
 1 of 23

Milestone 8 Status Report

Award #: DE-SC0008717
Recipient: Intel Federal LLC
Project Title: TRALEIKA GLACIER X-STACK
PI: Shekhar Borkar
Report Date: September 1, 2014
Period Covered by Report: June 1, 2014 to August 31, 2014

Acknowledgment: This material is based upon work supported by the Department of Energy [Office of

Science] under Award Number DE-SC0008717.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for

the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,

or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does

not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

Government or any agency thereof. The views and opinions of authors expressed herein do not

necessarily state or reflect those of the United States Government or any agency thereof.

 2 of 23

Contents
Executive Summary ... 3

Intel – Shekhar Borkar... 4

ET International ... 7

Reservoir Labs - Richard Lethin ... 8

Rice University - Vivek Sarkar ... 14

UCSD - Laura Carrington ... 15

University of Delaware - Guang Gao ... 16

University of Illinois Urbana Campus – David Padua .. 19

University of Illinois Urbana Campus - Josep Torrellas ... 20

Pacific Northwest National Laboratory – John Feo... 22

 3 of 23

Executive Summary
Prof. Torrellas and his team evaluated the whole TG system architecture (and the runtime system) on

the FSim simulator with insightful findings about performance scalability and energy consumption. The

report on the evaluation is presented as a separate document: “System Evaluation of V2.5”.

To continue to strengthen the research infrastructure, ETI completed the changes in the FSim simulator,

needed to transition the software stack to the new 4.1 ISA. Reservoir Labs Updated LLVM and binutils to

support version 4.1.0 (64-bit) of the TG ISA, including a DMA runtime providing C interface to DMA

instructions, and support in R-Stream for automatic generation of TG DMA operations through the DMA

runtime interface.

Earlier, we had completed the implementation of CnC on OCR for execution on a single shared-memory

node. Now we are close to completion of CnC on OCR for both, distributed and FSIM platforms, using a

new, event-driven approach for the CnC runtime implementation. We are addressing a more general

approach to memory management in CnC to address some concerns about memory usage. Habanero-

C++ too now runs on top of OCR, a library approach that uses the features of C++ to increase

productivity and allow the programmer to use Habanero constructs as library calls, while presenting an

easy to use language-like interface.

The OCR version emulating the TG architecture on x86 now supports multiple “blocks” and properly

emulates a TG-like memory hierarchy, which will be the basis for our multi-block version on FSim. The

FSim version of OCR is fully functional for a single block, and supports multiple levels of memory

hierarchy (such as block shared memory). The MPI version of OCR version is being continuously

improved and should be fully merged with the other versions by the application workshop being held at

the end of the month.

University of Delaware continued their efforts on a framework (SAFE) to implement self-awareness in

the system software. Their work involves adapting using the heat and energy models developed for the

TG simulator (FSim) and injecting them back into SAFE. After stabilizing and extending the original self-

aware API, they have started adding control (through the “decide” and “act” steps) in the framework.

To evaluate the programming models and the runtime system, we have selected four primary proxy

applications, and fifth one will be added soon—namely CoMD, LULESH, HPGMG and SAR. And the

kernels are Cholesky, Fibonacci, FFT, Conjugate Gradient (CG), the other NAS Parallel Benchmarks, EP, IS,

LU, FT, MG, HPCG, FFT and Stream. UCSD successfully developed the CoMD proxy app with two different

algorithms using MPI, MPI+OpenMP, OpenMP, MPI+PThreads, PThread, and OCR.

We are planning an applications workshop (Hack-a-thon) to be held later this month, which will be well

represented by our DOE co-design partners. They will get hands-on experience using TG software stack.

And we are looking forward to their valuable input and insights.

 4 of 23

Now that we are exiting the infrastructure building and move into maturing previously researched

technologies, we are not extending our X-Stack relationships with ETI and University of Delaware into

the third year of the contract. This will in no way impact our deliverables under the contract and we look

forward to a productive third year. We thank ETI and University of Delaware for their invaluable

contributions to the TG project.

Intel – Shekhar Borkar

Introduction
During this quarter, Intel worked in the following areas:

 The OCR specification is being developed collaboratively with another team at Intel.

 Continued progress on targets for OCR: emulated TG on x86 now supports multiple blocks, TG

on FSim is fully functional on a single block and the MPI implementation is being improved to

bring it in line with the current API

 Identification of scalability bottlenecks in OCR: we are working on evaluating the performance of

the applications we have to identify bottlenecks in the runtime. This effort is being conducted

on x86.

 Simplifying the process of building and executing OCR applications; we now have a tightly

integrated tool-chain that allows for quick application execution on all supported OCR platforms.

 Several bugs were fixed and features added based on requests from our partners.

 Four proxy apps where selected for focus: CoMD, LULESH, HPGMG and SAR.

 We scheduled Application Workshop 3 for September 30 – October 2 and developed the

proposed agenda.

Accomplishments

OCR

The OCR version emulating the TG architecture on x86 now supports multiple “blocks” and properly

emulates a TG-like memory hierarchy. This version will be the basis for our multi-block version on FSim.

Due Milestone Lead

1 11/30/12 Architecture V2 spec & preliminary apps kernel identified for evaluation Intel

2 3/1/13 Simulators V2 functional, tools (C + binutils) in place, IRR V1 identified ETI, Reservoir

3 5/31/13 Selected kernels evaluated for 0(compute) Intel

4 8/30/13 Basic timing in simulator, intelligent scheduling in Exec model, tools (LLVM, etc) ETI, Rice, Reservoir

5 11/27/13 Selected kernels evaluated for 0(com), select apps coded with PGM system for IRR UCSD

6 2/28/14 Architecture V2.5 spec, system evaluation of V2.0 Intel, UIUC

7 5/30/14 Simulators V2.5 functional, tools for V2.5 released ETI, Reservoir

8 8/29/14 System evaluation of V2.5 UIUC

9 11/26/14 Arch V3.0 spec, selected apps evaluation with Exec model & PGM system for V2.5 Intel, UCSD, Rice, Reservoir

10 2/27/15 Simulators V3.0 functional, tools for V3.0 released Intel, Reservoir

11 5/29/15 Release OCR (Open Collaboration Runtime) V1.0 Rice

12 8/28/15 Evaluation of all X-Stack technologies and report Intel

 5 of 23

The OCR version on FSim is fully functional for a single block. It also supports multiple levels of memory

hierarchy (block shared memory for example).

The OCR version on MPI is being continuously improved and should be fully merged with the other

versions by the application workshop being held at the end of September.

We improved the development environment to enable developers to be more productive in writing and

executing their OCR applications. We now have a unified way to build and run applications on all

platforms (including FSim). This required the implementation of simple file I/O for FSim. It is now

possible to write a single program for most applications1 and have it run on x86, TG on x86 or TG on

FSim.

We are also continuing our effort to produce a specification for OCR as well as an “example” document

that will detail several common application patterns and how to code them in OCR. We intend to have

this document ready for the application workshop being held at the end of September.

Applications

In order to exercise the programming models and the runtime system, we are focusing upon four

primary proxy applications and we are participating in the definition of a fifth. In addition we have

implemented several computational kernels as vehicles to define the measures of performance and

energy efficiency, but they also of use as teaching examples for event driven programming. These

examples will also help define a logical path in migrating from legacy programming models to “event

driven thinking.”

These proxy applications are CoMD, LULESH, HPGMG and SAR. We have begun discussions with John

Bell’s group at LBNL to define a proxy app for our purposes to be derived from AMR. The kernels are

Cholesky, Fibonacci, FFT, Conjugate Gradient (CG), the other NAS Parallel Benchmarks, EP, IS, LU, FT,

MG, HPCG, FFT and Stream

Our goal is to have the proxies and kernels supported in several of the higher level notations, CnC, H-C,

HTA and Reservoir as well as hand coded versions that run directly upon OCR, thus on the TG

architecture. This will allow us to quantitatively assess the performance and energy implications of TG.

During this performance period we have consolidated our efforts upon the first three proxies, CoMD,

LULESH and HPGMG and now have versions of CoMD and LULESH running in both OCR-hand coded and

CnC modes. Work is progressing on HPGMG and will leverage previous work done upon miniGMG on a

CnC version and we are beginning wok upon a hand coded version for comparison.

UCSD is porting the two algorithms to CNC to test CnC->OCR-FSIM to compare to the hand coded

version. The CnC version of CoMD for both algorithms is complete and is currently paced by planned

additional CnC/OCR/FSIM development.

1 We do not support the full standard library on FSim and are adding needed features on an as-needed basis.

 6 of 23

UCSD has successfully developed the CoMD proxy app with two different algorithms using several

different approaches including a CnC version. UCSD also completed a series of performance

experiments to analyze the performance features and bottlenecks of the different algorithms and

programming environments. Their experiments show that current bulk synchronous programming

models are not capable of handling the anticipated dynamic environment of Exascale systems. This data

was written up in a paper submitted to Co-HPC a workshop on Co-Design for SC14. The paper was also

sent to the ExMatEx team and they have been in email discussion about the results.

Lulesh tiling: In order to improve performance in our CnC version of LULESH, we started to implement a

tiling scheme that groups nodes and elements together into super sets. This reduces the overhead

involved with creating new CnC data items. We compared the performance of this with varying size tiles

and discovered that our result were comparable to and in some cases better than the OpenMP version

of LULESH. The results produced are preliminary and we hope to get some final numbers and tests in

the future.

Lulesh CnC-OCR: The initial CnC version of LULESH at PNNL used Intel’s CnC, while waiting upon the CnC-

OCR on FSIM. Ellen Porter (PNNL) hopes to have LULESH running on FSIM by the CnC 2014 conference in

mid-September. She submitted a poster to SC2014 outlining the steps involved in converting LULESH to

CnC showing its advantages.

HPGMG: Intel, PNNL and Reservoir have begun reviewing HPGMG code. Intel and PNNL are designing a

CnC code diagram. We have a plan in place to enable the use of R-Stream optimized portions of HPGMG

as CnC steps. Some progress has to be made on each independently before combining the two

approaches. The process of putting HPGMG into CnC form has uncovered a possible improvement.

Currently several versions of HPGMG have been identified and a user chooses one of these pre-

identified versions. Because of the CnC philosophy of separation of concerns, we might be able to

produce one version that is general enough to subsume existing configurations and also a wide range of

other similar ones as well. We’re currently investigating this possibility.

Implementation of CnC: Rice had previously completed the implementation of CnC on OCR for execution

on a single shared-memory node. They are now near completion of CnC on OCR for both distributed

and FSIM platforms, using a new, event-driven approach for the CnC runtime implementation.

Memory management in CnC: A CnC domain spec indicates the semantic meaning of the application and

allows for a wide variety of approaches to tuning (distribution and placement) it also allows for a wide

variety of approaches to memory management. Several approaches to memory management have been

implemented in Intel and Rice implementations of CnC. None of these are yet implemented in CnC-OCR.

We are investigating the existing and new approaches and coming to understand the pros and cons of

each.

CnC and HTA: Intel, Rice and UIUC are investigating ways to allow the application programmer access to

a combination of CnC and HTA. We’ve identified several distinct approaches. These approaches share

the need for a methodology to convert HTA tiles to CnC data items and CnC data items to HTA tiles. This

is currently under investigation.

 7 of 23

Plans
For the next milestone, we plan to:

 Finalize an initial OCR specification (with support from Rice and other teams within Intel) as well

as a document detailing some common patterns and how to code them in OCR.

 Propose a resiliency framework

 Prepare for and conduct Application Workshop 3 on September 30 – October 2, 2014.

Issues
None.

Inventions
Four subject inventions were disclosed and are being reported separately.

Publications
None.

ET International

Accomplishments
This quarter, ETI has finished the changes needed to transition the software stack to the new 4.1 ISA

within FSim.

Our primary accomplishment for the quarter has been in the support and addition of features to FSim

for the UIUC evaluation. To that end, we added additional PMU tracing commands, added CE PMU

reporting of clock cycles, finalized and tested infrastructure to import NDA restricted energy numbers

provided by Intel, and added specific energy accounting for memory. Additional hours were spend

ensuring UIUC used of FSim fully understood how to set configuration files appropriately to achieve

good performance and also to extract all the information required for their review.

 ETI's prototype for the Power API for the FSim framework has initial configuration completed but still

lacks runtime based functionality necessary to make it compliant with the x86 implementation. We will

be transitioning this work to Intel at the end of the quarter.

Status
The ISA changes are completed for all instructions currently implemented in FSim. Small amounts of

testing was started however the full regression test suite was not ported over to the 4.1 ISA. This work

has been documented and transitioned to Intel.

Currently, FSim models detailed dynamic energy consumption of instructions and accounts for static

energy per cycle in real-time. There is an energy estimation of network energy outside of the chip when

using tracing with the possibility to refine and internally compute the model using all the parameters

exposed within the FSim framework. We have implemented energy consumption for DRAM, Chip

 8 of 23

Shared Memory, Unit Shared Memory, and Block Shared Memory within the FSim framework which can

automatically pull the needed information from the energy file.

Issues
For the first month of this last quarter, we were still unable to test and verify the ISA due to lack of

binutil support. This led to a freeze on the system architecture for evaluation purposes. By mid-July,

binutils was available however priority was given to make energy accounting improvements and provide

support on the old ISA for the UIUC team to do their evaluation.

Our energy infrastructure was extended however the energy information within the user provided file

isn't updated with all the latest information on scaled energy values. This should simply be an update

and sanity check from Intel as the UIUC team has tested the functionality extensively in their evaluation.

Plans
Our work on the Traleika Glacier X-Stack program concluded with this milestone.

Publications
None.

Inventions
None.

Reservoir Labs - Richard Lethin

Introduction

This research memo describes the contributions of the Reservoir Labs X-Stack team during the period of

June 15, 2014 through September 15, 2014. A summary of our contributions during this period includes:

 Updated LLVM and binutils to support version 4.1.0 (64-bit) of the Traleika Glacier (TG) ISA.

 Created a DMA runtime that provides C interface to DMA instructions for 32-bit and 64-bit TG

ISA.

 Implemented support in R-Stream for automatic generation of TG DMA operations through the

DMA runtime interface.

 Investigated configurations and identified critical sections in HPGMG benchmark that dominate

the overall execution time; these critical sections are the candidates of immediate focus for

applying compiler and runtime optimizations.

 Identified and executed the initial steps towards developing a proxy application for AMR that

can be used for evaluating the exascale features of TG software stack.

Accomplishments

This section details our contributions during this reporting period.

 9 of 23

LLVM for 64-bit ISA

The LLVM backend was provided a major update to support version 4.1.0 (or the 64-bit version) of the
TG ISA. The TG architecture earlier had employed a 32-bit ISA. The opcode names, number of operands
for most instructions have been revised in V4.1.0. The LLVM code-generation backend was modified to
encode the new ISA. Furthermore, the new ISA provides certain new capabilities that were not present
in the prior instruction set. The enriched ISA has been leveraged to generate target code that is smaller
in size and higher performing compared to code that was being generated for the prior ISA.

Revised ISA Encoding

The instruction formats are changed in V4.1.0. The changes are geared towards making instructions
amenable to future extensions and also, reducing the number of different forms of an instruction for
different operand sizes by adding a field to specify operand size.
A representative revision is shown below. The ISA version 4.0.8 defines the following bitwise or
instruction format.

or64 r1, r2, imm12
The above instruction performs or between 64-bit operand in register r2 with the sign-extended 12-bit
immediate value imm12 and stores the 64-bit result in register r1. ISA 4.1.0 provides the following or as
a replacement:

bitop1 r1, r2, imm28, BitOp, SIZE
It performs the bit operation between a value in register r2 with the sign extended 28-bit immediate
value and stores the result in register r1. The actual bit operation to be carried out is indicated in BitOp
field (one of them is or), and the size of values in registers r2 and r1 is specified via SIZE operand.
The LLVM backend has been updated to emit assembly code in the new instruction formats.

Fewer Comparison Operations

Certain comparison operators – greater than (>), greater than or equal to (≥), not equal to (≠) have been
added to V4.1.0. The LLVM backend has been equipped to make use of the new operators, which
reduces the generated assembly code size and increases the performance of the program. Additionally,
this allows us to convert unordered floating point comparison operations into ordered comparison
operands. For example, unordered a < b is true if either a or b is undefined or if both are defined, a < b
must be the case. Ordered a < b on the other hand, is true only when a and b both are defined and a < b
is true.

The TG architecture by default executes ordered instructions. As a consequence, when unordered
instructions are encountered, additional comparisons have to be inserted to check if the operands are
undefined. Hence, it is desirable to only emit ordered comparisons. Since V4.1.0 ISA provides a full
spectrum of comparison operands, the LLVM backend flips the unordered comparison operation (for
example, > is flipped to ≤) and the resulting comparison is ordered by construction. It also flips the
branch targets to preserve correctness of the generated code.

Larger Register File

The 32-bit ISA encoding could fit a 6-bit register address. Therefore, the number of registers that the TG
architecture could support was 26 = 64. In the 4.1.0 ISA, a register address can be 9 bits long, enabling a
program to use 29 = 512 registers. The LLVM backend has been modified to emit code making use of all
512 registers.

Faster Loading of Immediate Values into Registers

The 4.0.8 version of the ISA allowed at most 18 bits of an immediate value to be loaded into registers at
a time.

 10 of 23

movimms r1, imm18
This implied that, when there is an immediate value of length greater than 18 bits, multiple movs have
to be initiated to fully load the value into a register. The 64-bit instruction encoding in V4.1.0 has room
to move up to 42 bits of an immediate value into a register in a single instruction.

movimm r1, imm42, SIZE
This means that if we have an operand of size at most 42 bits, it can be transferred into a register in a
single mov. Further, the total number of movs needed for a larger immediate value is also reduced.
Consider the following function.

long test(void) {
 return 1L << 20;
}

V4.0.8 generates the following code that requires two movs to load a 20-bit immediate value.
test:
movimmz r1, 16
movimmshf16 r1, 0
jabs r63

V4.1.0 accomplishes the required movement in a single instruction.
test:
movimm r1, 1048576, 64
jabs r511

Binutils for 64-bit ISA

A version of binutils has been ported to support version 4.1.0 of the TG ISA (informally, the 64-bit
version of the ISA). Binutils is a set open-source programming tools for creating and managing binary
programs, object files, libraries, profile data, and assembly source code, including:

as assembler
ld linker
addr2line convert address to file and line
ar create, modify, and extract from archives
nm list symbols in object files
objcopy copy object files, possibly making changes
objdump dump information about object files
ranlib generate indexes for archives
readelf display content of ELF files
size list total and section sizes
strings list printable strings
strip remove symbols from an object file

and several others. In addition, we were asked to port a separate utility, elf2hex, originally written by
engineers at Intel. In addition to porting binutils to the 64-bit ISA, we changed the file format used for
object code, executable files, etc. from Elf32 to Elf64. Given the way binutils is organized, we weren’t
required to individually port each of the above programs; instead, certain core libraries had to be
rewritten and the many programs were all generated automatically, in an all-or-none fashion.

We began with a version of binutils targeted to a combination of the 32-bit ISA and Elf32. Extensive
rewrites were required in four files:

 A header file defining all the operand fields in the various instructions (the semantics and their
length and position in the instruction word). In the 64-bit ISA, there are 42 different kinds of
field, a relatively large number.

 11 of 23

 A C file that is primarily a large table with entries for each instruction, where an entry specifies
the instruction’s mnemonic, encoding, operand fields, etc.

 A C file that has code to assemble each of the different operand fields.

 A C file that has code to disassemble each of the different operand fields.

In addition, a further 45 files required relatively small edits, some as trivial as rewriting certain constants
with a trailing L to indicate that they were part of a 64-bit computation.

Supporting TG MemISA in R-Stream

A DMA runtime was created for both the 32-bit (V4.0.8) and 64-bit (V4.1.0) TG ISA. This runtime
provides a straightforward C interface to DMA instructions previously available only through inline
assembly language. The runtime is implemented as strided DMA functions where both source and
destination locations may have independent strides. All code was compiled with the LLVM and binutils
toolchain for the applicable ISA.

A test suite was implemented, compiled and run successfully on the 32-bit F-Sim code checked into the
X-Stack git repository. The test suite consists of six subtests that exercise features from simple one-
dimensional data transfers to DMA where both input and output arrays have different strides. All tests
in the suite pass and the code executes in under one minute.

The runtime is designed to seamlessly integrate with R-Stream OCR code generation facilities. The
runtime was given to Kelly Livingston at ETI and he was able to integrate it with an R-Stream generated
OCR matrix multiplication kernel in one afternoon.

AMR Proxy Application

AMR or Adaptive Mesh Refinement is a very important class of algorithms that are used widely as the
backbone of large-scale computer simulations. One way to perceive AMR algorithms is to view them as
grid-management frameworks, i.e., frameworks that are used to manage an hierarchy of structured
grids where each level of the hierarchy represents a refinement level from the coarsest (e.g. level 0) to
the finest (e.g. highest level).

Each level of an AMR grid hierarchy consists of areas of interest or in other words sections of the grid
that capture interesting physical activity according to predefined physical rules (e.g. pressure gradient
thresholds etc.). In the context of AMR these sections are called boxes simply because they are captured
by hyper-rectangular boxes of structure grid. As a result, an AMR grid hierarchy can also be viewed as an
hierarchy of hyper-rectangular boxes or simply boxes that represent refinement patches of structured
grid.

This approach is very useful because it allows selective and adaptive refinement of the resolution of the
grid while keeping the PDE solvers simple by focusing on the structured grid patches. The structured
nature of the PDE solvers alleviates a huge burden from domain-experts that work on those solvers for
the price of a more complex grid-management framework that is harder to optimize in a portable
manner for future exascale parallel computer architectures like TG.

Our objective is to mitigate this tradeoff by exploring the steps required towards the development of an
AMR proxy application that would essentially be a simpler version of the full-scale AMR application. This
proxy application will be the primary vehicle for investigating compiler optimizations that would
eventually be directly applicable to the full-scale AMR applications.

 12 of 23

Steps toward an AMR Proxy Application

During this quarter, our efforts at Reservoir Labs were concentrated on identifying and executing the
initial steps towards the development of an AMR proxy application. We consider these steps to be the
following:

a. Identify the mechanism for constructing and maintaining dependences between boxes of
different levels (inter-level dependences) as well as boxes within the same level (intra-level
dependences).

b. Identify inter-processor communication operations for data exchanges between dependent
boxes.

c. Put everything together and form a minimal pseudo-algorithm that encompasses our findings
from steps a and b.

We believe that these three steps are very important because they reveal a much clearer picture of the
high-level control-flow structure of AMR. We also believe that the third step – which is the outcome of
our work during this quarter – can serve as an excellent starting point for further discussions with
domain-experts and also as a blueprint for preliminary implementation efforts.

One of the main tasks involved in executing these three steps was to perform a detailed study of an
AMR application in order to identify sections of code relevant to steps a and b as well as those sections
that are not relevant to steps a and b. The latter are represented by black-boxes in our pseudo-
algorithm (i.e., step c) and include sections like: initialization, mesh-refinement policy, PDE solvers etc.
We believe that frequent interaction with domain-experts is necessary for better understanding of the
importance and relevance of these code sections to the development of the proxy application. In other
words, we consider the next step forward to be the characterization of these black-box sections of code
and ultimately the definition of their role in the AMR proxy application.

HPGMG Study, Analysis, and Mapping

Reference Platform Definitions

Configuration of the HPGMG benchmark is a non-trivial task. The benchmark consists of two different
code bases that can be compiled and run independently. One is a finite element code; the other is a
finite volume. Further, users must set a number of options at build time, including multigrid cycle,
bottom solver, and smoother. Finally, actual problem size is specified at run time. Initially it was unclear
which set(s) of options could be combined to produce a proxy application for both current and near-
future multigrid solvers that was capable of being implemented on and optimized for the TG
architecture.

Reservoir Labs investigated configurations with one of the HPGMG authors, and found that modern
GMG solvers can best be proxied with the finite volume code configured with V-cycles, a biconjugate
gradient stabilized (BiCgStab) bottom solver and red-black Gauss-Seidel (GSRB) smoothers operating at
each level of the multigrid code. Future GMG solvers are best proxied with finite volume code
configured with full multigrid F-cycles, a BiCgStab bottom solver, and Chebyshev smoothers at each
level.

Identification of Performance Critical Sections

Examination of HPGMG timing out showed performance critical sections include smoothing, restriction,
interpolation, and ghost zone exchange.

 13 of 23

R-Stream Optimization

After identifying the smoother as a bottleneck area, the GSRB and Chebyshev smoothers are being
modified to enable parallelization and optimization by the R-Stream compiler.

CnC Collaboration

Reservoir has been collaborating with the CnC team at Intel/Rice and the PNL team. A guide to building
and running HPGMG was presented and subsequent collaborations have detailed a plan to enable the
use of R-Stream optimized portions of HPGMG as CnC steps.

Plans

For the next milestone, we currently have key ongoing tasks:

 Support LLVM and binutils for 64-bit TG ISA.

 Make progress on mapping various performance critical sections of HPGMG through R-Stream

to produce scalable OCR code on x86 and F-Sim.

 Continue discussions with John Bell and his group at LBL along with other TG team members to

concretely define a proxy application for AMR that can be used for TG software stack evaluation.

 Work on the final implementations of R-Stream optimizations for producing efficient and

scalable OCR code for TG architecture.

Issues

None.

Inventions

None.

Publications

None.

Conclusion

During this quarter, we completed a major update to the LLVM and binutils tools to support the 64-bit

TG ISA. We made progress in extending high-level compiler optimizations for TG through R-Stream.

Specifically, 1) we created a DMA runtime that provides a C interface to DMA instructions for 32-bit and

64-bit ISA and 2) we completed implementing the support for automatic generation of TG DMA routines

in R-Stream through the DMA runtime interface. We took initiatives within the TG team to focus on the

HPGMG benchmark for evaluating the TG software stack, especially, the compiler and runtime

components. We made progress in using R-Stream to produce scalable OCR code for the benchmark,

specifically optimizing the critical sections of the benchmark that dominate the execution time. We also

initiated efforts to develop a proxy application for AMR that will serve as an important application

benchmark for TG evaluation.

 14 of 23

Rice University - Vivek Sarkar

Accomplishments
We have implemented distributed OCR for clusters of nodes, using MPI as the communication layer. We

also have an implementation of the distributed OCR using GasNet as the communication layer.

We have designed several API improvements to OCR to support user- and compiler-generated hints that

communicate properties of OCR objects to the runtime, such as spatial locality, temporal locality,

repeating patterns, amount of parallelism generated, computation/bandwidth requirements.

We have made several performance and scalability improvements to the OCR implementation in

response to concerns raised by the application collaborators.

We have ported the OCR implementation of Conjugate Gradient to distributed OCR and demonstrated

its functionality and scalability on several cluster nodes.

Earlier, we had completed the implementation of CnC on OCR for execution on a single shared-memory

node. We are now near completion of CnC on OCR for both distributed and FSIM platforms, using a

new, event-driven approach for the CnC runtime implementation. We are designing a more general

approach to memory management in CnC to address some concerns about memory usage in CnC.

This approach will implement run-time checking that will allow expert programmers to reuse CnC item

memory while still respecting (at a logical level) the dynamic single assignment property of CnC.

We are currently adding support for exclusive-write access to Data Blocks in distributed OCR. This

feature is critical for completing the CnC on OCR (distributed and FSim) implementations.

We have implemented Habanero-C++ on top of OCR, a library approach that uses the features of C++ to

increase productivity and allow the programmer to use Habanero constructs as library calls, while

presenting an easy to use language-like interface to the programmer. We are currently implementing a

novel and scalable distributed finish using OCR as the runtime on a shared-memory node and UPC as the

cross-node communication layer.

We have installed, tested and documented the OCR on FSIM implementation at Rice, as part of the plan

for Rice to take ownership of the OCR on FSIM.

Plans
Milestone 9 is on track. We are designing different heuristics for adaptation in the OCR runtime that will

perform code and data movement to optimize for user-specified policies (performance, power, energy).

Issues
None.

Inventions
None.

 15 of 23

Publications
"Bounded memory scheduling of dynamic task graphs”. Presented at The 23rd International Conference

on Parallel Architectures and Compilation Techniques (PACT 2014), August 2014 Dragos Sbirlea, Zoran

Budimlic, Vivek Sarkar

"Dynamic Declarative Tuning for Locality”. Sanjay Chatterjee, Zoran Budimlic, Kathleen Knobe and Vivek

Sarkar Draft. Will be submitted for IPDPS 2015

UCSD - Laura Carrington

Proposed milestone
Work on experiments with CoMD on OCR-FSIM to explore tradeoffs with the two algorithms and the TG

architecture (Hardware-software co-Design). Work on porting the two algorithms to CNC to test CnC-

>OCR-FSIM to compare to the hand coded version.

Interpretation: 1) Describe preliminary trade-offs of two algorithms: propose metrics, apply metrics,

show quantitative results of metrics, and provide a qualitative statement about relative effort of making

CoMD work in both forms (quantitative where applicable). 2) Work with Bill F and DOE to identify Proxy

App for next Q milestone by end of this Q; provide a written statement of Proxy App to be used in next

Q efforts.

Issues and Limitations Encountered
We completed development and testing of multiple versions of CoMD two different algorithms each

programed using MPI, MPI+OpenMP, OpenMP, MPI+PThreads, PThread, and OCR. Upon evaluation of

the performance of the OCR version relative to all other versions performance and scalability issues in

OCR were identified. The Rice team has the smaller CG kernel code, which exhibits the same

performance and scalability issues. They are using this to test various solutions to the OCR issues.

Vincent Cave was working on this issue from Rice but his priorities have been shifted, He is expected to

begin working on the issue again sometime in Sept.

The CnC version of CoMD for both algorithms is complete and we are currently waiting on Nick Vivrlo to

get a CnC->OCR-FSim working. Current priorities are on distributed CnC-OCR and the CnC->OCR-FSim is

not currently being worked on. Without that version no experiments on the simulator can be

performed.

Progress
We successfully developed the CoMD proxy app with two different algorithms using MPI, MPI+OpenMP,

OpenMP, MPI+PThreads, PThread, and OCR. We implemented several variants of the algorithms that

differ in the way they deal with concurrent updates in the force calculation, and in how the work is

decomposed into tasks. We also completed the CnC version of CoMD using both algorithms. We

completed a series of performance experiments to analyze the performance features and bottlenecks of

the different algorithms and programming environments. In addition we completed experiments to

 16 of 23

highlight how current bulk synchronous programming models are not capable of handling the

anticipated dynamic environment of Exascale systems. This data was written up in a paper submitted to

Co-HPC a workshop on Co-Design for SC14. The paper was also sent to the ExMatEx team and we have

been in email discussion about the results.

We updated the CG/OCR code and implemented a tiled version. Following suggestions from Rice, we

also refactored CG and CoMD to avoid dependencies in favor of parameters, although only in CG (at the

finest granularity) the optimizations improved the performance.

Plans
We are currently working on porting the OCR CoMD code to the TG-FSim simulator. We have also

identified HPGMG as our next application to port to OCR and have begun work on that process.

Inventions
None.

Publications
None.

University of Delaware - Guang Gao

Progress on Self-Awareness
UD has been working on a single main aspect during milestone 8: self-awareness.

Continuing the efforts started in March 2014, UD has been working on a framework, called Self-Aware

FramEwork (SAFE). It models a Traleika Glacier chip from a hierarchical standpoint: it features a single

chip, divided in 16 units; each unit is composed of 16 blocks; each block is composed of 8 execution

engines (XEs), and 1 control engine (CE) for a total of 256 Control Engines and 2048 cores. The goal of

SAFE is to implement the self-aware API proposed in milestone 6, and provide an abstract environment

to test its efficiency when applying the control theory based observe-decide-act loop over a (logical)

hierarchy of hardware components. Blocks adapt locally to a set of constraints (e.g., a power goal, a

temperature threshold, etc.).

In the TG architecture model, each block is under the control of its CE for task scheduling, I/O handling,

as well as local self-awareness, i.e. introspection and self-adaptation. For each other higher level in the

hardware hierarchy, a CE must be selected. It is done arbitrarily in SAFE, but ideally it should be the

result of an election algorithm to avoid having CEs cumulate too many roles, and to account for

potential resiliency issues. Hence for each hardware level in the hierarchy (block, unit, chip, or even

rack), there must be a designated “super-CE” in charge of applying self-awareness for the group of

blocks belonging to that level. In SAFE, there are thus 256 block-level CEs, 16 unit-level super-CEs, and 1

chip-level super-CE. When a CE is also assuming the role of super-CE, it does not relieve it of its

responsibilities w.r.t. local self-awareness. In SAFE, a block is identified through a tuple <GlobalBlockID,

UnitID, BlockID>. GlobalBlockID is the “absolute” ID of a block within the chip, regardless of which unit it

 17 of 23

belongs to: it takes a value from 0 to 255. UnitID is a number going from 0 to 15. Finally, BlockID is the

“local” ID of a given block within a unit; its value goes from 0 to 15. Currently, SAFE gives the job of

chip-level “super-CE” to the block which ID is <0,0,0>, and a block is a unit “super-CE” if its BlockID (the

“local” ID within a unit) is 0; the block ID thus follows the pattern: <GlobalBlockID, UnitID, 0>.

Temperature and power consumption are aggregated from the lower control engines to their parents,

where a global decision is made. For example, a unit-level control engine may lower power and

temperature thresholds of its subordinate CEs to force them to adapt (the API was modified to allow this

behavior). It could also simply order them to perform dynamic voltage and frequency scaling (DVFS)

“right now.”

In Milestone 7, UD reinforced its framework infrastructure, by adapting the heat and energy models

developed for the TG simulator (FSim) and injecting them back into SAFE. After stabilizing and extending

a bit the original self-aware API, UD has started adding control (through the “decide” and “act” steps) in

the framework. Another part of the infrastructure effort was to reduce the amount of global

synchronization that blocks had to go through: instead of synchronizing at every simulated cycle, blocks

(i.e., threads) only synchronize through a barrier construct every million (simulated) cycles. Several

synthetic workloads have also been devised, some purely random, to stress the system, others more

“structured” to reflect specific workloads, such as traditional linear algebra kernels (e.g., BLAS2: matrix-

vector multiplication). UD will provide a technical report to summarize the findings w.r.t. those

experiments.

Special care has been provided by UD to document the code, and facilitate the transition from UD to

Intel, thus hopefully helping Intel's engineers to take over and adapt UD's code back into FSim to add

self-awareness to the OCR port on FSim. The self-aware API has aspects which are directly related to the

OCR data structures—in particular, the global unique identifiers (GUIDs) used in OCR were already used

in the previous runtime system executing on FSim (IRR), to cache meta-data pertaining to the hardware

usage of OCR event-driven tasks (EDTs, an implementation of the codelet model proposed by UD). Such

meta-data reflects the use of several components: floating-point operations, integer operations, “near”

and “far” memory operations, etc. These are not yet implemented back into SAFE or in the OCR/FSim

runtime system, but the code located in IRR should be easily ported back to either framework.

Issues
Stabilizing the framework took slightly more time to perform, thus reducing the time UD had to start
experimenting with user goals/policies, and the decision-action steps of the ODA loop. However, this
does not hamper UD's writing of a technical report related to UD's findings w.r.t. self-awareness.

Achievements w.r.t. Milestone 8's goals
Milestone 8's initial goals were the following:

1. To test several sequences and distributions of “synthetic tasks” on the framework, to evaluate

the scalability of the protocol as well as its ability to adapt to different workloads.

2. To add new kinds of decisions outside of DVFS (such as clock-gating parts of the system)

3. To add new kinds of goals, i.e., user-driven goals (e.g., power envelope to respect).

 18 of 23

4. To summarize findings in a technical report, and study the impact of the overall codelet-based

model.

Goal 1 was reached: UD ran various synthetic tasks using our framework, and measured instantaneous

and average power consumption, as well as temperature of each execution. Such tasks include “fully

random” sequence of instructions, as well as “sampled” instructions that reflect more realistic

workloads (e.g., 30% memory operations, 30% integer arithmetic operations, and 40% floating-point

operations). By changing the frequency at which control engines were performing the ODA operations,

we have been able to lower the overhead related to applying resource management in SAFE. While this

is not fully representative of what will happen in the real TG chip or even FSim, this is already a good

indicator.

Goal 2 was partially reached: UD has added energy consumption aspects to account for clock-gating.

However, actual control policies which use clock-gating or power-gating are still in the making.

Goal 3 was achieved: to the initial temperature thresholds, UD has added power goals. Contrary to

temperature thresholds, which could (arguably) be used homogeneously over all blocks in a TG chip,

power goals must be “divided” among individual units, then divided again among blocks: the power

budget of an individual block is a fraction of the power budget of a unit, etc. The power budget is

defined using the messages of the API and can be changed at runtime according to the control policies.

Likewise, since instantaneous power readings can vary widely from one sample to the other (due to the

different nature of the computation phases), the threshold cannot be “hard:” some latitude must be had

for the block to avoid unnecessary cycling from full voltage/frequency to near-threshold voltage modes.

Goal 4 will be fulfilled by September 1, 2014. The technical report UD is preparing describes:

 The architecture of the self-aware framework

 The updated self-aware API

 The types of workloads that have been fed to the framework, including how to use the scripts to

generate them (and others)

 Our first results using the ODA loop, including a comparison between full-voltage full-frequency,

full-NTV, and control-based executions of synthetic tasks, w.r.t. power and temperature, on

various numbers of blocks of the TG chip architecture.

Plans
Our work on the Traleika Glacier X-Stack program concluded with this milestone.

Inventions
None.

Publications
Stéphane Zuckerman, Aaron Landwehr, Kelly Livingston, and Guang R. Gao. “Toward a Self-Aware

Codelet Execution Model” in PACT 2014 Workshops: Dataflow Execution Models for Extreme Scale

 19 of 23

Computing (DFM 2014), Edmonton, AB, Canada, August 24, 2014. Presented at the workshop.To be

published.

University of Illinois Urbana Campus – David Padua

Accomplishments
We have been developing the Hierarchically Tiled Array (HTA) library as an abstraction of the event

driven task (EDT) execution model, specifically with the Open Community Runtime (OCR). HTAs allow a

concise representation to control locality and parallelism on tiled array data structures.

Performance Improvements

The focus of this quarter was on the evaluation of HTAs to improve the performance of our system at

two levels. The first level is the implementation of HTAs on top of PIL. The second level is the generation

of OCR code from PIL. We have identified one promising optimization at both levels to reuse small

allocated arrays. This optimization is expected to have a dramatic effect on algorithms that have many

iterations of parallel loops by significantly reducing the number of calls to allocate new arrays.

SPMD Implementation of HTAs in OCR

In the vein of performance improvements, we have been striving toward a SPMD implementation of

HTAs on top of OCR. We believe that this implementation will allow us to remove some barriers, and

thus overhead, from the system. We will achieve this by only using point-to-point synchronization when

necessary, instead of global barriers for synchronization.

We have had a long term goal of implementing task parallelism in PIL. We made the decision this

quarter to focus on the implementation of the task parallel design, and slightly postpone the

implementation of SPMD. We believe that in the long run this will be better, since the SPMD

implementation can be done easily using the work from implementation of task parallelism. We have

updated our milestones already to reflect this delay.

Issues

R-Stream Integration

We continued the work on integration of the R-Stream compiler with our work on HTAs as discussed in

previous quarterly reports. This work is proving to be more difficult than previously expected. We

uncovered a new bug and have been working with Reservoir to resolve the issue. However, progress has

been stalled due to legal reasons on releasing proprietary information on Reservoir’s side. They are

currently working with their legal team to resolve this issue.

Targeting OCR on Distributed Multi-Node x86 Systems

Moving forward we will need to shift our focus to targeting OCR on a shared memory x86 machines. We

had originally planned to target OCR on distributed x86, however the implementation of OCR on multi-

node systems has taken too long, and we will not have time to use it and still meet our future

milestones.

 20 of 23

Goals for Next Quarter

SPMD HTA on OCR

As mentioned above, we plan to complete the SPMD implementation of HTAs on OCR in Quarter 9.

Performance Improvements

We plan to continue our effort to optimize the implementation of HTAs on OCR on two fronts. We will

continue to seek out and remove overheads in the implementation of HTAs as well as in the OCR code

generated.

Graph Operations in HTA

We want to expand the HTA API to include graph operations and optimizations on graph computations.

In Quarter 9, we will evaluate opportunities to incorporate these graph notations into the HTA API.

Inventions
None.

Publications
This quarter we completed our first paper on the work in this project. In the paper, we proposed using

Hierarchically Tiled Arrays as a high-level abstraction for writing programs to execute on runtime

systems based on the codelet model. It presents a strategy for mapping HTA programs to codelet

execution in a general sense, not limiting to a specific codelet runtime system implementation. The

approach we described in the paper does not require any global barriers between HTA operations and

allows minimal synchronization among codelets. The mapping strategy also aims to respect the

distribution of tiles explicitly programmed by the software developers in order to exploit the locality of

the algorithms. We believe this is a good first step toward using high-level abstractions to improve the

programmability and we expect to delve more into the performance optimizations that can be used to

enhance this design in the near future. The citation for the paper is below and a copy of the paper can

be found here:

http://www.cs.ucy.ac.cy/dfmworkshop/wp-content/uploads/2014/08/DFM2014-10-Hierarchically-Tiled-

Array-as-a-High-Level-Abstraction-for-Codelets.pdf

Chih-Chieh Yang, Juan C. Pichel, Adam R. Smith, David A. Padua. Hierarchically Tiled Array as a High-

Level Abstraction for Codelets. In the Fourth Workshop on Data-Flow Execution Models for Extreme

Scale Computing, 2014

University of Illinois Urbana Campus - Josep Torrellas

Accomplishments
In this quarter, we accomplished two main things:

http://www.cs.ucy.ac.cy/dfmworkshop/wp-content/uploads/2014/08/DFM2014-10-Hierarchically-Tiled-Array-as-a-High-Level-Abstraction-for-Codelets.pdf
http://www.cs.ucy.ac.cy/dfmworkshop/wp-content/uploads/2014/08/DFM2014-10-Hierarchically-Tiled-Array-as-a-High-Level-Abstraction-for-Codelets.pdf

 21 of 23

1) We have evaluated the whole TG system (architecture and runtime system) on the FSim

simulator. The report on the evaluation is presented as a separate document: “System

Evaluation of V2.5”.

2) We evaluated the Software-Managed Caches API integrated with a compiler. Recall that we had

designed an API to manage the memories in a TG chip in software as incoherent caches, using

instructions for invalidate (INV) and writeback (WB). In previous quarters, we had integrated the

API with the Polyhedral compiler of Prof. Sadayappan. In this quarter, we evaluated the

enhanced compiler running the PolyBench benchmark suite on a SESC-based simulator. We

cannot yet use FSim because FSim does not include all the necessary instructions. Our

algorithms have two parts. For affine computations, the algorithms precisely identify data

dependences, using the Polyhedral-model machinery. For irregular computations, the

algorithms use inspector-executor techniques. The results of the simulations have shown that

the compiler techniques developed are competitive with hardware coherence schemes in terms

of their efficacy to preserve cache locality. We submitted a paper to SC14 on “Compiler Support

for Software Cache Coherence” but was rejected.

For more irregular applications, we have a semi-manual pass where the synchronization library

inserts the INV and WB instructions. Specifically, when the barrier library is called, it first issues

a WB for all the dirty cache lines, then performs the barrier, and then issues an INV for all the

cached data. A similar operation is done inside the lock library. However, the programmer can

specify the subset of data structures to write back and to invalidate, through special directives.

This saves a lot of traffic and improves performance. Our simulation results have shown that

the execution of irregular applications on incoherent cache hierarchies can deliver reasonable

performance. For execution within a cluster of processors, the performance is comparable to

simple support for hardware coherence. For execution in multiple clusters, the performance is

lower, but it scales with the processor count. We have submitted a paper for publication.

Issues
We need to work with the rest of the team members to fully insert the API for software managed caches

in FSim. Then, we need to evaluate it.

Plans
Continue to evaluate the TG architecture on FSim, and take the software managed cache API, insert it on

FSim and evaluate it.

Inventions
None.

Publications
 Submitted for publication:

1) Title: Compiler Support for Software Cache Coherence

Authors: Sanket Tavarageri, Wooil Kim, Josep Torrellas, and P Sadayappan

 22 of 23

2) Architecting and Programming an Incoherent Multiprocessor Cache Hierarchy

Authors: Wooil Kim and Josep Torrellas

Pacific Northwest National Laboratory – John Feo

Accomplishments

Lulesh tiling

In order to improve performance in our CnC version of LULESH, we started implementing a tiling scheme

that groups nodes and elements together into super sets. This reduces the overhead involved with

creating new CnC data items. We compared the performance of this with varying size tiles and

discovered that our result were comparable to and in some cases better than the OpenMP version of

LULESH. The results produced are preliminary and we hope to get some final numbers and tests in the

future.

Lulesh CnC-OCR

When we set out to write a CnC version on Lulesh, our initial goal was to run the code on FSIM using

CnC-OCR. This wasn’t quite ready to go when we were so our initial CnC version of LULESH uses Intel’s

CnC. Since then CnC-OCR has been tested on FSIM and is working, so we have picked up that effort

again. The steps involved include; create a text based CnC graph, run script that converts the text based

graph to CnC-OCR code, move existing CnC step code into CnC-OCR template, test and debug on x86

architecture, test on FSIM. This is currently in progress, and we hope to have LULESH running on FSIM

by the CnC 2014 conference in mid-September.

HPGMG

We began reviewing HPGMG code and designing a CnC code diagram

ACDT

We are concentrating our efforts on porting ACDT to OCR, starting with the balanced and unbalanced

ACDTs types. This effort will involve the porting of a couple of compression algorithms, an enhanced

compression format and parts of the ACDT runtime.

SC2014 Poster

We worked on and finished a poster outlining the steps involved in converting LULESH to CnC. This was

submitted to SC2014.

 23 of 23

Figure 1 - PNNL SC2014 Poster

	Executive Summary
	Intel – Shekhar Borkar
	Introduction
	Accomplishments
	OCR
	Applications

	Plans
	Issues
	Inventions
	Publications

	ET International
	Accomplishments
	Status
	Issues
	Plans
	Publications
	Inventions

	Reservoir Labs - Richard Lethin
	Introduction
	This research memo describes the contributions of the Reservoir Labs X-Stack team during the period of June 15, 2014 through September 15, 2014. A summary of our contributions during this period includes:
	 Updated LLVM and binutils to support version 4.1.0 (64-bit) of the Traleika Glacier (TG) ISA.
	 Created a DMA runtime that provides C interface to DMA instructions for 32-bit and 64-bit TG ISA.
	 Implemented support in R-Stream for automatic generation of TG DMA operations through the DMA runtime interface.
	 Investigated configurations and identified critical sections in HPGMG benchmark that dominate the overall execution time; these critical sections are the candidates of immediate focus for applying compiler and runtime optimizations.
	 Identified and executed the initial steps towards developing a proxy application for AMR that can be used for evaluating the exascale features of TG software stack.
	Accomplishments
	LLVM for 64-bit ISA
	Revised ISA Encoding
	Fewer Comparison Operations
	Larger Register File
	Faster Loading of Immediate Values into Registers

	Binutils for 64-bit ISA
	Supporting TG MemISA in R-Stream
	AMR Proxy Application
	Steps toward an AMR Proxy Application

	HPGMG Study, Analysis, and Mapping
	Reference Platform Definitions
	Identification of Performance Critical Sections
	R-Stream Optimization
	CnC Collaboration

	Plans
	Issues
	Inventions
	Publications
	Conclusion

	Rice University - Vivek Sarkar
	Accomplishments
	Plans
	Issues
	Inventions
	Publications

	UCSD - Laura Carrington
	Proposed milestone
	Issues and Limitations Encountered
	Progress
	Plans
	Inventions
	Publications

	University of Delaware - Guang Gao
	Progress on Self-Awareness
	Issues
	Achievements w.r.t. Milestone 8's goals
	Plans
	Inventions
	Publications

	University of Illinois Urbana Campus – David Padua
	Accomplishments
	Performance Improvements
	SPMD Implementation of HTAs in OCR

	Issues
	R-Stream Integration
	Targeting OCR on Distributed Multi-Node x86 Systems

	Goals for Next Quarter
	SPMD HTA on OCR
	Performance Improvements
	Graph Operations in HTA

	Inventions
	Publications

	University of Illinois Urbana Campus - Josep Torrellas
	Accomplishments
	Issues
	Plans
	Inventions
	Publications

	Pacific Northwest National Laboratory – John Feo
	Accomplishments
	Lulesh tiling
	Lulesh CnC-OCR
	HPGMG
	ACDT
	SC2014 Poster

