CORVETTE: Program Correctness, Verification, and Testing for Exascale

PI: Koushik Sen, UC Berkeley coPI: James W. Demmel, UC Berkeley coPI: Costin Iancu, LBL

Students and Post-docs: Cindy Rubio Gonzalez, Anh Cuong Nguyen, Hong Diep Nguyen Chang-Seo Park, Xuehai Qian

Collaborators: William Kahan (UC Berkeley), David Bailey (LBL), Wim Lavrijsen (LBL), David Hough (Oracle),

<u>Domain</u> Hybrid Parallelism + Floating Point + Modularity

Advantages:

- Performance
- Scalability
- Abstraction
- Modularity

Disadvantages:

- non-deterministic bugs
- non-reproducible results
- redundant syncs
- redundant precision

<u>Domain</u> Hybrid Parallelism + Floating Point + Modularity

Advantages:

- Performance
- Scalability
- Abstraction
- Modularity

Disadvantages:

- non-deterministic bugs
- non-reproducible results
- redundant syncs
- redundant precision

Goals:

Correctness/Performance tools to help programmers with development

- 1. efficient
- 2. scalable
- 3. reproducible
- 4. precise
- 5. coverage

<u>Domain</u> Hybrid Parallelism + Floating Point + Modularity

Advantages:

- Performance
- Scalability
- Abstraction
- Modularity

Disadvantages:

- non-deterministic bugs
- non-reproducible results
- redundant syncs
- redundant precision

Goals:

Correctness/Performance tools to help programmers with development

- 1. efficient
- 2. scalable
- 3. reproducible
- 4. precise
- 5. coverage

Our Approach:

- 1. Dynamic analysis
- 2. Symbolic execution
- 3. New Algorithms

<u>Domain</u> Hybrid Parallelism + Floating Point + Modularity

Advantages:

- Performance
- Scalability
- Abstraction
- Modularity

Disadvantages:

- non-deterministic bugs
- non-reproducible results
- redundant syncs
- redundant precision

<u>Goals</u>:

Correctness/Performance tools to help programmers with development

- 1. efficient
- 2. scalable
- 3. reproducible
- 4. precise
- 5. coverage

Our Approach:

- 1. Dynamic analysis
- 2. Symbolic execution
- 3. New Algorithms

<u>Tools:</u>

- 1. UP-Thrille: data races
- 2. Precimonious: FP precision tuning
- 3. ReproBLAS: reproducible num. algorithms

<u>Domain</u> Hybrid Parallelism + Floating Point + Modularity

Advantages:

- Performance
- Scalability
- Abstraction
- Modularity

Disadvantages:

- non-deterministic bugs
- non-reproducible results
- redundant syncs
- redundant precision

<u>Goals</u>:

Correctness/Performance tools to help programmers with development

- 1. efficient
- 2. scalable
- 3. reproducible
- 4. precise
- 5. coverage

Our Approach:

- 1. Dynamic analysis
- 2. Symbolic execution
- 3. New Algorithms

Tools:

- 1. UP-Thrille: data races
- 2. Precimonious: FP precision tuning
- 3. ReproBLAS: reproducible num. algorithms
- 4. LLVM Shadow Execution: dynamic analysis
- 5. Sync reduction: remove redundant syncs

Challenges:

Comparison with State-of-the-art

- Existing tools are slow: 10X-100X
- Handles either shared memory or message-passing
- Does not scale with number of nodes
- Cannot handle hybrid applications
 - Scientists run frameworks not mini-apps
 - Composition of multi-language (C, C++, Fortran), multiparadigm (GASnet, MPI, OpenMP, Pthreads) solvers/libraries (Scalapack, MKL, BoxLib)
- Precision tuning is conservative
- Reproducible algorithms do not scale to large number of nodes

Finding Non-Deterministic Bugs

Case Study: Scalable Data Race Detection for Partitioned Global Address Space Programs

Motivation

- High performance computing is rapidly evolving
 - Exascale: O(10⁶) nodes, O(10³) cores per node
 - Programs with side-effects through one-sided communication
 - Unstructured parallelism, dynamic tasking, shared memory
 - Non-blocking, highly asynchronous behavior
- Many correctness challenges
 - Hard to diagnose correctness and performance bugs (data races, atomicity violations, deadlocks)
 - Non-determinism leads to non-reproducible results
- Current tools offer limited support
 - Limited functionality (e.g. communication only DAMPI)
 - Do not scale (e.g. Intel ThreadChecker)
- We need tools for the "next" generation languages

Design Requirements

- Efficiency and low overhead
 - Currently 10X-1000X
- Complete memory coverage
 - Currently either shared memory OR communication only
- Precise: report only the "bugs"
- Reproducible: identical behavior across executions
- Scalable in program size (LoCs), input size and concurrency

Data Races in PGAS

- Thrille: data race detector for UPC using Active Testing
 - Communication only
 - Precise and reproducible
 - Scalable with cores due to distributed analysis
- Active Testing
 - Phase 1: Dynamic analysis to find potential concurrency bug patterns
 - Such as data races, deadlocks, atomicity violations
 - Phase 2: "Direct" testing (or model checking) based on the bug patterns obtained from phase 1
 - Confirm bugs
 - How do we achieve low overhead and scalability with input and cores for a complete analysis ?

Data Race Detection Implementation

- For each load/store or communication operation Examine the address -> instrumentation overhead Record the address -> data management overhead
- For each synchronization operation Exchange information about all L/S and comms Analyze for conflicts
- Instrumentation overhead is reduced by
 - Hybrid Sampling (instruction + function level sampling)
 - Further pruning using program analysis
- Data management overhead is reduced with better data structures

Sampling Strategies

- Instruction sampling sample every instruction with decaying probability
 - Introduces up to 40X slowdown for our benchmarks
- State-of-the-art function level sampling (LiteRace) does NOT work
 - (Marino et al. LiteRace: Effective Sampling for Lightweight Data-Race Detection. PLDI, 2009.)
- Novel hierarchical sampling approach provides best performance
 - Introduces up to 10x slowdown for our benchmarks
- Sampling needs to be supplemented with other pruning
 - Runtime alias based pruning (or other static analyses)

Overall Scalability

< 50% slowdown up to 2K cores

Commercial tools : 1000X slowdown on 16 cores

Bugs Found

Panah	LoC	Run time (s)	Races	Overhead (%)				
Bench				NL	HA.5	IA	FA0	
guppie	271	19.070	2(2)+0(0)	54.9	54.2	53.7	DNF	74.9
psearch	803	0.697	3(1)+2(2)	2.48	10.8	666	8.01	6490
BT 3.3	9698	189.48	7(0)+3(1)	0.574	1.16	77.6	DNF	-
CG 2.4	1654	39.573	0(0)+1(1)	1.09	27.6	57.6	DNF	2579
EP 2.4	678	54.453	0(0)+0(0)	-0.618	0.805	2.09	4.74	111
FT 2.4	2289	62.663	2(2)+0(0)	0.601	30.1	121	DNF	2744
IS 2.4	1426	5.130	0(0)+0(0)	0.376	119	159	DNF	1201
LU 3.3	6348	155.997	0(0)+24(2)	-0.425	-	75.7	DNF	-
MG 2.4	2229	18.687	2(2)+4(0)	0.336	176	632	DNF	2020
SP 3.3	5740	247.937	10(0)+3(1)	0.160	0.861	29.1	DNF	-

Races: A(B) + C(D), where A represents the number of races detected by the original UPC-Thrille tool (NL) with B of them confirmed, and C represents the additional number of races detected with our extensions (HA.5) with D of them confirmed through phase 2

KEY FOR VARIANTS

NL: no instrumentation on local accesses (SC'11) / H: hierarchical sampling / I: instruction-level sampling only / F: function-level sampling only

A: indicates the use of the persistent alias heuristic

(0 or .5): Back-off factor for function-level sampling (0 means only first invocation of functions sampled) < 50% slowdown up to 2K cores

Highlights

- Conference Publication
 - Our paper entitled "Scaling Data Race Detection for Partitioned Global Address Space Programs" was presented at the International Supercomputing Conference (ICS'13) in Oregon, June 2013.
- Software Release
 - Publicly released UPC-Thrille under the BSD license: <u>http://upc.lbl.gov/thrille.shtml</u>

Finding Redundancy in Precision Case Study: Tuning Precision of Floating-point Programs

Floating-Point Precision Tuning

- Reasoning about FP programs is difficult
 - Large variety of numerical programs
 - Most programmers are not experts in FP
 - Even experts on scientific computing may not be expert in FP

- Common practice
 - Use highest available precision
 - Disadvantages: more expensive in terms of running time, memory and energy consumption

Precimonious

- "Parsimonious with precision"
- Common Practice: Use widest precision available (usually IEEE double or long double)
 - Pros: Easy, reliable
 - Cons: Maximizes time, memory, energy used
- Precimonious automatically decides which variables/operations can be in lower precision (single) and still get an acceptable answer

Example (D.H. Bailey):

```
long double g(long double x) {
  int k, n = 5;
  long double t1 = x;
  long double d1 = 1.0L;
  for(k = 1; k <= n; k++) {
     . . .
  }
  return t1;
}
int main() {
  int i, n = 1000000;
  long double h, t1, t2, dppi;
  long double s1;
  . . .
  for(i = 1; i <= n; i++) {
    t2 = g(i * h);
    s1 = s1 + sqrt(h^{*}h + (t2 - t1)^{*}(t2 - t1));
    t1 = t2;
  }
  // final answer stored in variable s1
  return 0;
}
```

$$\sum_{k=0}^{n-1} \sqrt{h^2 + (g(x_{k+1}) - g(x_k))^2}$$

```
n-1
Example (D.H. Bailey):
                                                              \sqrt{h^2 + (g(x_{k+1}) - g(x_k))^2}
                                                         k=0
  long double g(long double x) {
                                                   double g(double x) {
    int k, n = 5;
                                                     int k, n = 5;
    long double t1 = x;
                                                     double t1 = x;
    long double d1 = 1.0L;
                                                     float d1 = 1.0f;
     for(k = 1; k <= n; k++) {
       . . .
                                                     }
    }
    return t1;
                                                     return t
                                                   }
  }
  int main() {
                                                   int main() {
                                                     int i, n = 1000000;
    int i, n = 1000000;
    long double h, t1, t2, dppi;
                                                     long double s1;
    long double s1;
                                                     . . .
     . . .
    for(i = 1; i <= n; i++) {
                                                       t2 = g(i * h);
      t2 = g(i * h);
      s1 = s1 + sqrt(h^{*}h + (t2 - t1)^{*}(t2 - t1));
                                                       t1 = t2:
      t1 = t2;
                                                     }
    }
    // final answer stored in variable s1
                                                     return 0:
    return 0;
                                                   }
  }
           Original Program
                                                                Tuned Program
```

for(**k** = 1; **k** <= **n**; **k**++) { Same answer as all long double 10% faster 3 more correct digits than double double h, t1, t2, dppi; **for(i = 1; i <= n; i++) {** $s1 = s1 + sqrt(h^{*}h + (t2 - t1)^{*}(t2 - t1));$ // final answer stored in variable s1 25

Challenges for Precision Tuning

- Searching efficiently over variable types and function implementations
 - Naïve approach \rightarrow exponential time
 - 19,683 configurations for arc length program (3⁹)
 - 11 hours 5 minutes
 - Global minimum vs. a local minimum
- Evaluating type configurations
 - Less precision does not always result in performance improvement
 - Run time, memory usage, energy consumption, etc.
- Determining accuracy constraints
 - How accurate must the final result be?
 - What error threshold to use?

LCCSEARCH Algorithm based on Delta Debugging [Zeller et al]

LCCSEARCH Algorithm based on Delta Debugging [Zeller et al]

Experimental Setup

- Benchmarks
 - o 8 GSL programs
 - 2 NAS Parallel Benchmarks: *ep* and *cg*
 - o 2 other numerical programs
- Test inputs
 - Inputs Class A for *ep* and *cg* programs
 - o 1000 random floating-point inputs for the rest
- Error thresholds
 - $\circ~$ Multiple error thresholds: 10⁻¹⁰, 10⁻⁸, 10⁻⁶, and 10⁻⁴
 - User can evaluate trade-off between accuracy and speedup

Speedup for Various Error Thresholds

35

Speedup for Various Error Thresholds

Error threshold $10^{-6} \rightarrow$ slightly larger speedup than error threshold 10^{-4} (4.5% vs. 0.4% for rootnewt program)

Speedup for Various Error Thresholds

Scalability Limitation

Largest benchmark: 52 FP variables Configurations explored: 1,435 configurations Analysis running time: 1hr 26min

Too many runs for larger programs!

Shadow Execution

- Motivation: Precimonious uses input after conversion to LLVM in order to modify, track changes in code: What else can we do with this infrastructure?
- Shadow Execution: Track execution dynamically
 - Compare to results computed in different precisions
 - Track sources of inaccuracy: "Blame analysis"
 - Reduce search space for Precimonious
 - Up to 5x fewer configurations to search

Highlights

- Conference Publication
 - PRECIMONIOUS[11] was accepted for conference publication at the prestigious *International Conference for High Performance Computing, Networking, Storage and Analysis* (SC'13).
- Cindy Rubio Gonzalez will join UC Davis as an Assistant Professor in Fall 2014
- We have released PRECIMONIOUS under the BSD license. The tool is available at <u>https://github.com/corvette-</u> <u>berkeley/precimonious</u>.

Reproducibility of Floating-point Programs

Motivation for Reproducibility

- Reproducibility = bitwise identical results when running code more than once
- No longer guaranteed because of parallelism, nondeterminism, and nonassociativity of floating point addition/multiplication:

 $- fl(1 + (1e20 - 1e20)) = 1 \neq 0 = fl((1 + 1e20) - 1e20)$

- Demanded by many users, for debugging, correctness, contractual obligations
 - BOFs at recent Supercomputing conferences
 - Intel, Mathworks, other companies responding to demand with new (deterministic) products
- At large scale, nondeterminism unavoidable What to do?

Reproducible BLAS: ReproBLAS

- Based on *Indexed Floating Point*: roundoff is deterministic, independent of summation order
 - Can choose same or higher accuracy than usual FP
 - Only one (nondeterministic) reduction required
- ReproBLAS for BLAS1 released (mBSD license)
 - bebop.cs.berkeley.edu/reproblas
 - Sequential and MPI versions
 - {s|d|c|z}{asum,sum,nrm2,dot}
 - Multithreaded, higher level BLAS under construction
- Integrated into CLAMR (DOE Mini-App)

Performance Results DDOT for n=10⁶ on Hopper

DDOT normalized timing breakdown ($n = 10^6$)

Highlights

- Conference Publications
 - Our papers entitled "Fast Reproducible Floating-Point Summation" [7] and "Numerical Accuracy and Reproducibility at ExaScale" [8] were presented at the 21st IEEE Symposium on Computer Arithmetic in Austin, Texas. Our paper "Parallel Reproducible Summation" [9] has been recently accepted for publication in the IEEE Transactions on Computers, Special Section on Computer Arithmetic.
- Software Release:
 - ReproBLAS released at <u>http://bebop.cs.berkeley.edu/reproblas</u>

<u>Domain</u> Hybrid Parallelism + Floating Point + Modularity

Advantages:

- Performance
- Scalability
- Abstraction
- Modularity

Disadvantages:

- non-deterministic bugs
- non-reproducible results
- redundant syncs
- redundant precision

<u>Goals</u>:

Correctness/Performance tools to help programmers with development

- 1. efficient
- 2. scalable
- 3. reproducible
- 4. precise
- 5. coverage

Our Approach:

- 1. Dynamic analysis
- 2. Symbolic execution
- 3. New Algorithms

Tools:

- 1. UP-Thrille: data races
- 2. Precimonious: FP precision tuning
- 3. ReproBLAS: reproducible num. algorithms
- 4. LLVM Shadow Execution: dynamic analysis
- 5. Sync reduction: remove redundant syncs