asynchronous fashion in an EDT-based runtime such
as OCR. The smoothers are good candidates for optimized execution in an EDT-based runtime. However
it is error-prone and extremely difficult and challenging to hand-code them in OCR or other EDT-based
runtime models. R-Stream seems to be the right fit to provide performance and productivity benefits in
optimizing these codes, through its automatic OCR code generation and optimizations to achieve
scalable performance. Specifically, these smoother codes offer the following opportunities – 1) on-the-
fly scalable creation of EDTs performing the smoother computations (as opposed to non-scalable
creation of all EDTs at the beginning of the execution) and 2) on-the-fly scalable creation and
management of datablocks needed by the EDTs (as opposed to non-scalable creation of all datablocks at
the beginning of the execution). R-Stream exploits both these opportunities, i.e. on-the-fly EDT creation
and datablock creation and management, and generates an OCR code that is scalable and efficient.

CnC Collaboration
Reservoir Labs has been collaborating with the CnC team at Intel/Rice and the PNNL team to define
software interfaces between CnC steps and R-Stream optimized components of HPGMG including
smoothers, restriction, residual computation, and interpolation operations.

SDSC Collaboration
We have been meeting with Laura Carrington’s group at the San Diego Supercomputing Center to
discuss our individual HPGMG progress and plan of action to plug-in R-Stream optimized components in
their hand-written OCR code.

Intel Collaboration
Reservoir Labs has been providing guidance to Gabriele Jost from Intel on HPGMG optimizations (e.g.
communication-avoidance optimizations) and usage of R-Stream for simple kernels and HPGMG.

Plans

For the next milestone, we currently have the following plan of action:

8 of 21

● Extend the scope of R-Stream optimizations for HPGMG, specifically, enable broader cross kernel
fusion and map more coarse-grained parallel regions in different levels of the multigrid solve.

● Enhance performance-scalable optimizations in R-Stream-OCR code generation.
● Demonstrate R-Stream technology to TG project members and DOE users at Intel’s Exascale

Applications Workshop at Hillsboro in April (Note that R-Stream is made available to all interested
users – TG members and DOE users – through an installation in the Intel X-Stack cluster).

● Demonstrate the performance and productivity benefits of R-Stream through automatic OCR code
generation for HPGMG benchmark, at Intel’s Exascale Applications Workshop at Hillsboro in April
(Note that the R-Stream optimized HPGMG code is available in the Intel X-Stack git repository).

Issues
None.

Inventions
None.

Publications
None.

Conclusion
During this quarter, we extended the capability of R-Stream to automatically generate efficient OCR
code for larger performance critical sections in the HPGMG benchmark. R-Stream takes few lines of
(HPGMG) C code as input and produces efficient OCR code that gives comparable or better performance
than OpenMP; this highlights the performance and productivity benefits that R-Stream offers to the
exascale software stack. R-Stream generated OCR code for HPGMG kernels is made available to all TG
project members through the Intel X-stack git repository. Further, we made progress in extending the
high-level compiler optimizations for TG through R-Stream. Specifically, we made the capability in R-
Stream for scalable automatic on-the-fly creation and management of datablocks robust. The new R-
Stream capabilities will be made available during Intel’s Exascale Applications Workshop in April.

Rice University - Vivek Sarkar

Accomplishments
• We have made further performance improvements and committed several bug fixes to the OCR

implementations
• We have resolved memory issues in CnC-OCR-FSIM and are now have an implementation of CoMD

in CnC running on CnC-OCR-FSIM
• We have an initial implementation of the Unified CnC front end implementation that unifies the CnC

language across different CnC runtime implementation (CnC-HC, CnC-OCR, Intel CnC-C++ e.t.c.). This
allows the user to run the same application on multiple runtime targets without any changes. The
process of integrating this code into the XStack repositories is under way.

9 of 21

• We have written a draft paper on Tuning for CnC with automated generation of tuning annotations
using a Unified CnC translator. Target for submission is Supercomputing 2015

• (with UIUC) Working on a prototype to demonstrate interoperability between CnC and HTA
(Hierarchical Tiled Arrays). Code within CnC steps can invoke operations implemented in HTA. CnC
manages the coordination among coarse-grain asynchronous task-based computation steps. HTA is
responsible for optimizing the fine-grain data parallel computation within each coarse-grain step.
The initial working example, Cholesky, the coarser-grain CnC invoke a finer-grain data parallel
matrix-vector multiplication operation implemented in HTA. We will look at a more serious
application and begin performance studies.

• (With PNNL and LBL) Communication-avoiding algorithms in CnC. Use the separation of concerns
between domain specification and tuning to make the process of avoiding communication on
different targets more productive. CnC implementation of the smoother phase of HPGMG is under
way. This phase is the key for the communication avoiding optimizations in HPGMG.

Plans
• Build a prototype of a system that uses Rice HPC toolkit to collect information at the CnC level. This

will be used to optimize CnC programs. We’ll show the automatically collected data and a by-hand
transformation based on the collected data.

• (in collaboration with Purdue) Automatic transformation of CnC program to improve
performance/communication/power consumption using CnC hierarchy.

Issues
None.

Inventions
None.

Publications
None.

UCSD - Laura Carrington

Proposed milestone
Work on experiments with CoMD on OCR-FSIM. Complete the port of HPGMG on OCR –FSIM, and work
on the performance related issues.

Issues and Limitations Encountered
Some issues with the CnC version of CoMD have been solved and we prepared he code for release in git.
Some issues with FSIM prevented scaling to realistic CoMD problems; new versions of the memory
hierarchy simulations were recently made available but we haven’t successfully scaled the problem size
(cause still to be investigated).

10 of 21

Progress
We were able to run some experiments with CoMD on FSIM and we are now experimenting with the
new memory hierarchy modules recently released. We renamed and organized the directories according
to the new format proposed for applications that are maintained in the source tree. In addition, now
that CoMD/CnC/OCR works we are adding that too to the repository.

We completed the development of HPGMG on OCR and tested the code on x86-pthreads-x86 target.
The code is ready to be checked into the repository. We are now investigating its performance
differences when compared to the reference implementation.

The plots below show the performance of HPGMG with respect to the reference MPI implementation.

Figure 1

11 of 21

Figure 2

In agreement with the ExMatEx team, we are currently working on a new CoMD/OCR version that will
have fewer synchronization points and that will be more scalable. In the previous version we had global
synchronization due to the fork/join points delimiting the computation phases (e.g. force computation).
In this new version, we maintain parallel “lanes” of EDTs, one per cell, and use data exchanges and
dependencies to enforce local synchronizations between EDTs operating on neighboring cells. There are
some subtleties that need to be taken care of, such as how to create EDTs and notify EDTs in other lanes
about their guid, which greatly complicate the coding (fork/join much easier to write and understand);
but overall, we believe that the performance and scalability will improve.

12 of 21

Figure 3: Asynchronous CoMD/OCR. the computatin phases F(force), P(momentum), R(position), X(atoms exchange) are
performed in parallel on single cells without global synchronizations.

Next steps
We will continue experimenting with CoMD on FSIM and compare different variants for their
performance and energy efficiency. We will complete the CoMD/OCR version described.

We will test our OCR HPGMG code on FSIM target (build and run) and evaluate performance and energy
efficiency. We will continue our analysis on performance characteristics of HPGMG code on x86-
pthreads-x86 target.

By the end of the next milestone all the code will be in the repository and integrate for regression
testing.

University of Illinois Urbana Campus – David Padua

Accomplishments

HTA Implementation Improvements
Last quarter we began the implementation of SPMD parallelism in HTAs. This will allow us to leverage
asynchrony in OCR through the removal of global synchronization (barriers) in the HTA library. This
quarter we completed the implementation of the SPMD parallelism in the HTA library. In the new
asynchronous SPMD implementation, all synchronization is pointtopoint. Additionally, this
synchronization only happens when needed . Two tasks only synchronize if they need to exchange data.

Furthermore, we have adapted the NAS benchmarks to leverage this new execution model in the HTA
library. We are currently using these updated benchmarks to evaluate the performance of the library,
and add any performance improvements we can. We have observed some high overheads that appear
to be coming from the OCR runtime that are discussed further in the Issues section below.

13 of 21

HTA and CnC Integration
We have completed two initial experiments using CnC for coarse grain parallelism, with HTAs inside of
the CnC steps for inner parallelism and locality. These experiments were a Cholesky factorization, and a
matrix inversion. Initial experiments show that we are able to gain only slight performance
improvements over CnC alone, with a slight increase in programmability. These experiments are
promising for future improvements.

Plans

Graph Extensions for HTAs Implementation
The implementation of the graph extensions for HTAs is taking longer than expected. We will continue
to work on this in Quarter 11.

Graph Extensions for HTAs Evaluation
Once the implementation of the graph extension is complete, we plan to provide an evaluation of the
implementation with an Single Source Shortest Path (SSSP) algorithm, as outlined in the Quarter 9
report.

Evaluation of HTA Implementation
We will provide an evaluation of our performance improvements via six of the NAS benchmarks. These
benchmarks will be EP, IS, MG, CG, FT, and LU. We will provide an evaluation using our synchronous
fork/join implementation of HTAs as well as the new asynchronous SPMD implementation of HTAs that
leverages pointtopoint synchronization.
Continuation EDT
We discovered this quarter that the implementation of the continuation EDTs that we need for efficient
execution has been delayed beyond the end of this project. Without the continuation EDTs, we will have
to rely on the antiquated ocrWait() call that has very high overhead. We will do our best with what we
have.

Issues
None.

Inventions
None.

Publications
None.

University of Illinois Urbana Campus - Josep Torrellas

Accomplishments
In this quarter, Wooil Kim and I continued the evaluation of FSIM under OCR 4.0.8. The system is not
yet totally debugged for performance. There are a few bottlenecks and inefficiencies that are currently
being fixed. In particular:

14 of 21

• The memory allocator is still not performing well. As a result, running an application with more
blocks results in slowdowns.

• The inactive XEs are left spinning rather than being power gated. As a result, they continue
executing instructions and consuming energy.

• The energy numbers are still not available. We expect these statistics to be available in the next
month.

We present here some data from the experiments we performed running Cholesky.

Cholesky Program
Cholesky is a decomposition method of a positive, definite matrix into a product of a lower triangular
matrix and its conjugate transpose. The algorithm is iterative, and values produced in the previous
iteration are used in the current iteration. The algorithm has O(N^3) complexity because it iterates N
(the matrix size in one dimension) times for matrix elements (N x N). The simplified sequential algorithm
is written as follows:

for (k = 0; k < N; k++) {
 A[k][k] = sqrt(A[k][k]);
 for (j = k+1; j < N; j++) {

 A[j][k] = A[j][k] / A[k][k];
 for (i = k+1; i < N; i++) {

 A[i][j] = A[i][j] - A[i][k] * A[j][k];
 }

 }
}

The parallel version of Cholesky divides an entire input matrix into t x t tiles, where t (the number of tiles
in one dimension) is N (the matrix size in one dimension) divided by T (the tile size in one dimension). An
external program transforms an original matrix into a tiled lower triangular form, and the Cholesky
program starts from it. The breaking of the program into different tasks (called EDTs or Event-Driven
Tasks) was described in the previous milestone report.

All EDTs are created early on, but they wait until their dependences are resolved. The degree of
parallelism in Cholesky is affected by two main factors. The first one is the number of tiles. Given a fixed
problem size, more tiles with smaller tile size enable more parallelism. However, increasing the number
of tiles also increases the overhead. The second factor is related to the runtime. When there are many
EDTs that are ready to execute, the runtime picks one among them and assigns it to an idle XE. If the
runtime chooses an EDT with more dependent EDTs, the completion of the EDT increases the number of
executable EDTs. Overall, Cholesky shows a highly-variable degree of parallelism.

Performance as We Change the Number of Blocks
Figure 1 shows the execution time (in cycles) of Cholesky with matrix size 500 for different tile sizes and
different number of blocks. We have four tile sizes: 25, 50, 100, and 250 elements. For each, we run the
program on 1 block (8XEs), 2 blocks (16XEs), or 4 blocks (32XEs).

15 of 21

We see that, by reducing the tile size, the execution time decreases. This is because of the higher
parallelism between cores. However, we also see that, for a given tile size, as we add more blocks, there
is no (or little) benefit. The execution time remains approximately the same. This is because of the
suboptimal implementation of the memory allocator in FSIM.

Figure 4: Execution time (in cycles) of Cholesky for matrix 500, varying tile size and varying number of blocks used (one, two
or four blocks, of 8 XEs each).

We find that all remote memory references go to DRAM, rather than obtaining the data from another
block’s memory. To understand the effects and debug the software, we need more statistics on how the
EDTs are scheduled and executed.

Plans
Continue to evaluate the architecture on FSIM, focusing on having OCR fully implemented and
evaluated.

Issues
We need to work with the rest of the team members so that FSIM fully supports OCR for different
numbers of processors and allocates the data in the block memories. We also need to have the support
for incoherent caches fully debugged in FSIM.

Inventions
None.

Publications
None.

16 of 21

Pacific Northwest National Laboratory – Andres Marquez

Introduction:
During this quarter, PNNL has been working on developing the HPGMG proxy application in CnC
together with Intel’s assistance. Moreover, we conducted a survey and selected two mini apps to
showcase the capabilities of our group locality framework. Finally, we are in the final steps to complete
the OCR testbed and integrate the single node ACDT framework into it. More details to follow.

Accomplishments

Current Work:
• Development of the HPGMG application in CnC [Extended to Q11]
• Survey and documentation for proxy applications under the Group locality framework [Finalizing

report]
• Single node ACDT framework and shared memory OCR testbed [Completed, Under final review]

Future Work:
• Distributed OCR testbed and ACDT framework [Q11]

Applications:

HPGMG:
Last quarter, we were looking into generalizing the control of HPGMG. We have since implemented a
version of the control of HPGMG using generic steps and tags. We hope to reuse this in our final
integrated version of HPGMG in CnC-OCR as soon as the code is far enough along to support multiple
cycle types and different smoothers.

Regarding the fully integrated version, we have been working with Intel to create a .cnc file depicting
HPGMG. Once this file is finalized, we will be integrating the individual step code for HPGMG. This is
ongoing work, but our current goal is to have a simple version running by the next applications
workshop in early April.

In order to provide sufficient support to the team at Intel, we have brought in a new staff member that
will help us make quicker progress porting HPGMG to CnC.

Tiled Lulesh (Intel CnC):
Over the past quarter a lot of progress has been made using the Intel-CnC version of LULESH to
implement tiling and explore automated tiling in CnC. We are looking at porting the efforts made here
to the CnC-OCR version of LULESH which would give us a much better performance than the current per
element repository version that we finished last quarter. We have also been discussing the possibility of
implementing a tiling scheme, such as red black tiling to improve CnC.

17 of 21

CnC-OCR Lulesh:
We have started hooking the per element CnC-OCR version of LULESH into the regression test suite in
the repository. This is the first non-kernel app being hooked in and will provide the OCR team valuable
results moving forward.

PNNL’s version of OCR has successfully run the per element CnC-OCR version of LULESH (c.f. Section
3.3), and has helped to point out areas to improve the runtime. The code identified bottlenecks in
memory allocation, scaling for large events, and performance of events.

Group Locality (GL):
The report identified three examples from the Mantevo Suite of mini apps [https://mantevo.org] that
showcases the advantages and short comings of the Group Locality framework. Group Locality is the
concept in which threads collaborate at a very fine grain level. Such collaboration can be influence from
the compute and/or memory perspectives. The current status of the Group Locality framework provides
a highly parallel tiling strategy with intra-tile parallelism and a very fine grain runtime system based on
micro data flow and a restructuring data space for the group of threads working together.

The provided report talks about the parallel tiling strategy plus the fine grain runtime system when they
are applied to the three selected mini apps. The first mini app is called MiniSMAC-2D and it is used to
solve finite-difference 2D incompressible Navier-Strokes equations. Group Locality could take advantage
of the symmetric Gauss-Seidel relaxation kernel. However upon further analysis, we found that the
iteration space cannot be tiled under our framework. This example showcases in which cases our tiling
strategy cannot be applied.

The next mini app is called TeaLeaf and it is used to solve a heat conduction equation. It uses a 5 point
stencil solver that our framework can exploit. Using both our runtime and jagged tiling framework, we
achieved an increase of 30% over State-of-the-art polyhedral generated code for an Intel Phi
Architecture.

The final kernel is called Mini AMR, and it does an adaptive mesh refinement. It is composed of an
computational heavy kernel. After applying our jagged tiling strategy, we found out that there was a
degradation compared to the state-of-the-art code of around 11%. The memory profile of the
application shows that the tiling methodology should have won in these aspects (i.e. lower memory
trips, lower cache misses, etc). Thus, this kernel requires more study.

The report will be made available shortly after the end of February (after a more thorough analysis of
the last kernel has taken place).

Architected Composite Data Types (ACDT):
As mentioned in previous reports, we developed a dynamic self-aware light-weight system, the
Architected Composite Data Types Framework (ACDTF), to integrate with the Intel’s Open Community
Runtime (OCR)’s interfaces. The framework asynchronously samples and compresses data while an OCR
program runs and is able to achieve a maximum performance improvement of 18X for a sparse Cholesky
kernel. The previous framework was designed to run on top of OCR and worked on shared memory

18 of 21

systems. However due to the limitations of the then current OCR framework, the system could not
share state information across distributed nodes.

Thus, the decision was made to develop an in-house OCR and to provide several runtime hooks that
would make the integration of ACDTF possible. The objectives were to allow PNNL to improve OCR’s
fine-grain performance on shared memory systems, to enhance OCR with ACDTF, and to develop a
scalable distributed version of OCR. These objectives are well under way and have produced very
promising results.

Over Q10, a shared memory version of OCR was developed at PNNL, extended to support distributed
systems via TCP/IP, and enhanced with ACDT. One caveat is that the distributed OCR does not support
finish event driven tasks and exclusive write data blocks at the moment. This will be part of our Q11
work plan.

Our in-house OCR system, required for the ACDTF, managed to substantially reduce the overhead vs.
public OCR, see Figure 1. Overhead is especially problematic for very fine-grain tasks. To achieve these
performance improvements, PNNL used custom designed synchronization algorithms and data
structures, amortized the cost of growing structures, aligned data to the cache lines, attempted to
reduce false sharing where possible, and developed a custom thread-caching malloc to reduce hits on
the standard allocation table locks for data under 4 kilobytes.

Figure 5: PNNL’s SHMEM OCR performance vs Intel’s OCR, running on 16 cores (gcc 4.8.3 –O2 –mtune=native, Intel Xeon CPU
E5-2690) . Fib: 30, Comd: 12^3, FFT: 2^20, LULESH Domain: 4, Quicksort: 2000 elements, Cholesky: 16K^2, Smithwaterman:
800

For distributed systems, in an attempt to achieve performance within a quick development time frame,
our initial design focused on developing a TCP work stealing/sharing algorithm for distributing the work
across nodes. OCR is unique because data as well as work must be stolen/shared. So for the initial
design, PNNL implemented a multi-threaded system that could steal chunks of work and data (known as

Fib Comd FFT Smithwater
man Lulesh Quicksort Cholesky

Speedup 2934.99 10.14 0.99 40.11 52.21 252.26 1.00

0.10

1.00

10.00

100.00

1000.00

10000.00

SP
EE

DU
P

PNNL SHMEM OCR Speedup over Intel OCR

19 of 21

mugging). Furthermore, it intelligently caches data blocks that had been copied across memory to
reduce network traffic. Figure 2 shows the current performance for strong scaling using work stealing.
The speedup shows that there are some aspects that need to be addressed to improve the scalability of
our approach. These will be targeted during Q11.

Figure 6: Speedup relative to 1 thread. Strong scaling of a 16K^2 matrix across 16 nodes. Each node has 32 cores that share
16 FPUS, thus 16X per node is the maximum performance we expect. It is nice to see we achieve additional performance
moving across nodes.

For ACDTF, integrating it into OCR allowed many of the overheads to be removed because they were
implemented in a manner redundant to the underlying OCR. Additionally, a new design could be done
using underlying structures implemented for OCR. This included storing the global unique identifiers
(GUIDs) of data in a concurrent hash map to represent the ACDT state. This reduced the redundant
compression requests and state significantly. Figure 3 shows the current performance of ACDTF on 1
node. The performance is 11.77X faster than the ACDT running on top of the public OCR.

1

16.16

21.44

17.02
18.26 19.3

0

5

10

15

20

25

1 32 64 128 256 512

SP
EE

DU
P

THREAD COUNT

Distributed Cholesky Speedup

20 of 21

Figure 7: ACDTF samples the data of each data block asynchronously and compresses the block of 16^2 matrix. Performance
is relative to 1 Intel OCR Thread.

In conclusion, the internal OCR testbed is shaping up to be an extremely useful and high performance
vehicle to test our research ideas. Moreover, it provides a very competitive environment when
compared to other fine grain runtime systems and models. Current work focuses on adding hierarchical
scheduling to distributed OCR, finishing distributed ACDT, adding finish event driven tasks and exclusive
writes to distributed OCR, and performance improvements. Future work will include extending ACDTF to
support new features like resiliency.

1 2.07 4.01 7.54 14.29 18.64

50.85

100.72

158.83

212.11

0

50

100

150

200

250

1 2 4 8 16

SP
EE

DU
P

THREADS

Cholesky Speedup Relative to 1 Thread

Intel OCR ACDT OCR

21 of 21

	Executive Summary
	Intel
	FSIM and OCR (Romain Cledat)
	Introduction
	Accomplishments
	Plans
	Issues
	Inventions
	Publications
	Introduction
	Accomplishments
	Plans
	Issues
	Inventions
	Publications
	Community Development and Coordination (Wilf Pinfold)
	Introduction
	Accomplishments
	Plans
	Issues

	Inventions
	Publications

	Reservoir Labs - Richard Lethin
	Introduction
	This research memo describes the contributions of the Reservoir Labs X-Stack team during the period of December 15, 2014 through March 15, 2015. A summary of our contributions during this period includes:
	● Extending R-Stream optimizations to larger sections of performance-critical kernels in the HPGMG benchmark to demonstrate performance and productivity benefits offered by R-Stream through automatic generation of efficient OCR code for HPGMG kernels
	● Making R-Stream capability for scalable automatic on-the-fly creation and management of datablocks robust (It will be made available during Intel’s Exascale Applications Workshop in April)
	● Supporting users using R-Stream installed in the Intel X-Stack cluster
	Accomplishments
	Scalable Datablocks Support in R-Stream
	HPGMG Mapping
	R-Stream Optimization
	CnC Collaboration

	Plans
	Issues
	Inventions
	Publications
	Conclusion

	Rice University - Vivek Sarkar
	Accomplishments
	Plans
	Issues
	Inventions
	Publications

	UCSD - Laura Carrington
	Proposed milestone
	Issues and Limitations Encountered
	Progress
	We were able to run some experiments with CoMD on FSIM and we are now experimenting with the new memory hierarchy modules recently released. We renamed and organized the directories according to the new format proposed for applications that are mainta...
	We completed the development of HPGMG on OCR and tested the code on x86-pthreads-x86 target. The code is ready to be checked into the repository. We are now investigating its performance differences when compared to the reference implementation.
	Next steps

	University of Illinois Urbana Campus – David Padua
	Accomplishments
	Plans
	Issues
	Inventions
	Publications

	University of Illinois Urbana Campus - Josep Torrellas
	Accomplishments
	Cholesky Program
	Performance as We Change the Number of Blocks

	Plans
	Issues
	Inventions
	Publications

	Pacific Northwest National Laboratory – Andres Marquez
	Introduction:
	Accomplishments
	Current Work:
	Future Work:

	Applications:
	HPGMG:
	Tiled Lulesh (Intel CnC):
	CnC-OCR Lulesh:

	Group Locality (GL):
	Architected Composite Data Types (ACDT):

