Reporting Jim Belak's Homework Assignment

Traleika Glacier (X-Stack)

https://sites.google.com/site/traleikaglacierxstack/

TG Team March 20, 2013

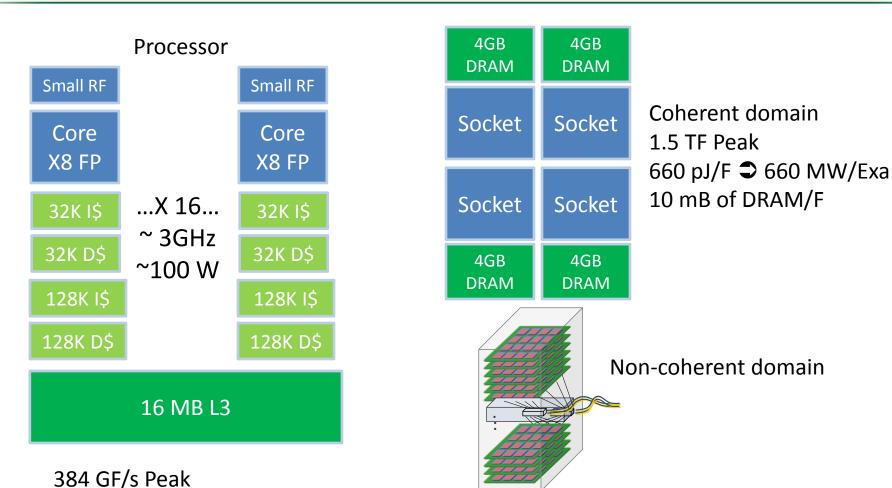
Assignment: What does an application developer need to know about your HW/SW approach...

HW-SW Co-design

Applications and SW stack provide guidance for efficient system design

Applications

Execution Model

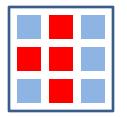

Programming Sys

Architecture

Circuits & Design

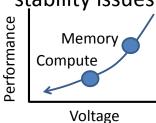
Limitations, issues and opportunities to exploit

Today's HW System Architecture

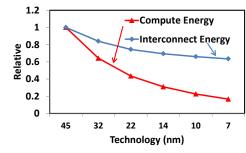


260 pJ/F ⇒ 260 MW/Exa
55 μB of local memory/F

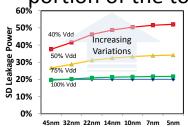
Today's programming model comprehends
this system architecture


Technology Challenges

NTV reduces energy but exacerbates variations


Small & Fast cores Random distribution Temp dependent

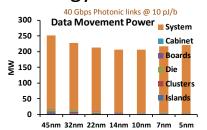
Limited NTV for arrays (memory) due to stability issues


Disproportionate
Memory arrays can
be made larger

3. On-die Interconnect energy (per mm) does not reduce as much as compute


6X compute
1.6X interconnect

4. At NTV, leakage power is substantial portion of the total power


Expect 50% leakage Idle hardware consumes energy

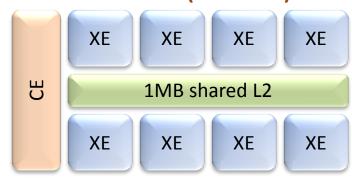
5. DRAM energy scales, but not enough

50 pJ/b today 8 pJ/b demonstrated Need < 2pJ/b

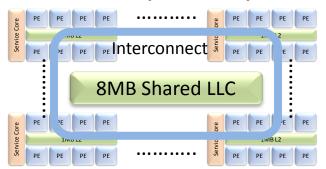
System interconnect limited by laser energy and cost

BW tapering and locality awareness necessary

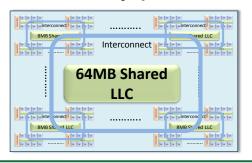
Straw-man Architecture


Application specific

Control Engine (CE)

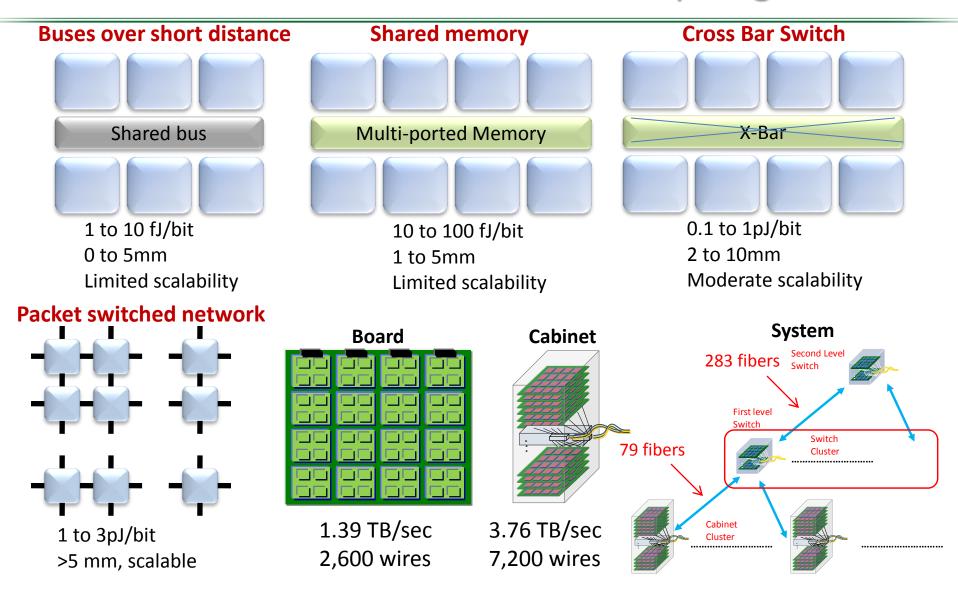


System SW

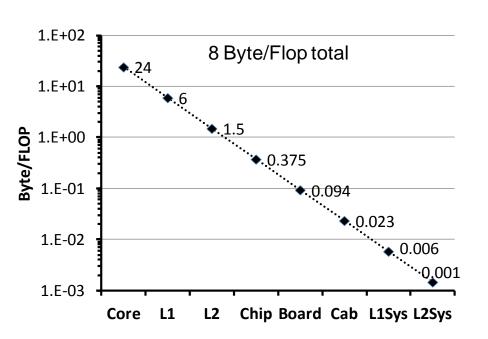

Block (8 XE + CE)

Cluster (16 Blocks)

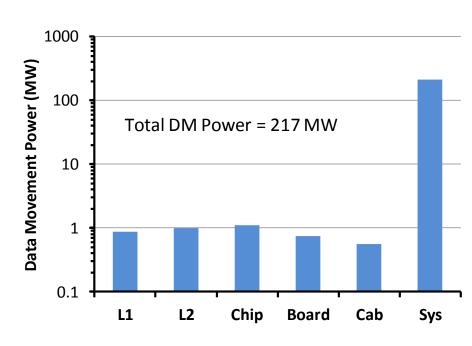
Processor Chip (16 Clusters)



	Technology	7nm, 2018			
	Die area	500 mm2			
	XE/die	2048			
	Frequency	4.2 GHz@Vdd, 600 MHz@50% Vdd			
	TFLOPs	17.2@Vdd, 2.5@50% Vdd			
	Power*	600 W@Vdd, 37 W@50% Vdd			
	E Efficiency*	34 pJ/F@Vdd, 15 pJ/F@50% Vdd			
	Memory B/F	39 μB/F@Vdd, 268 μB/F@50%Vdd			
_	* With out intercept of late required				

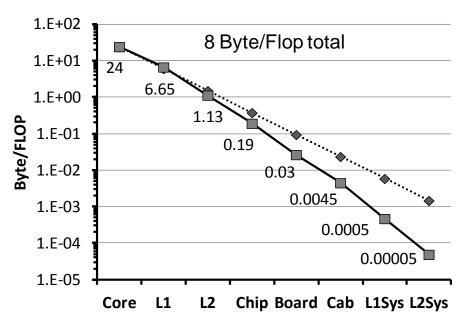

* Without interconnect (data movement)

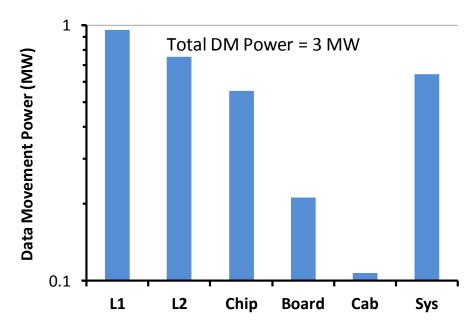
Wide dynamic range in HW


Interconnect Structures and Topologies

Data Movement Energy

8 B/Flop at the system level Naïve BW tapering Geometric—4X each level

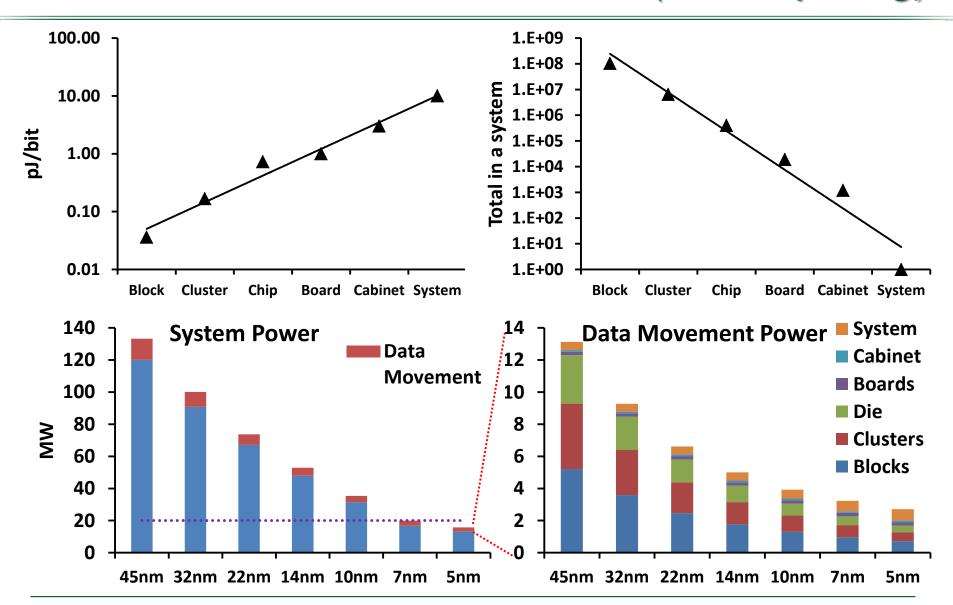



Almost constant/hierarchy
System level dominates
Disproportionately large

Intelligent BW tapering is necessary

Intelligent BW Tapering

BW tapering inversely proportional to the performance



8 B/Flop at the system level Tapering increases/hierarchy This is counterintuitive...!

Decreases with hierarchy Meets system power goal

Data locality—key challenge for software

Exascale Data Movement Power (with Tapering)

Simulators Capture Straw-man Architecture

Simulator	Pros	Cons
OCR based behavioral simulator	Near-native application code execution on host processor Rapid application development Epoch statistics as well as total statistics	Does not model real architecture Does not model advanced ISA features Does not reflect expected timing of simulated system
Fsim Functional Simulator	Models HW units, simple timing model Complete statistics and trace file 1-10 MIPS per core speed Massively parallel and distributed	Lower speed, highly detailed

Tool	Purpose	Advantage	Weakness
Power Estimator	Uses statistics/counters to make energy and area estimates for application behavior	 Scales from 45nm to 7nm projections Automatic analysis of outputs from FSim runs 	 Only models dynamic power, uses circuit models for leakage Calibrated to existing commercial devices
Memory Analyzer	 Detailed models for cache and/or scratchpad hierarchies, various levels & types of coherence Compares configurations 	Enables limited behavioral trace power estimation	 Does not model Instruction fetch/execution Limited to behavioral memory traces at this time

Tools almost ready: LLVM, Utilities, etc.

- 1. Extreme parallelism (1000X due to Exa, additional 4X due to NTV)
- 2. Data locality—reduce data movement
- 3. Intelligent scheduling—move thread to data if necessary
- 4. Fine grain resource management (objective function)
- 5. Applications and algorithms incorporate paradigm change

Programming & Execution Model

Event driven tasks (EDT)

Dataflow inspired, tiny codelets (self contained)

Non blocking, no preemption

Programming model:

Separation of concerns: Domain specification & HW mapping

Express data locality with hierarchical tiling

Global, shared, non-coherent address space

Optimization and auto generation of EDTs (HW specific)

Execution model:

Dynamic, event-driven scheduling, non-blocking

Dynamic decision to move computation to data

Observation based adaption (self-awareness)

Implemented in the runtime environment

Separation of concerns:

<u>User application, control, and resource management</u>

Traleika Glacier SW Stack

Concurrent Collections

Hierarchical Tiled Arrays

Habanero-C

Express

Programming System

Parallel Intermediate Language

R-Stream Optimizations

Optimize

HW Mapping and Tuning

Map to HW

Execution model with introspection

Intel Research Runtime

> SWARM (ETI)

Open Community Runtime (OCR)

Habanero Runtime (Rice)

DAR³TS (Delaware)

Behavioral Simulator Functional Simulator (Fsim)

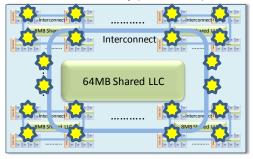
Model Evaluate

Over-provisioning, Introspection, Self-awareness

Addressing variations

- 1. Provide more compute HW
- 2. Law of large numbers
- 3. Static profile

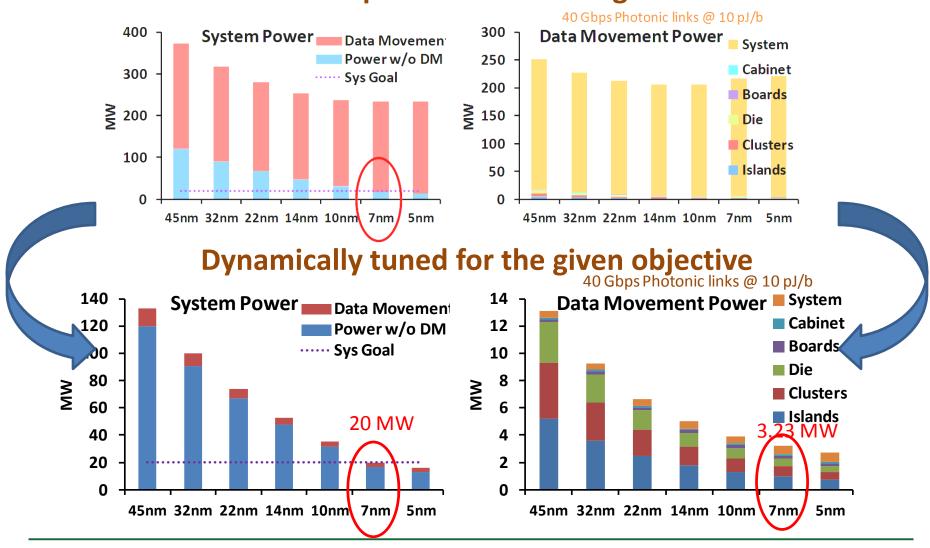
Fine grain resource mgmt

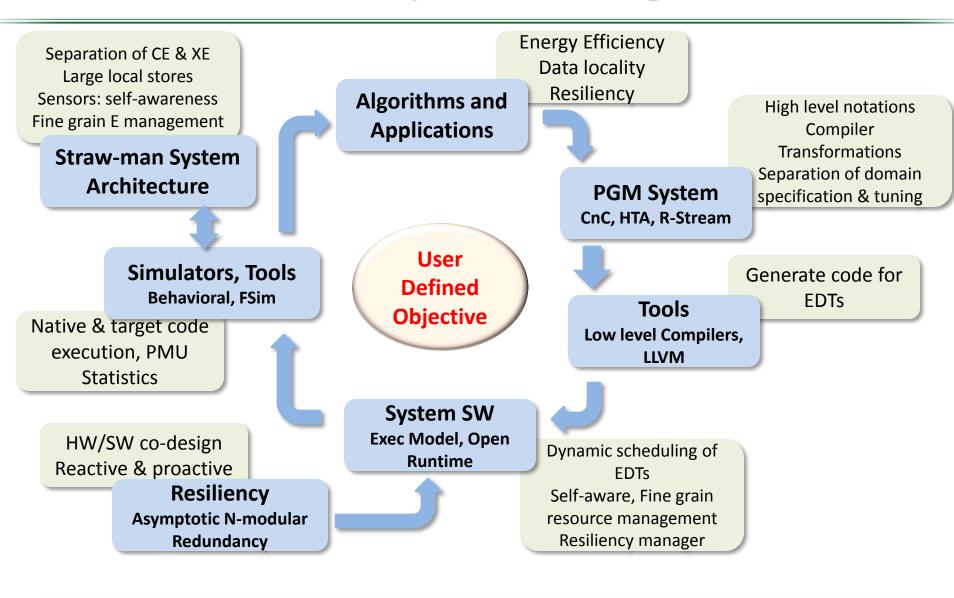


Dynamic reconfiguration:

- 1. Energy efficiency
- Latency
- 3. Dynamic resource management

Sensors for introspection


Processor Chip (16 Clusters)


- 1. Energy consumption
- 2. Instantaneous power
- 3. Computations
- 4. Data movement
- 1. Schedule threads based on objectives and resources
- 2. Dynamically control and manage resources
- 3. Identify sensors, functions in HW for implementation System SW implements introspective execution model

Over-provisioned Introspectively Resource Managed System

X-Stack Components Put Together

HW-SW Co-design

Applications and SW stack provide guidance for efficient system design

Applications

Execution Model

Programming Sys

Architecture

Circuits & Design

Limitations, issues and opportunities to exploit

17

Summary

- Straw-man architecture comprehends technology challenges
- Simulators capture the architecture, ready for evaluation
- Tools and infrastructure are getting ready
- Software stack is making good progress
- Getting ready for thorough evaluation