y 4

lrrzia—

INVENTEURS DU MONDE NUMERIQUE

StarPU:
task-based scalable Runtime system for
heterogeneous multicore architectures

Olivier Aumage, Nathalie Furmento, Samuel Thibault
INRIA Storm Team-Project

INRIA Bordeaux, LaBRI, University of Bordeaux

31

Task management

Implicit task dependencies

* Right-Looking Cholesky decomposition (from PLASMA)

HOGHEN T Ol iy SI NN
EGHEEEE e () o
Eorilih = el e iNe o o
dB1ec1y Senlalyd e R e R B
for (i = j+1; 1 < N; i++) {
SURICE (R, A] [| i bR BT [LE o)
B Tl e e T e R
GEMM (RW,A[i][k],
o Ry ey

}

}
Easkwait foraall ()

Iltgzzéh,-

Write your application as a task graph

Even if using a sequential-looking source code

=> Portable performance

Sequential Task Flow (STF)

Algorithm remains the same on the long term

Can debug the sequential version.

Only kernels need to be rewritten
BLAS libraries, multi-target compilers

Runtime will handle parallel execution

32

45

Overview of StarPU

Rationale

Task scheduling
Dynamic
On all kinds of PU
General purpose
Accelerators/specialized

Memory transfer
Eliminate redundant
transfers

Software VSM (Virtual
Shared Memory)

50

The StarPU runtime system

HPC Applications

Specific drivers

CPUs GPUs SPUs

Mastering CPUs, GPUs, SPUs ... *PUs — StarPU

I"’*“’a-—-—

60

The StarPU runtime system

Development context

* History
Started about 9 years ago

PhD Thesis of Cedric Augonnet
StarPU main core ~ 70k lines of code
Written in C

* Open Source
Released under LGPL
Sources freely available

svn repository and nightly tarballs
See https://starpu.gforge.inria.fr/
Open to external contributors

 [HPPC'08]
* [Europar'09] — [CCPE'11],... >1000 citations

I‘M-—

63

The StarPU runtime system
Supported platforms

* Supported architectures
Multicore CPUs (x86, PPC, ...)
NVIDIA GPUs
OpenCL devices (eg. AMD cards)
Intel Xeon Phi (MIC), Intel SCC
Kalray MPPA (experimental)
Cell processors (experimental) [SAMOS'09]

* Supported Operating Systems

Linux
Mac OS
Windows

78

Summary

starpu_codelet tcl={.cpu func=my f, ... };
float array[NX];

starpu_data_handle vector_handle;

starpu_vector _data register(&vector_handle, O,
array, NX, sizeof(vector[0]));

starpu_task_insert(&cl, vector_handle, 0);

starpu_task_wait_for_all();

starpu_data unregister(vector_handle);

Iéw’—

103

Task scheduling

Push
Component-based schedulers

 Containers
o Priorities

« Switches
« Side-effects (prefetch, ...)
Push/Pull mechanism

S. Archipoff, M. Sergent

S <SS

CPU GPU

workers workers ‘

More features

Cluster support
MPI| communication
Decentralized model
Application-provided data mapping
Automatic optimized transfers

Memory consumption control

Out of core support
Disk as optimized « swap »
or as backstore for matrix tiles

Execution simulation support

OpenMP and OpenCL interfaces

227

228

Applications on top of StarPU

Using CPUs, GPUs, distributed, out of core, ...

* Dense linear algebra
Cholesky, QR, LU, ... : Chameleon (based on Plasma/Magma)

« Sparse linear algebra
QR_MUMPS
PaStiX

« Compressed linear algebra
BLR, h-matrices

* Fast Multipole Method
ScalFMM

* Conjugate Gradient

» Other programming models : Data flow, skeletons
SignalPU, SkePU

HIHAT wishes, in a few phrases

Have better interface to hardware layers
Extremely low overhead

Reusable components which we prefer not to maintain alone
Performance models, allocators, tracing, debugging, ...

(ideally) Standard flexible task-based interface
Plus OpenMP etc. interfaces
Or at least set of helpers for outlining, marshaling, etc.

Everything usable independently and interoperable

229

230

HIHAT wishlist

* Portable and flexible async APls for driving accelerators

* Shared event management
Used throughout HIHAT
Dependencies between all kinds of requests
User-definable events
Synchronization with non-HIHAT pieces
Flexible event waiting API : interruptible WaitAny
Register a set of event
WaitAny(set)
Efficient loop over completed events

Can add user-defined event to the set to interrupt WaitAny easily

231

HIHAT wishlist

* Memory allocation
Uniform low-level API over devices
Efficient sub-allocator (cudaMalloc is not efficient)
Same-size pools
Allocation reuses
In RAM case, hierarchical balancing between cores/caches/NUMA

* Disk support : store/key/value, basically
store = plug(path)
key = allocate(store, size)
write(store, key, buffer, offset, size)
read(store, key, buffer, offset, size)
free(store, key)
unplug(store)

232

HIHAT wishlist

* Data transfer priorities
Take precedence over already-queued transfers

* Inter-node communication layer instead of MPI
Transfer priorities, again
Completely asynchronous and flexible event waiting API
Could be a PGAS : no need for messages, just memory coherency

233

HIHAT wishlist

* Performance models
We currently have history-based, linear reg. and multi-linear reg.

* Standard trace formats and debugger
We currently use paje, vite, temanejo

Could be moved to shared components

	Diapo 1
	Diapo 31
	Diapo 32
	Diapo 45
	Diapo 50
	Diapo 60
	Diapo 63
	Diapo 78
	Diapo 103
	Diapo 227
	Diapo 228
	Diapo 229
	Diapo 230
	Diapo 231
	Diapo 232
	Diapo 233

