
X-Stack	Demos	Descriptions	

	

1. DEGAS:	Leveraging	HipMer	Extreme	Scale	Genome	Assembler	via	NERSC	Web	Portal	
	
De	novo	assemblers	are	a	key	computational	method	to	reconstruct	an	unknown	genome,	but	are	
limited	by	slow	runtimes	and	limited	scalability.	To	address	this	challenge,	a	multi-disciplinary	team	of	
computer	and	domains	scientists	collaborated	over	several	years	to	develop	HipMer,	the	first	end-to-
end	HPC	parallelization	of	the	high-accuracy	JGI	Meraculous	assembler.	HipMer	is	designed	to	scale	to	
massive	concurrencies	via	numerous	algorithmic	advanced	by	leveraging	Unified	Parallel	C	(UPC).	This	
allows	a	fast,	scalable,	and	portable	implementation	executable	on	both	shared-	and	distributed-
memory	architectures	without	modifications.	In	this	demo	we	will	present	a	forthcoming	NERSC	web	
portal	interface	that	will	allow	the	external	bioinformatics	and	computational	research	community	to	
remotely	leverage	our	efficient	and	scalable	de	novo	assembly	capability.	
	
	

2. DEGAS:	Containment	Domains	Resilience	
	
Containment	Domains	(CDs)	enable	an	application	to	express	resilience	concerns,	error	strategies,	and	
fault	tolerance.	Fundamentally,	a	CD-enabled	application	is	expressed	as	a	logical	tree	of	nested	CDs	
using	simple	and	consistent	programming	abstractions.	This	demonstration	highlights	the	advantages	of	
both	localized	resilience	actions	and	localized	recovery.		We	show	how	our	PGAS	and	MPI	runtime	
prototypes	enable	an	application	to	tolerate	errors	and	failures	of	differing	severity	and	scope	using	
localized	recovery.		Local	recovery,	in	contrast	to	coordinated	global	recovery	schemes,	enables	some	
nodes	to	make	forward	progress	while	others	are	recovering,	resulting	in	significant	savings	in	compute	
time	and	energy.	
	

3. D-TEC:	Halide	DSL	for	stencil	computations	

We	demonstrate	the	performance	portability,	performance	scalability,	programmer	productivity	and	
versatility	of	domain	specific	languages.	The	first	demonstration	uses	the	popular	Halide	DSL	for	stencil	
computations.		We	show	a	live	demo	of	an	image	processing	application	written	in	Halide	and	running	
on	three	different	architectures	(parallel	shared	memory	system,	GPU	and	a	NERSC	
supercomputer).		The	codes	running	on	these	architectures	are	generated	automatically	from	the	same	
algorithm	(the	user	needs	only	to	provide	a	schedule	to	specifying	how	the	algorithm	should	be	mapped	
to	each	architecture).		The	second	demo	uses	Simit:	a	new	domain	specific	language	for	computing	on	
graphs	using	linear	algebra.		It	allows	the	development	of	many	physical	simulations.		It	is	easy	to	use	
(shorter	than	Matlab),	provides	high	performance	(better	than	existing	simulation	libraries)	and	portable	
(CPU,	GPU).	We	will	demonstrate	an	example	of	a	physical	simulation	written	in	Simit.	

	

	



4. D-TEC:	MSL	synthesis	of	distributed	memory	implementations		
	
The	demo	will	show	how	our	system	can	generate	distributed	implementations	of	kernels	such	as	
Lulesh,	multigrid,	and	3D	transpose	kernels.		We	will	demonstrate	the	functionality	of	MPI+Sketch	
language	(MSL)	with	kernels	from	mini	apps	and	other	benchmarks.	
	
	

5. D-TEC:	Using	the	ROSE	framework	for	code	generation	and	optimizations	
	

We	will	demonstrate	code	generation	for	multiple	platforms	and	optimizations	using	the	ROSE	
framework.	Those	include	code	generation/transformation	for	OpenMP	4.x	on	the	GPU	platform,	MPI	
code	generation	for	distributed	memory,	code	generation	for	the	SST	hardware	simulator	for	multi-level		
memory	system,	and	transformations	with	Polyhedral	transformation.	
	
	

6. D-TEC:	Stencil	computation	using	embedded	DSLs	in	the	X10	programming	language	
	

The	X10	programming	language	is	a	simple,	clean,	but	powerful	and	practical	programming	language	for	
scale	out	computation	using	the	asynchronous	partitioned	global	address	space	(APGAS)	model.	It	
supports	a	rich	array	sublanguage	as	well	as	control	structure	overloading	for	defining	embedded	
domain	specific	languages	(eDSLs).	We	will	demonstrate	how	control	structure	overloading	can	be	used	
to	implement	efficient	parallel	iteration,	including	tiling	patterns	for	stencil	computation.	We	will	also	
present	results	for	the	LULESH	hydrodynamics	proxy	application,	comparing	between	the	reference	
OpenMP/C++/MPI	implementation	and	our	X10	implementation.	The	X10	code	is	40%	shorter,	and	it	is	
also	significantly	faster	when	run	on	1-1024	nodes	of	the	Edison	supercomputer.	
	
	

7. D-TEC:	A	CAFe	(DSL)	transformed	program	running	on	Titan	

A	Fortran	compiler-based	infrastructure	has	been	created	that	allows	Domain	Specific	Languages	(DSLs)	
to	be	relatively	easily	created,	providing	a	platform	for	experimentation	with	language	extensions	that	
reduce	the	complexity	of	scientific	application	development	at	exascale.		CAFe	is	a	DSL	both	utilizing	and	
extending	Fortran	coarrays	to	support	heterogeneous	computing.		It	was	designed	to	provide	a	unified	
programming	model	across	distributed	memory	nodes,	each	containing	multiple	accelerator	devices.		
CAFe	subdivides	the	Partitioned	Global	Address	Space	(PGAS)	memory	model	of	Fortran	hierarchically,	
thus	allowing	a	programmer	to	directly	allocate	and	transfer	memory	as	well	as	run	and	coordinate	tasks	
on	multiple	devices.		CAFe	takes	advantage	of	the	existing	parallel	constructs	of	Fortran,	such	as	
synchronization	events,	atomic	operations,	and	collectives.		We	demonstrate	a	CAFe	transformed	
program	solving	a	shortest	path	algorithm	on	ORNL's	Titan.	

	

	

	



8. D-TEC:	Tolerating	Latent	Errors	and	“Silent”	Errors	with	Flexible,	Application-controlled	
Resilience	with	GVR	

We	demonstrate	efficient	scaling	and	low-overhead	of	the	Global	View	Resilience	(GVR)	library	with	
three	scientific	applications	--	OpenMC	(Monte	Carlo	methods),	ddcMD	(molecular	dynamics),	and	
Chombo	heat	equation	codes.		GVR	enables	flexible	application	control	of	overhead	and	recovery.		For	
more	information,	see	http://gvr.cs.uchicago.edu/	

1. GVR	for	resilience	at	scale:		Three	GVR-enabled	applications	at	large	scale	(~4k	ranks),	showing	
error	injection	and	efficient	recovery.		Applications	exploit	flexible,	multi-version	state	capture	
and	naming	for	sophisticated	recovery.		

2. GVR	extreme	efficiency	on	Burst	Buffers.		Using	the	Cori	BB,	we	build	on	prior	demonstrations	
with	BGAS	to	show	GVR	versioning	can	be	extremely	cheap	and	powerful	for	resilience.	(will	be	
shown	if	Cori	BB	is	available)	

3. GVR	flexible	silent	and	latent	error	recovery:		GVR+	OpenMC	implements	forward	error	
recovery,	enabling	efficient	recovery	from	latent	errors.	OpenMC	on	1k	ranks	and	inject	errors,	
detected	with	latency.		We	show	performance	of	roll-back	and	forward	recovery.	

	
	

9. Traleika:	The	Intel	Open	Community	Runtime,	tools	and	applications	

The	Intel	XStack	team	will	demonstrate	the	Open	Community	Runtime,	tools,	and	applications	both	
ported	and	unmodified	on	top	of	this	ecosystem.	Using	a	mixture	of	applications	and	kernels,	including	
HPCG,	CoMD,	and	2D	Stencils,	we	will	demonstrate	running	these	codes	on	up	to	1,000	nodes	of	NERSC	
machines	Cori	and/or	Edison.	Changing	the	execution	behavior	by	the	optional	use	of	additional	
semantic	information,	such	as	via	user-specified	hints,	will	also	be	part	of	the	demonstration	to	illustrate	
opportunities	for	increasing	metric-of-interest	behavior	(communications,	computation,	energy,	etc.).	
Additional	demos	will	be	provided	for	tools	to	analyze	the	execution	of	applications	and	the	behavior	of	
the	runtime/execution	layer	itself.		
	
	

10. XPRESS:	HPX-5	integrated	APEX	
	

This	demo	shows	the	performance	scalability	of	HPX-5	integrated	with	the	Autonomic	Performance	
Environment	for	Exascale	(APEX).	The	demo	shows	the	LULESH	application	running	on	NERSC	Cori,	using	
the	Photon	integrated	communication	library.	APEX	Introspection	observes	the	application,	runtime,	OS	
and	hardware	to	maintain	the	APEX	state,	while	its	Policy	Engine	enforces	policy	rules	to	adapt,	
constrain	or	otherwise	modify	the	application	behavior.	This	application	shows	APEX	adapting	the	
runtime	to	turn	hyper-threading	down.	Photon	supports	a	tight	coupling	of	the	runtime	system	with	the	
underlying	network	fabric	that	scales	and	remains	performant	in	exascale	environments.	
	
	

11. XPRESS:	Visualizations	of	the	dynamic	nature	of	HPX-5	
	
This	demo	shows	visualizations	of	the	dynamic	adaptive	nature	of	the	runtime.	Using	the	fast	multipole	
method	(FMM)	application	as	an	example,	the	first	visualization	shows	the	difference	between	remote	



communication	activity	before	and	after	dynamic	rebalancing	effected	by	the	active	global	address	
space	(AGAS)	in	HPX-5.	The	second	visualization	shows	the	benefit	of	asynchronous	behavior	from	the	
over-decomposition	in	HPX-5	for	LULESH	application.	
	

12. Entire	XPRESS	software	stack	on	KNL	pre-release	hardware	used	to	run	LULESH	
	
This	demo	shows	the	operation	of	the	XPRESS	LXK	OS	infrastructure	running	the	HPX-5	version	of	
LULESH	on	KNL	(Knights	Landing)	pre-release	hardware.		The	LXK	kernel	will	boot,	detect	and	initialize	all	
cores	and	memory,	then	launch	HPX-5	LULESH	in	user	level.	HPX-5	is	configured	to	initially	run	on	all	
CPUs	in	the	system,	creating	a	single	POSIX	thread	on	each.		As	HPX-5	LULESH	is	running,	the	RCR	driver	
in	the	LXK	kernel	will	continuously	monitor	the	power	usage	of	the	system	and	publish	this	information	
via	the	RCR	blackboard	(a	page	of	memory)	mapped	into	user-space.		The	APEX	policy	engine	running	in	
user-space	will	periodically	read	the	power	usage	information	from	the	blackboard	and	determine	how	
many	HPX-5	threads	should	be	activated,	performing	dynamic	concurrency	throttling	(DCT)	to	meet	a	
desired	power	usage	target.		As	the	HPX-5	LULESH	run	progresses,	the	demo	will	show	the	number	of	
HPX-5	threads	to	observed	power	usage.	
	

	
13. XPRESS:	Interactive,	distributed	Mandelbrot	Renderer	

	
Writing	scalable	OpenCL	applications	often	takes	more	effort	than	the	average	user	is	willing	to	spend.	
The	Mandelbrot	code	demonstrates	that	HPXCL	overcomes	this	obstacle.	HPXCL	is	a	scalable	OpenCL	API	
for	distributed	systems,	on	top	of	HPX,	a	scalable	C++	runtime	system.	HPX	exposes	GPUs	in	the	global	
address	space	and	allows	for	asynchronous	execution	of	GPU	kernels.	The	results	produced	by	the	
kernel	are	encapsulated	in	a	future.	In	this	way,	an	application	can	off-load	a	section	of	code	to	an	
OpenCL	device	and	continue	doing	useful	work	until	the	off-loaded	data	is	ready.	The	distributed	
Mandelbrot	renderer	demonstrates.	The	values	of	the	set	are	offloaded	to	the	GPUs	and	the	results	are	
visualized	on	the	host	cores.	The	demo	runs	on	32	GPUs	in	nodes	of	a	standard	Beowulf	cluster	at	LSU.	
	
	

14. PIPER:	Measuring	and	Attributing	Performance	of	Applications	that	Employ	Emerging	
Template-based	Parallel	Programming	Models	

	
Measuring	and	attributing	performance	information	has	become	increasingly	difficult	with	the	move	to	
node-level	programming	models	that	employ	C++	templates	to	implement	abstractions	for	dispatching	
parallel	work.	This	demonstration	will	show	how	HPCToolkit	measures	node-level	performance	of	
applications	employing	the	RAJA	and	Kokkos	template-based	abstractions	for	parallel	programming,	
uses	the	emerging	OpenMP	Tools	API	(OMPT)	to	translate	implementation-level	measurements	back	to	
intuitive	user-level	views,	and	uses	binary	analysis	capabilities	of	Dyninst	components	to	accurately	
attribute	the	performance	of	highly-optimized	executables	back	to	the	application	source	code.	

15. PIPER:	Putting	Data	in	Context	with	Caliper:	A	Composite	Performance	Data	Collection	
Approach	

We	demonstrate	cross-stack	performance	data	collection	and	analysis	with	Caliper.	In	increasingly	
modular	HPC	software	stacks,	it	is	important	understand	interactions	between	software	components,	
and	between	software	and	hardware.	Caliper	is	a	universal	abstraction	layer	that	provides	performance	



data	collection	as	a	service	to	applications,	runtime	systems,	libraries	and	tools.	We	demonstrate	a	
performance	analysis	case	study	with	LULESH,	where	we	link	memory	performance	bottlenecks	to	
specific	MPI/OpenMP	runtime	states	and	application-level	context	(e.g.,	cycles	and	computational	
kernels).	

	

16. PIPER:	Supporting	Active	Harmony’s	Autotuning	with	Application-level	Information	

The	execution	of	high-performance	computing	applications	can	often	classified	into	phases	with	distinct	
behavior.		These	periods	of	time	are	relatively	short	and	create	problems	for	many	tools.		The	Caliper	
project	attempts	to	improve	understanding	of	these	regions	via	run-time	annotations.		One	type	of	tool	
that	can	be	confused	by	short	phases	is	auto-tuners.	In	particular,	optimal	parameters	for	one	phase	
may	not	be	optimal	for	another.		This	problem	can	be	solved	by	using	Caliper's	run-time	phase	
annotations	when	combined	with	an	online	auto-tuner	like	Active	Harmony.		This	allows	an	auto-tuner	
to	reassemble	the	disjoint	(and	possibly	interleaved)	execution	phases	of	an	application,	and	optimize	
each	as	if	they	were	whole	uninterrupted	tuning	targets.	We	demonstrate	our	Caliper/Active	Harmony	
integration	effort	on	LLNL's	LULESH	proxy	kernel.		We	also	demonstrate	the	overall	capabilities	of	the	
Active	Harmony	system.	

	
17. SLEEC:	Using	SemChace	with	Kokkos	for	handling	data	movement	challenges	

	
We	demonstrate	the	use	of	SemCache	integrated	with	Kokkos.	Kokkos	is	one	of	the	foundational	
packages	of	Trilinos	—	it	provides	distributed	matrix	and	array	data	structures	and	mathematical	
operations	on	those	data	structures.	Kokkos	hides	the	implementation	details	of	these	operations,	and	
hence	is	intended	to	allow	programmers	to	offload	computations	to	accelerators	such	as	GPUs.	
However,	in	such	a	setting,	Kokkos	still	requires	programmer	intervention	to	manage	data	movement	to	
and	from	accelerators.	We	demonstrate	the	use	of	SemCache	to	take	over	the	challenge	of	data	
movement,	providing	the	desired	accelerator-oblivious	interface	to	Kokkos.	

	

18. X-TUNE:	Autotuning	Compiler	Demonstration:	Geometric	Multigrid	and	Tensor	
Contraction	
	

We	 present	an	 approach	 that	 separates	a	 high-level	sequential	C/C++/FORTRAN	 implementation	 from	
architecture-specific	 implementation	 (OpenMP,	 CUDA,	 etc.),	 optimization,	 and	 tuning.	The	 autotuning	
compiler	and	search	framework,	in	conjunction	with	expert	programmers	and	other	tools,	will	transform	
the	 baseline	 code	 into	 a	 collection	 of	 highly-optimized	 implementations.		 Then	 autotuning	 is	 used	 to	
explore	this	search	space	and	derive	final	implementations	that	are	best-suited	for	a	specific	execution	
context,	thus	mitigating	the	need	for	extensive	manual	tuning.		In	this	demonstration,	we	show	how	this	
approach	 has	 been	 applied	 to	 two	 different	 application	 domains:	 Geometric	 Multigrid	 and	 Tensor	
Contraction.	


