
CORVETTE: Program Correctness, 
Verification, and Testing for Exascale 

PI: Koushik Sen, UC Berkeley 
coPI: James W. Demmel, UC Berkeley 

coPI: Costin Iancu, LBL 

Students and Post-docs:
Cindy Rubio Gonzalez, Anh Cuong Nguyen, Hong Diep Nguyen

Chang-Seo Park, Xuehai Qian

Collaborators:
William Kahan (UC Berkeley), David Bailey (LBL), Wim Lavrijsen (LBL), David Hough (Oracle),  



Vision: Reduce
Programming to Debugging ratio



Domain
Hybrid Parallelism + Floating Point + 

Modularity

Advantages:
• Performance
• Scalability
• Abstraction
• Modularity

Disadvantages:
• non-deterministic bugs
• non-reproducible results
• redundant syncs
• redundant precision

Vision: Reduce
Programming to Debugging ratio



Domain
Hybrid Parallelism + Floating Point + 

Modularity

Advantages:
• Performance
• Scalability
• Abstraction
• Modularity

Disadvantages:
• non-deterministic bugs
• non-reproducible results
• redundant syncs
• redundant precision

Goals:
Correctness/Performance 
tools to help programmers 

with development
1. efficient
2. scalable
3. reproducible
4. precise
5. coverage

Vision: Reduce
Programming to Debugging ratio



5

Domain
Hybrid Parallelism + Floating Point + 

Modularity

Advantages:
• Performance
• Scalability
• Abstraction
• Modularity

Disadvantages:
• non-deterministic bugs
• non-reproducible results
• redundant syncs
• redundant precision

Goals:
Correctness/Performance 
tools to help programmers 

with development
1. efficient
2. scalable
3. reproducible
4. precise
5. coverage

Vision: Reduce
Programming to Debugging ratio

Our Approach:
1. Dynamic analysis
2. Symbolic execution
3. New Algorithms



6

Domain
Hybrid Parallelism + Floating Point + 

Modularity

Advantages:
• Performance
• Scalability
• Abstraction
• Modularity

Disadvantages:
• non-deterministic bugs
• non-reproducible results
• redundant syncs
• redundant precision

Goals:
Correctness/Performance 
tools to help programmers 

with development
1. efficient
2. scalable
3. reproducible
4. precise
5. coverage

Vision: Reduce
Programming to Debugging ratio

Our Approach:
1. Dynamic analysis
2. Symbolic execution
3. New Algorithms

Tools:
1. UP-Thrille: data races
2. Precimonious: FP precision tuning
3. ReproBLAS: reproducible num. algorithms



7

Domain
Hybrid Parallelism + Floating Point + 

Modularity

Advantages:
• Performance
• Scalability
• Abstraction
• Modularity

Disadvantages:
• non-deterministic bugs
• non-reproducible results
• redundant syncs
• redundant precision

Goals:
Correctness/Performance 
tools to help programmers 

with development
1. efficient
2. scalable
3. reproducible
4. precise
5. coverage

Our Approach:
1. Dynamic analysis
2. Symbolic execution
3. New Algorithms

Vision: Reduce
Programming to Debugging ratio

5. Sync reduction: remove redundant syncs

Tools:
1. UP-Thrille: data races
2. Precimonious: FP precision tuning
3. ReproBLAS: reproducible num. algorithms
4. LLVM Shadow Execution: dynamic analysis
5. Sync reduction: remove redundant syncs



Usage Scenario

Program

Regression 
test

Test

Pass

Fail



Usage Scenario

Program

Regression 
test

Test

Pass

Fail

Our Tools:
1. UPC-Thrille
2. Precimonious



10

Usage Scenario

Program

Regression 
test

Test

Pass

Fail

Our Tools:
1. UPC-Thrille
2. Precimonious

data races

precision 
reduction

sync 
reduction 



Challenges: 
Comparison with State-of-the-art

• Existing tools are slow: 10X-100X
• Handles either shared memory or message-passing
• Does not scale with number of nodes
• Cannot handle hybrid applications

– Scientists run frameworks not mini-apps
– Composition of  multi-language (C, C++, Fortran), multi-

paradigm (GASnet, MPI, OpenMP, Pthreads) 
solvers/libraries (Scalapack, MKL, BoxLib)

• Precision tuning is conservative
• Reproducible algorithms do not scale to large 

number of nodes
11



Finding Non-Deterministic Bugs 
Case Study: Scalable Data Race Detection for 
Partitioned Global Address Space Programs
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• High performance computing is rapidly evolving 
– Exascale: O(106) nodes, O(103) cores per node
– Programs with side-effects through one-sided communication
– Unstructured parallelism, dynamic tasking, shared memory
– Non-blocking, highly asynchronous behavior

• Many correctness challenges
– Hard to diagnose correctness and performance bugs (data races, 

atomicity violations, deadlocks)
– Non-determinism leads to non-reproducible results

• Current tools offer limited support 
– Limited functionality (e.g. communication only DAMPI)
– Do not scale (e.g. Intel ThreadChecker)

• We need tools for the “next” generation languages

Motivation
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• Efficiency and low overhead
• Currently 10X-1000X

• Complete memory coverage
– Currently either shared memory OR communication  only

• Precise:  report only the “bugs”

• Reproducible: identical behavior across executions

• Scalable in program size (LoCs), input size  and concurrency

Design Requirements
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Data Races in PGAS
• Thrille: data race detector for UPC using Active Testing

– Communication only
– Precise and reproducible
– Scalable with cores due to distributed analysis

• Active Testing
– Phase 1: Dynamic analysis to find potential concurrency bug 

patterns 
• Such as data races, deadlocks, atomicity violations

– Phase 2: “Direct” testing (or model checking) based on the 
bug patterns obtained from phase 1

• Confirm bugs

• How do we achieve low overhead and scalability 
with input and cores for a complete analysis ?
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Data Race Detection Implementation
• For each load/store or communication operation

Examine the address –> instrumentation overhead
Record the address –> data management overhead

• For each synchronization operation
Exchange information about all L/S and comms
Analyze for conflicts

• Instrumentation overhead is reduced by
– Hybrid Sampling (instruction + function level sampling)
– Further pruning using program analysis

• Data management overhead is reduced with better data 
structures 16



• Instruction sampling – sample every instruction with 
decaying probability
– Introduces up to 40X slowdown for our benchmarks

• State-of-the-art function level sampling (LiteRace) does 
NOT work 
– (Marino et al. LiteRace: Effective Sampling for Lightweight 

Data-Race Detection. PLDI, 2009.)
• Novel hierarchical sampling approach provides best 

performance
– Introduces up to 10x slowdown for our benchmarks

• Sampling needs to be supplemented with other 
pruning
– Runtime alias based pruning (or other static analyses) 

Sampling Strategies
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Overall Scalability
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Bugs Found

Races: A(B) + C(D), where A represents the number of races detected by the original UPC-Thrille tool (NL) with B of them confirmed, and C represents the additional number of races detected with 
our extensions (HA.5) with D of them confirmed through phase 2

KEY FOR VARIANTS
NL: no instrumentation on local accesses (SC’11) / H: hierarchical sampling / I: instruction-level sampling only / F: function-level sampling only
A: indicates the use of the persistent alias heuristic
# (0 or .5): Back-off factor for function-level sampling (0 means only first invocation of functions sampled)

19< 50% slowdown up to 2K cores 



• Conference Publication
– Our paper entitled “Scaling Data Race Detection for Partitioned Global 

Address Space Programs” was presented at the International 
Supercomputing Conference (ICS’13) in Oregon, June 2013. 

• Software Release
– Publicly released UPC-Thrille under the BSD license:  

http://upc.lbl.gov/thrille.shtml

Highlights
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Finding Redundancy in Precision 
Case Study: Tuning Precision of 

Floating-point Programs
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Floating-Point Precision Tuning

• Reasoning about FP programs is difficult
o Large variety of numerical programs
o Most programmers are not experts in FP
o Even experts on scientific computing may not 

be expert in FP

• Common practice
o Use highest available precision
o Disadvantages: more expensive in terms of running time, memory 

and energy consumption

22



Precimonious

• “Parsimonious with precision”
• Common Practice: Use widest precision available 

(usually IEEE double or long double)
– Pros: Easy, reliable
– Cons: Maximizes time, memory, energy used

• Precimonious automatically decides which 
variables/operations can be in lower precision 
(single) and still get an acceptable answer
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Tuned Program

long double g(long double x) {
int k, n = 5;
long double t1 = x;
long double d1 = 1.0L;

for(k = 1; k <= n; k++) {
...

}
return t1;

}

int main() {
int i, n = 1000000;
long double h, t1, t2, dppi;
long double s1;
...
for(i = 1; i <= n; i++) {

t2 = g(i * h);
s1 = s1 + sqrt(h*h + (t2 - t1)*(t2 - t1));
t1 = t2;

}
// final answer stored in variable s1
return 0;

}

Original Program

Example (D.H. Bailey):
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Tuned ProgramOriginal Program

double g(double x) {
int k, n = 5;
double t1 = x;
float d1 = 1.0f;

for(k = 1; k <= n; k++) {
...

}
return t1;

}

int main() {
int i, n = 1000000;
double h, t1, t2, dppi;
long double s1;
...
for(i = 1; i <= n; i++) {

t2 = g(i * h);
s1 = s1 + sqrt(h*h + (t2 - t1)*(t2 - t1));
t1 = t2;

}
// final answer stored in variable s1
return 0;

}

long double g(long double x) {
int k, n = 5;
long double t1 = x;
long double d1 = 1.0L;

for(k = 1; k <= n; k++) {
...

}
return t1;

}

int main() {
int i, n = 1000000;
long double h, t1, t2, dppi;
long double s1;
...
for(i = 1; i <= n; i++) {

t2 = g(i * h);
s1 = s1 + sqrt(h*h + (t2 - t1)*(t2 - t1));
t1 = t2;

}
// final answer stored in variable s1
return 0;

}

Example (D.H. Bailey):

Same answer as all long double
10% faster

3 more correct digits than double
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• Searching efficiently over variable types and 
function implementations
– Naïve approach → exponential time

• 19,683 configurations for arc length program (39)
• 11 hours 5 minutes

– Global minimum vs. a local minimum

• Evaluating type configurations
– Less precision does not always result in 

performance improvement
– Run time, memory usage, energy consumption, etc.

• Determining accuracy constraints
– How accurate must the final result be?
– What error threshold to use?

Challenges for Precision Tuning

Automated:
116 configs.
4 min 47 sec

Specified by 
the user
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✔

✘

double 
precision

single 
precision

✘ ✘ ✔✔

✘✔
…Assume other 

configurations fail

Proposed configuration

LCCSEARCH Algorithm
based on Delta Debugging [Zeller et al]
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Experimental Setup

• Benchmarks
o 8 GSL programs
o 2 NAS Parallel Benchmarks: ep and cg
o 2 other numerical programs

• Test inputs
o Inputs Class A for ep and cg programs
o 1000 random floating-point inputs for the rest

• Error thresholds
o Multiple error thresholds: 10-10, 10-8, 10-6, and 10-4

o User can evaluate trade-off between accuracy and speedup

34



Speedup for Various Error Thresholds
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Scalability Limitation

Too many runs for larger programs!

Largest benchmark: 52 FP variables
Configurations explored: 1,435 configurations
Analysis running time: 1hr 26min
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Shadow Execution

• Motivation: Precimonious uses input after 
conversion to LLVM in order to modify, track 
changes in code: What else can we do with this 
infrastructure?

• Shadow Execution: Track execution dynamically
– Compare to results computed in different precisions
– Track sources of inaccuracy: “Blame analysis”

• Reduce search space for Precimonious
• Up to 5x fewer configurations to search

39



• Conference Publication
– PRECIMONIOUS[11] was accepted for conference 

publication at the prestigious International 
Conference for High Performance Computing, 
Networking, Storage and Analysis (SC’13). 

• Cindy Rubio Gonzalez will join UC Davis as an 
Assistant Professor in Fall 2014

• We have released PRECIMONIOUS under the 
BSD license. The tool is available at 
https://github.com/corvette-
berkeley/precimonious . 

Highlights
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Reproducibility of Floating-point 
Programs
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Motivation for Reproducibility

• Reproducibility = bitwise identical results when running 
code more than once

• No longer guaranteed because of parallelism, 
nondeterminism, and nonassociativity of floating point 
addition/multiplication:
– fl(1 + (1e20 – 1e20)) = 1 ≠ 0 =  fl((1 + 1e20) – 1e20)

• Demanded by many users, for debugging, correctness, 
contractual obligations
– BOFs at recent Supercomputing conferences
– Intel, Mathworks, other companies responding to demand   with 

new (deterministic) products
• At large scale, nondeterminism unavoidable – What to do?
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Reproducible BLAS: ReproBLAS

• Based on Indexed Floating Point: roundoff is 
deterministic, independent of summation order
– Can choose same or higher accuracy than usual FP
– Only one (nondeterministic) reduction required

• ReproBLAS for BLAS1 released (mBSD license)
– bebop.cs.berkeley.edu/reproblas
– Sequential and MPI versions
– {s|d|c|z}{asum,sum,nrm2,dot}
– Multithreaded, higher level BLAS under construction

• Integrated into CLAMR (DOE Mini-App)
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Performance Results
DDOT for n=106 on Hopper
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• Conference Publications 
– Our papers entitled “Fast Reproducible Floating-

Point Summation” [7] and “Numerical Accuracy and 
Reproducibility at ExaScale” [8] were presented at 
the 21st IEEE Symposium on Computer Arithmetic in 
Austin, Texas. Our paper “Parallel Reproducible 
Summation” [9] has been recently accepted for 
publication in the IEEE Transactions on Computers, 
Special Section on Computer Arithmetic. 

• Software Release:
– ReproBLAS released at  

http://bebop.cs.berkeley.edu/reproblas

Highlights
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