
CORVETTE: Program Correctness,
Verification, and Testing for Exascale

PI: Koushik Sen, UC Berkeley
coPI: James W. Demmel, UC Berkeley

coPI: Costin Iancu, LBL

Students and Post-docs:
Cindy Rubio Gonzalez, Anh Cuong Nguyen, Hong Diep Nguyen

Chang-Seo Park, Xuehai Qian

Collaborators:
William Kahan (UC Berkeley), David Bailey (LBL), Wim Lavrijsen (LBL), David Hough (Oracle),

Vision: Reduce
Programming to Debugging ratio

Domain
Hybrid Parallelism + Floating Point +

Modularity

Advantages:
• Performance
• Scalability
• Abstraction
• Modularity

Disadvantages:
• non-deterministic bugs
• non-reproducible results
• redundant syncs
• redundant precision

Vision: Reduce
Programming to Debugging ratio

Domain
Hybrid Parallelism + Floating Point +

Modularity

Advantages:
• Performance
• Scalability
• Abstraction
• Modularity

Disadvantages:
• non-deterministic bugs
• non-reproducible results
• redundant syncs
• redundant precision

Goals:
Correctness/Performance
tools to help programmers

with development
1. efficient
2. scalable
3. reproducible
4. precise
5. coverage

Vision: Reduce
Programming to Debugging ratio

5

Domain
Hybrid Parallelism + Floating Point +

Modularity

Advantages:
• Performance
• Scalability
• Abstraction
• Modularity

Disadvantages:
• non-deterministic bugs
• non-reproducible results
• redundant syncs
• redundant precision

Goals:
Correctness/Performance
tools to help programmers

with development
1. efficient
2. scalable
3. reproducible
4. precise
5. coverage

Vision: Reduce
Programming to Debugging ratio

Our Approach:
1. Dynamic analysis
2. Symbolic execution
3. New Algorithms

6

Domain
Hybrid Parallelism + Floating Point +

Modularity

Advantages:
• Performance
• Scalability
• Abstraction
• Modularity

Disadvantages:
• non-deterministic bugs
• non-reproducible results
• redundant syncs
• redundant precision

Goals:
Correctness/Performance
tools to help programmers

with development
1. efficient
2. scalable
3. reproducible
4. precise
5. coverage

Vision: Reduce
Programming to Debugging ratio

Our Approach:
1. Dynamic analysis
2. Symbolic execution
3. New Algorithms

Tools:
1. UP-Thrille: data races
2. Precimonious: FP precision tuning
3. ReproBLAS: reproducible num. algorithms

7

Domain
Hybrid Parallelism + Floating Point +

Modularity

Advantages:
• Performance
• Scalability
• Abstraction
• Modularity

Disadvantages:
• non-deterministic bugs
• non-reproducible results
• redundant syncs
• redundant precision

Goals:
Correctness/Performance
tools to help programmers

with development
1. efficient
2. scalable
3. reproducible
4. precise
5. coverage

Our Approach:
1. Dynamic analysis
2. Symbolic execution
3. New Algorithms

Vision: Reduce
Programming to Debugging ratio

5. Sync reduction: remove redundant syncs

Tools:
1. UP-Thrille: data races
2. Precimonious: FP precision tuning
3. ReproBLAS: reproducible num. algorithms
4. LLVM Shadow Execution: dynamic analysis
5. Sync reduction: remove redundant syncs

Usage Scenario

Program

Regression
test

Test

Pass

Fail

Usage Scenario

Program

Regression
test

Test

Pass

Fail

Our Tools:
1. UPC-Thrille
2. Precimonious

10

Usage Scenario

Program

Regression
test

Test

Pass

Fail

Our Tools:
1. UPC-Thrille
2. Precimonious

data races

precision
reduction

sync
reduction

Challenges:
Comparison with State-of-the-art

• Existing tools are slow: 10X-100X
• Handles either shared memory or message-passing
• Does not scale with number of nodes
• Cannot handle hybrid applications

– Scientists run frameworks not mini-apps
– Composition of multi-language (C, C++, Fortran), multi-

paradigm (GASnet, MPI, OpenMP, Pthreads)
solvers/libraries (Scalapack, MKL, BoxLib)

• Precision tuning is conservative
• Reproducible algorithms do not scale to large

number of nodes
11

Finding Non-Deterministic Bugs
Case Study: Scalable Data Race Detection for
Partitioned Global Address Space Programs

12

• High performance computing is rapidly evolving
– Exascale: O(106) nodes, O(103) cores per node
– Programs with side-effects through one-sided communication
– Unstructured parallelism, dynamic tasking, shared memory
– Non-blocking, highly asynchronous behavior

• Many correctness challenges
– Hard to diagnose correctness and performance bugs (data races,

atomicity violations, deadlocks)
– Non-determinism leads to non-reproducible results

• Current tools offer limited support
– Limited functionality (e.g. communication only DAMPI)
– Do not scale (e.g. Intel ThreadChecker)

• We need tools for the “next” generation languages

Motivation

13

• Efficiency and low overhead
• Currently 10X-1000X

• Complete memory coverage
– Currently either shared memory OR communication only

• Precise: report only the “bugs”

• Reproducible: identical behavior across executions

• Scalable in program size (LoCs), input size and concurrency

Design Requirements

14

Data Races in PGAS
• Thrille: data race detector for UPC using Active Testing

– Communication only
– Precise and reproducible
– Scalable with cores due to distributed analysis

• Active Testing
– Phase 1: Dynamic analysis to find potential concurrency bug

patterns
• Such as data races, deadlocks, atomicity violations

– Phase 2: “Direct” testing (or model checking) based on the
bug patterns obtained from phase 1

• Confirm bugs

• How do we achieve low overhead and scalability
with input and cores for a complete analysis ?

15

Data Race Detection Implementation
• For each load/store or communication operation

Examine the address –> instrumentation overhead
Record the address –> data management overhead

• For each synchronization operation
Exchange information about all L/S and comms
Analyze for conflicts

• Instrumentation overhead is reduced by
– Hybrid Sampling (instruction + function level sampling)
– Further pruning using program analysis

• Data management overhead is reduced with better data
structures 16

• Instruction sampling – sample every instruction with
decaying probability
– Introduces up to 40X slowdown for our benchmarks

• State-of-the-art function level sampling (LiteRace) does
NOT work
– (Marino et al. LiteRace: Effective Sampling for Lightweight

Data-Race Detection. PLDI, 2009.)
• Novel hierarchical sampling approach provides best

performance
– Introduces up to 10x slowdown for our benchmarks

• Sampling needs to be supplemented with other
pruning
– Runtime alias based pruning (or other static analyses)

Sampling Strategies

17

Overall Scalability

1

2

3

4

5

6

7

8

9

16 32 64 128 256 512 1024 2048

Ru
n

m
e

no
rm

al
iz

ed
 to

 "
em

pt
y"

 ru
n

cores

Scalability of analysis on MG

NL-D

HA0-D

HA.5-D

IA-D

NL-C

HA0-C

HA.5-C

IA-C

< 50% slowdown up to 2K cores
Commercial tools : 1000X slowdown on 16 cores

G
o
o
d

18

Bugs Found

Races: A(B) + C(D), where A represents the number of races detected by the original UPC-Thrille tool (NL) with B of them confirmed, and C represents the additional number of races detected with
our extensions (HA.5) with D of them confirmed through phase 2

KEY FOR VARIANTS
NL: no instrumentation on local accesses (SC’11) / H: hierarchical sampling / I: instruction-level sampling only / F: function-level sampling only
A: indicates the use of the persistent alias heuristic
(0 or .5): Back-off factor for function-level sampling (0 means only first invocation of functions sampled)

19< 50% slowdown up to 2K cores

• Conference Publication
– Our paper entitled “Scaling Data Race Detection for Partitioned Global

Address Space Programs” was presented at the International
Supercomputing Conference (ICS’13) in Oregon, June 2013.

• Software Release
– Publicly released UPC-Thrille under the BSD license:

http://upc.lbl.gov/thrille.shtml

Highlights

20

http://upc.lbl.gov/thrille.shtml

Finding Redundancy in Precision
Case Study: Tuning Precision of

Floating-point Programs

21

Floating-Point Precision Tuning

• Reasoning about FP programs is difficult
o Large variety of numerical programs
o Most programmers are not experts in FP
o Even experts on scientific computing may not

be expert in FP

• Common practice
o Use highest available precision
o Disadvantages: more expensive in terms of running time, memory

and energy consumption

22

Precimonious

• “Parsimonious with precision”
• Common Practice: Use widest precision available

(usually IEEE double or long double)
– Pros: Easy, reliable
– Cons: Maximizes time, memory, energy used

• Precimonious automatically decides which
variables/operations can be in lower precision
(single) and still get an acceptable answer

23

Tuned Program

long double g(long double x) {
int k, n = 5;
long double t1 = x;
long double d1 = 1.0L;

for(k = 1; k <= n; k++) {
...

}
return t1;

}

int main() {
int i, n = 1000000;
long double h, t1, t2, dppi;
long double s1;
...
for(i = 1; i <= n; i++) {

t2 = g(i * h);
s1 = s1 + sqrt(h*h + (t2 - t1)*(t2 - t1));
t1 = t2;

}
// final answer stored in variable s1
return 0;

}

Original Program

Example (D.H. Bailey):

24

Tuned ProgramOriginal Program

double g(double x) {
int k, n = 5;
double t1 = x;
float d1 = 1.0f;

for(k = 1; k <= n; k++) {
...

}
return t1;

}

int main() {
int i, n = 1000000;
double h, t1, t2, dppi;
long double s1;
...
for(i = 1; i <= n; i++) {

t2 = g(i * h);
s1 = s1 + sqrt(h*h + (t2 - t1)*(t2 - t1));
t1 = t2;

}
// final answer stored in variable s1
return 0;

}

long double g(long double x) {
int k, n = 5;
long double t1 = x;
long double d1 = 1.0L;

for(k = 1; k <= n; k++) {
...

}
return t1;

}

int main() {
int i, n = 1000000;
long double h, t1, t2, dppi;
long double s1;
...
for(i = 1; i <= n; i++) {

t2 = g(i * h);
s1 = s1 + sqrt(h*h + (t2 - t1)*(t2 - t1));
t1 = t2;

}
// final answer stored in variable s1
return 0;

}

Example (D.H. Bailey):

Same answer as all long double
10% faster

3 more correct digits than double

25

• Searching efficiently over variable types and
function implementations
– Naïve approach → exponential time

• 19,683 configurations for arc length program (39)
• 11 hours 5 minutes

– Global minimum vs. a local minimum

• Evaluating type configurations
– Less precision does not always result in

performance improvement
– Run time, memory usage, energy consumption, etc.

• Determining accuracy constraints
– How accurate must the final result be?
– What error threshold to use?

Challenges for Precision Tuning

Automated:
116 configs.
4 min 47 sec

Specified by
the user

26

✔

✘

LCCSEARCH Algorithm
based on Delta Debugging [Zeller et al]

double
precision

single
precision

27

✔

✘

double
precision

single
precision

✘ ✘

LCCSEARCH Algorithm
based on Delta Debugging [Zeller et al]

28

✔

✘

double
precision

single
precision

✘ ✘ ✔✔

LCCSEARCH Algorithm
based on Delta Debugging [Zeller et al]

29

✔

✘

double
precision

single
precision

✘ ✘ ✔✔

LCCSEARCH Algorithm
based on Delta Debugging [Zeller et al]

30

✔

✘

double
precision

single
precision

✘ ✘ ✔✔

✘✔

LCCSEARCH Algorithm
based on Delta Debugging [Zeller et al]

31

✔

✘

double
precision

single
precision

✘ ✘ ✔✔

✘✔

LCCSEARCH Algorithm
based on Delta Debugging [Zeller et al]

32

✔

✘

double
precision

single
precision

✘ ✘ ✔✔

✘✔
…Assume other

configurations fail

Proposed configuration

LCCSEARCH Algorithm
based on Delta Debugging [Zeller et al]

33

Experimental Setup

• Benchmarks
o 8 GSL programs
o 2 NAS Parallel Benchmarks: ep and cg
o 2 other numerical programs

• Test inputs
o Inputs Class A for ep and cg programs
o 1000 random floating-point inputs for the rest

• Error thresholds
o Multiple error thresholds: 10-10, 10-8, 10-6, and 10-4

o User can evaluate trade-off between accuracy and speedup

34

Speedup for Various Error Thresholds

0

5

10

15

20

25

30

35

40

10^-4

33.3%

37.1%

7%

15%

24.7%

32.8%

13.1%
15.9%

0.4%

S
pe

ed
up

 %

35

0

5

10

15

20

25

30

35

40

10^-4

10^-6

Speedup for Various Error Thresholds

Error threshold 10-6→ slightly larger speedup than error threshold10-4

(4.5% vs. 0.4% for rootnewt program)

S
pe

ed
up

 %

36

SC’13

0

5

10

15

20

25

30

35

40

45

10^-4

10^-6

10^-8

10^-10

Speedup for Various Error Thresholds
S

pe
ed

up
 %

41%

37

Scalability Limitation

Too many runs for larger programs!

Largest benchmark: 52 FP variables
Configurations explored: 1,435 configurations
Analysis running time: 1hr 26min

38

Shadow Execution

• Motivation: Precimonious uses input after
conversion to LLVM in order to modify, track
changes in code: What else can we do with this
infrastructure?

• Shadow Execution: Track execution dynamically
– Compare to results computed in different precisions
– Track sources of inaccuracy: “Blame analysis”

• Reduce search space for Precimonious
• Up to 5x fewer configurations to search

39

• Conference Publication
– PRECIMONIOUS[11] was accepted for conference

publication at the prestigious International
Conference for High Performance Computing,
Networking, Storage and Analysis (SC’13).

• Cindy Rubio Gonzalez will join UC Davis as an
Assistant Professor in Fall 2014

• We have released PRECIMONIOUS under the
BSD license. The tool is available at
https://github.com/corvette-
berkeley/precimonious .

Highlights

40

https://github.com/corvette

Reproducibility of Floating-point
Programs

41

Motivation for Reproducibility

• Reproducibility = bitwise identical results when running
code more than once

• No longer guaranteed because of parallelism,
nondeterminism, and nonassociativity of floating point
addition/multiplication:
– fl(1 + (1e20 – 1e20)) = 1 ≠ 0 = fl((1 + 1e20) – 1e20)

• Demanded by many users, for debugging, correctness,
contractual obligations
– BOFs at recent Supercomputing conferences
– Intel, Mathworks, other companies responding to demand with

new (deterministic) products
• At large scale, nondeterminism unavoidable – What to do?

42

Reproducible BLAS: ReproBLAS

• Based on Indexed Floating Point: roundoff is
deterministic, independent of summation order
– Can choose same or higher accuracy than usual FP
– Only one (nondeterministic) reduction required

• ReproBLAS for BLAS1 released (mBSD license)
– bebop.cs.berkeley.edu/reproblas
– Sequential and MPI versions
– {s|d|c|z}{asum,sum,nrm2,dot}
– Multithreaded, higher level BLAS under construction

• Integrated into CLAMR (DOE Mini-App)

43

Performance Results
DDOT for n=106 on Hopper

44

• Conference Publications
– Our papers entitled “Fast Reproducible Floating-

Point Summation” [7] and “Numerical Accuracy and
Reproducibility at ExaScale” [8] were presented at
the 21st IEEE Symposium on Computer Arithmetic in
Austin, Texas. Our paper “Parallel Reproducible
Summation” [9] has been recently accepted for
publication in the IEEE Transactions on Computers,
Special Section on Computer Arithmetic.

• Software Release:
– ReproBLAS released at

http://bebop.cs.berkeley.edu/reproblas

Highlights

45

http://bebop.cs.berkeley.edu/reproblas

46

Domain
Hybrid Parallelism + Floating Point +

Modularity

Advantages:
• Performance
• Scalability
• Abstraction
• Modularity

Disadvantages:
• non-deterministic bugs
• non-reproducible results
• redundant syncs
• redundant precision

Goals:
Correctness/Performance
tools to help programmers

with development
1. efficient
2. scalable
3. reproducible
4. precise
5. coverage

Our Approach:
1. Dynamic analysis
2. Symbolic execution
3. New Algorithms

Vision: Reduce
Programming to Debugging ratio

5. Sync reduction: remove redundant syncs

Tools:
1. UP-Thrille: data races
2. Precimonious: FP precision tuning
3. ReproBLAS: reproducible num. algorithms
4. LLVM Shadow Execution: dynamic analysis
5. Sync reduction: remove redundant syncs

