=0CR=

OCR
The Open Community Runtime
Interface

Version 0.9, September, 2014

Editors: Tim Mattson, Rob van der Wijngaart, Zoran Budimlic, Vincent Cave, Sanjay Chatterjee, Romain
Cledat, Bala Seshasayee, Vivek Sarkar

Copyright © 2014 OCR working group.
Permission to copy without fee all or part of this material is granted, provided the OCR working
group copyright notice and the title of this document appear.

This page intentionally left blank

Contents

1

Introduction

I.1 Scope e

1.2 Glossary o e

1.3 ExecutionModel
1.3.1 OCRPlatform e
1.32 OCRobjects e
1.3.3 Triggerrule
1.3.4 OCR program eXeCution v v v v v v i

1.4 Memory Model e

1.5 Organization of thisdocument, ...

OCR API Documentation

2.1

22

2.3

ModuleIndex
2.1.1 Modules
Data Structure Index
2.2.1 DataStructures e e e e e
Module Documentation oL
2.3.1 OCR extensions/experimental APIs
232 Affinity extensiono
2.3.3 OCRused as alibrary extension
2.3.4 Interface for runtimes builtontopof OCR
2.3.5 Data-block management for OCR
2.3.6 Event Managementfor OCR
237 EventDrivenTask API

AN AN NN N e

23.8 OCRdependence APIs 35

2.3.9 Limited "standard" APIfor OCR. 36
2.3.10 Types and constantsusedinOCR 38
2.3.11 General types and constants 42
2.3.12 Types and constants associated with datablocks 43
2.3.13 Types and constants associated with EDTs 45
2.3.14 Types and constants associated withevents 47
2.3.15 SupportcallsforOCR 49

2.4 Data Structure Documentation oL 50
2.4.1 ocrConfig_t StructReference 51

2.4.2 ocrEdtDep_t Struct Reference 52

A OCR Examples 55
Al OCR’s“HelloWorld!” 55
A.l.l Codeexample. 55

A.2 Expressing a Fork-Joinpattern 56
A2.1 Codeexample. e 56

A.3 Expressing unstructured parallelism, 58
A3.1 Codeexample. 58

A4 UsingaFinishEDT 61
A4l Codeexample. e 61

A.5 Accessing a DataBlock with “Intent-To-Write” Mode 65
AS5.1 Codeexample. 65

A.6 Accessing a DataBlock with “Exclusive-Write”Mode 67
A6.1 Codeexample. L 67

A.7T Acquiring contents of a DataBlock as a dependence input 70
AT71 Codeexample. 71

B OCR Change History 73

ii OCR - Version 0.9 — September 2014

1. Introduction

Extreme scale computers (such as proposed Exascale computers) contain so many components that
the aggregate mean-time-to-failure is small compared to the runtime of an application.
Programming models (and the supporting compilers and runtime systems) must therefore support a
variety of features unique to these machines:

e The ability for a programmer to express O(billion) concurrency in an application program.

e The ability of a computation to make progress towards a useful result even as components within
the system fail.

e The ability of a computation to dynamically adapt to a high degree of variability in the
performance and energy consumption of system components to support efficient execution.

e The ability to either hide overheads behind useful computation or have overheads small enough
to allow applications to exhibit strong scaling across the entire exascale system.

There are a number of research projects in progress to develop a runtime system for extreme scale
computers. This specification describes one of these research runtime systems: the Open
Community Runtime or OCR. The central idea behind OCR is to decouple the work of a
computation from the “Units of execution” that carry out computations and to decouple the data
used in a computation from a computer’s memory. The result is to virtualize the work and data
associated with a computation so they can be relocated within a scalable computer to optimize
execution of the parallel program. More importantly, virtualization allows a program to respond to
hardware issues by relocating work and data from failed components onto working

components [17].

The fundamental idea behind OCR is to consider a computation as a dynamically created graph of
tasks. Task execution is managed by events; when the events a task is dependent upon are satisfied,
the task becomes available to be scheduled for execution.

OCR provides a global name space that holds references to tasks, events and data blocks', which
supports the transparent scheduling and relocation of these entities across hardware resources.

These events can be used to support a wide range of execution models, including data-flow (when
events are associated with data-blocks), fork-join (when events enable the execution of post-join

Data blocks, described in Section 1.3.3.1 are exposed through a global ID which provides a reference to the data block
itself. A task can access the contents of data blocks either a) created inside the task and b) data blocks whose IDs are
listed as requisite input to the task before it is scheduled for execution.

2

continuations), bulk-synchronous processing (when event trees can be used to build scalable
barriers and collective operations), and combinations thereof.

1.1. Scope

OCR is a vehicle to support research on programming models and runtime systems for extreme
scale computers [8, 9]. This specification defines the state of OCR at a fixed point in its
development. There are several limitations in OCR that will be relaxed as it continues to develop.

OCR is a runtime system and collection of low level Application Programming Interfaces (APIs).
While some programmers will directly work with the APIs defined by OCR, the most common use
of OCR will be to support higher level programming models. Therefore, OCR lacks high level
constructs familiar to traditional parallel programmers such as reductions and parallel

for?.

All parallelism must be specified explicitly in OCR. It does not extract the concurrency in a
program on behalf of a programmer. The OCR execution model is a low level model; abstract
enough to support relocation of tasks and data to support resiliency or to minimize the energy
consumed by a computation, but low level enough to cleanly map onto the hardware of extreme
scale computers.

OCR is designed to handle dynamic task driven algorithms expressed in terms of a directed acyclic
graph (DAG). In a DAG, each node is visited only once. This makes irregular problems based on
dynamic graphs easier to express. However, it means that OCR may be less effective for regular
problems that benefit from static load balancing or for problems that depend on iteration over
regular control structures.

OCR is defined in terms of a C library. Programs written in any language that includes an interface
to C should be able to work with OCR.

OCR tasks are expressed as relatively heavy weight event driven tasks (EDTs). An OCR
programmer should understand the overheads associated with managing EDTs and assure that the
work per EDT is great enough to offset OCR overheads.

OCR is currently a research runtime system, developed as an open-source community project. It
does not as yet have the level of investment needed to develop a production system that can be used
for serious application deployment.

1.2. Glossary

2Reductions can be supported in OCR using an accumulator/reducer approach [3, 13] and parallel for can be
supported in OCR using a fork-join decomposition similar to the cilk_for construct.

OCR - Version 0.9 — September 2014

Acquired

Data Block (DB)

Dependence

Event driven Task
(EDT)

EDT function

EDT template

Event

Finish EDT

Globally Unique ID
(GUID)

The state of a data block when its chunk of data is accessible to an OCR object. For
example, an EDT must acquire a data block before it can read-from or write-to that
data block.

The data, used by an OCR object such as an EDT, that is intended for access by other
OCR objects as well. A data block specifies a chunk of data that is entirely
accessible as an offset from a starting address.

A dependence is a link between the post-slot of a source event or data-block and the
pre-slot of a destination EDT or event. The satisfaction of the source OCR object’s
post-slot will trigger the satisfaction of the destination OCR object’s pre-slot.

An OCR object that implements the concept of a task. An EDT with N dependences
will have N pre-slots numbered from 0 to N — 1 and one post-slot. Each of the
pre-slots associated with an EDT connects to a single OCR object, while the EDT’s
single post-slot can connect to multiple OCR objects. An EDT becomes runnable
when all its pre-slots have been satisfied; the pre-slots determine which data blocks,
if any, the EDT may access.

The function that defines the code to be executed by an EDT. The function takes as
arguments the number of parameters, the actual array of parameters, the number of
dependences and the actual array of dependences. Parameters are static 64-bit values
known at EDT creation time and dependences are dynamic control or data
dependences. The parameter array is copied by value when the EDT is created. The
dependences (namely the array of dependences) are determined at runtime and are
fully resolved only when the EDT starts to run. The EDT function can optionally
return the GUID of a DB or event that will be passed along its “post” slot.

An OCR object from which an EDT instance is created. The EDT template stores
meta-data related to the EDT definition, the EDT function, and the number of
parameters and dependences available to EDTs instantiated (created) from this
template. Multiple EDTs can be created from the same EDT template.

An OCR object used as an indirection mechansim between other OCR objects
interested in each other’s change of state (unsatisfied to satisfied). Events are the
main synchronization mechanism in OCR.

A special class of EDT. As an EDT runs, it may create additional EDTs, which may
themselves create even more EDTs. For the case of a finish EDT, the EDTSs created
within its scope (i.e. its child EDTs and further descendants) complete and satisfy
their post-slots before the finish EDT can satisfy its post-slot. The result is that any
OCR object linked to the post-slot of the finish EDT will by necessity not be
scheduled or satisfied until the finish EDT and all EDTs created during its execution
have completed.

Introduction 3

4

Latch Event

OCR object

OCR program

Released

Slot

Task

Trigger

A value generated by the runtime system that uniquely identifies each OCR object.
The GUIDs for the OCR objects reside in a global name space visible to all EDTs.

A special type of event that propagates a satisfy signal to its post-slot when it has
been satisfied an equal number of times on each of its two pre-slots. In other words,
if you imagine a monotonically increasing counter on each of the two pre-slots, the
latch event’s post-slot will be satisfied if and only if both monotonically increasing
counters are non-zero and equal. Note that once the latch event’s post-slot is
satisfied, satisfaction on the latch event’s pre-slots will result in undefined behavior;
the latch event will therefore only satisfy its post-slot at most one time.

A reference counted object managed by OCR. EDTs, events, templates, and data
blocks are the most frequently encountered examples of OCR objects. Each OCR
object has a unique identifier, or GUID.

A program that is conformant to the OCR specification. Statements in the OCR
specification about the OCR program only refer to behaviors associated with the
constructs that make up OCR. For example, if an OCR program were to use a
parallel programming model outside of OCR, that program is no longer a purely
conformant OCR program and its behavior can no longer be defined by OCR.

The state of a data block that is no longer accessible by a certain OCR object. For
example, after an EDT has finished all of its modification to a data block and it is
ready to make those modifications accessible by other EDTs, it could release that
data block.

Positional end point for a dependence. An OCR object has one or more slots.
Exactly one slot is a post-slot. This is used to communicate the state of the OCR
object to other OCR objects. The other zero of more slots are pre-slots, which are
used to manage input dependences of the OCR object. A slot can be:

e Unconnected: There are no links connecting to the slot;

e Connected: a link attaches a source post-slot to a destination pre-slot.
A slot in the connected state can be:

o Satisfied: the source of the link is a triggered slot;

o Triggered: see 'Trigger’;

e Unsatisfied: the source of the link is not a triggered slot.

A non-blocking set of instructions that constitute the fundamental “unit of work™ in
OCR. By “non-blocking” we mean that once all preconditions on a task are met, it
will execute at some point, regardless of what any other task in the system does. The
concept of a task is realized by the OCR object “Event Driven Task™ or EDT.

This term is used to describe the action of either a “satisfied” post-slot or of an event
whose trigger rule is satisfied. In the former case, when a post slot on an OCR object

OCR - Version 0.9 — September 2014

is satisfied, it triggers any connected pre-slots causing them to become “satisfied”. In
the latter case, when an event’s trigger rule is satisfied (due to satisfaction(s) on its
pre-slot(s)), it satisfies its post-slot. Therefore, for most events, when the event’s
pre-slot becomes satisfied, this will trigger the event and therefore cause it to satisfy
its post-slot which will in turn trigger the dependence link and satisfy all pre-slots
connected to the event’s post-slot. The conjugated form friggered is used as an
attributive past participle; that is “a slot that has been satisfied and has transfered the
updated satisfied status along its link(s) is a triggered slot”.

Unit of Execution A generic term for a process, thread, or any other executable agent that carries out
the work associated with a program.

Worker The unit of execution (e.g. a process or a thread) that carries out the sequence of
instructions associated with the EDTs in an OCR program. The details of a worker
are tied to a particular implementation of an OCR platform and are not defined by
OCR.

1.3. Execution Model

An OCR program is best understood as a dynamically created, directed acyclic graph

(DAG) [14, 15, 18]. The vertices in the graph are OCR objects that define a computation: tasks
which perform the actual computation and events which are used to coordinate the activity of other
objects. The edges are dependences between objects (i.e. a link) which can represent data
dependences (events with an associated data block) or pure control dependences (events).

The tasks within the DAG represent the work carried out by an OCR program. Edges impinging on
a task define preconditions for the execution of the task [|2]. Tasks whose preconditions have been
met are runnable. Outgoing edges define dependences and triggers for later objects in the graph.
OCR tasks are non-blocking. This means that once all preconditions on a task have been met, the
task becomes runnable, and when it begins to execute; the task will eventually run to completion
regardless of the behavior of any other OCR objects.

OCR programs can either run alone or be encompassed in other programs in a library manner. In
the following description, “OCR program” refers to either the entire OCR program if it is running
alone or the OCR portion of the program if running library mode.

The OCR program logically starts as a single task, dynamically builds the DAG corresponding to
the executing program, and completes when the ocrShutdown () or ocrAbort () function is
called. This rather simple model can handle a wide range of design patterns including branch and
bound, data flow, and divide and conquer. With both data and tasks conceptually decoupled from
their realization on a computer system, OCR has the flexibility to relocate tasks and data to respond
to failures in the system, achieve a better balance of load among the processing elements of the
computer, or to optimize memory and energy consumption [2, 4, 6, 10].

We will define the execution model in OCR by starting with a model of the OCR platform. We will
then describe the fundamental objects used to define OCR. Finally, we will describe the details of

Introduction 5

6

how an OCR program executes.

1.3.1. OCR Platform

An OCR program executes on an abstract machine called the OCR Platform. The OCR platform is
a resource that can carry out computations. It consists of:

e A collection of network connected nodes where any two nodes can communicate with each other.

e Each node consists of one or more processing elements each of which has its own private
memory>.

e A globally accessible shared namespace of OCR objects each denoted by a globally unique ID
(GUID).

OCR is designed to be portable and scalable, hence, the OCR Platform places minimal constraints
on the physical hardware.

As dependences are met for the tasks in an OCR program’s DAG, the tasks become runnable.
These tasks and any resources required to support their execution are then submitted to workers [5]
which execute the tasks on the processing elements within the OCR platform. The workers and the
data-structures used to store tasks waiting to execute (i.e. work-pools) are a low level
implementation detail not defined by the OCR specification. When reasoning about locality and
load balancing, programmers may need to explicitly reason about the behavior of the workers [1],
but they do not hold persistent state visible to an OCR program and are logically opaque to OCR
constructs.

1.3.2. OCR objects

An OCR object is a reference counted entity managed by OCR. Every OCR object has a globally
unique ID (GUID) that is used to identify the object. Objects have two well defined states.

1. Created: Resources associated with an object and its GUID have been created.

2. Destroyed: An object that is destroyed is marked for destruction when the destruction command
executes. A destroyed object and any resources associated with the destroyed object are no
longer defined. The object is not actually destroyed and the associated resources are not freed
until the reference count is zero®.

Furthermore, for OCR data blocks, we have two additional states:

1. Acquired: the data associated with the data block has become accessible to the acquiring OCR
object thereby incrementing the acquired objects reference count.

3By “private” we mean a memory region that is not accessible to other processing elements.
4As an optimization, the runtime may choose to reuse of the same physical object for different logical objects [11, 16].

OCR - Version 0.9 — September 2014

2. Released: The object is no longer accessible by the OCR object that had earlier acquired it. The
reference count on the released object is decremented.

An OCR program is defined in terms of three fundamental objects.
Event Driven Tasks (EDT) A non-blocking unit of work in an OCR program.

Data blocks (DB) A contiguous block of memory managed by the OCR runtime accessible to
any OCR objects to which it is linked.

Events An object to manage dependences between OCR objects and to define ordering
relationships (synchronization) between them.

In addition to these fundamental objects, OCR defines a number of associated objects that simplify
OCR programming or support specific desired behaviors of the fundamental objects.

EDT Template An OCR object used to manage the resources required to create an EDT.

Affinity container An OCR object used to influence the placement of EDTs in an executing
program.

An OCR program defines a graph with the three fundamental OCR objects (EDTs, DBs and
Events) as the nodes of the graphs and edges are links between objects. A link defines a
dependence between OCR objects. The links are defined in terms of slots on the OCR object. A
slot defines an end point for a dependence for an OCR object.

Event, data blocks and EDTs each have a single post slot. used to communicate the state of an
OCR object to other OCR objects. For example, if an EDT wanted to let another EDT know that it
had finished its assigned work, it could do so by signaling over its post-slot that it is satisfied or
equivalently, that the post-slot is triggered. The rules defining when a post slot triggers, the
so-called post-slot trigger rule depends on the type of OCR object and is discussed in Section 1.3.3.

Some OCR objects (such as EDTs) can also have an optional set of pre-slots. A pre-slot defines an
incoming dependence or a pre-condition for execution by an EDT. The post-slot of one EDT, for
example, can be connected to the pre-slot of another EDT thereby establishing a control
dependence between the EDTs. Likewise, the post-slot of a data block can be connected to the
pre-slot of an EDT to establish an immediately satsified data dependence.

Slots are used along with data block objects to define data dependences between OCR objects. For
example, for producer consumer relationships the post slot of the producer EDT can be connected
to the pre-slot of the consumer EDT. When the producer finishes its work and updates the data
block it wishes to share, it associates that data block with the post-slot and signals its “satisfied”
state to the consumer who can then safely begin working with the data block from the producer.

Refer to Section 1.2 for a definition of the states of a Slot. All slots are initially in the
unconnected state. Data block post slots are immediately satisfied as soon as they are
connected.

Introduction 7

8

1.3.2.1. EDTs

A task defines the basic unit of work within a programming model. As mentioned earlier, a task is a
non-blocking unit of work. Once all pre-conditions on the OCR task have been met, it becomes
runnable or “available to execute” and once it begins execution it executes without waiting on any
other OCR objects. In OCR, we package a task into an Event Driven Task or an EDT.

The EDT is created as an instance of an EDT template. This template stores metadata about EDTs
created from the template, optionally defines the number of dependences and parameters used
when creating an instance of an EDT, and is a container for the function that will be executed by an
EDT. This function is called the EDT function.

The OCR API defines the function prototype and return values expected by an EDT function.
These include:

e The parameters of the EDT function which are copied by value when the EDT is created.

e Dynamic dependences expressed through a dependence array that is formed at runtime from
explicit user-specified dependences.

e An optional GUID of a OCR object holding data (a data block) that will be used to satisfy the
EDT’s post slot. This is the return value of the function.

When ocrEdtCreate () is used to create an EDT, it returns one or two GUIDs: the first (always
returned) is the GUID for the EDT itself; the second (returned only on programmer request) is the
GUID of the event implied by the post slot of the EDT> When the OCR function returns a data
block, the GUID of that data block is used to satisfy the implied event.

Using a post-slot in a link to another object is just one method to trigger other OCR objects. OCR
includes the ocrEventSatisfy () API to trigger other OCR objects through explicitly created
dependence links.

OCR defines one special type of EDT; the finish EDT. An EDT always executes asynchronously
and without blocking once all of its pre-conditions have been met. A finish EDT, however, will not
trigger its post-slot until all EDTs launched within its scope (i.e. its child EDTs and EDTs created
within its child EDTs) have completed. The finish EDT still executes asynchronously and without
blocking. The implied event associated with the post slot of a finish EDT is a latch event, i.e. it is
connected to the post-slots of all EDTs created within its scope and does not trigger until they have
all finished.

1.3.2.2. Events

An event is an OCR object used to coordinate the activity of other OCR objects. As with any OCR
object, events have a single post-slot. Events may also have one or more pre-slots; the actual

31t is important to note that although, semantically, an EDT can be the source of a dependence, when adding a
dependence, the programmer must use the GUID of the associated event as the source.

OCR - Version 0.9 — September 2014

number of which is determined by the type of event.

The post-slot of an event can be connected to multiple OCR objects by connecting the single
post-slot to the pre-slots of other OCR objects. When the conditions are met indicating that the
event should trigger (according to the trigger rule), the event sets its post-slot to satisfied therefore
establishing an ordering relationship between the event and the OCR objects linked to the event.
Events therefore play a key role in establishing the patterns of synchronization required by a
parallel algorithm [7].

When an event is satisfied, it can optionally attach a data block to the post slot. Hence, events not
only provide synchronization (control dependences) but they are also the mechanism OCR uses to
establish data flow dependences. In other words, a classic data flow algorithm defines tasks as
waiting until data is “ready”. In OCR this concept is implemented through events with attached
data blocks.

Given the diversity of parallel algorithms, OCR has defined several types of events:

1. Once event: The event is automatically destroyed on satisfaction. Any object that has the Once
event as a pre-condition must already have been created and linked by the time the Once event is
satisfied.

2. Idempotent event: The event exists until explicitly destroyed by a call to
ocrEventDestroy (). Itis satisfied once and subsequent attempts to satisfy (i.e. trigger) the
event are ignored.

3. Sticky event: The event exists until explicitly destroyed with a call to ocrEventDestroy ().
It is satisfied once and subsequent attempts to satisfy (i.e. trigger) the event result in an error
code being returned when trying to satisfy the event.

4. Latch event: The latch event has two pre-slots and triggers when the conditions defined by the
latch trigger rule are met. The event is automatically destroyed once it triggers; in this regard, it
is similar to a once event.

Events have one pre-slot except for latch-events which have two pre-slots.

1.3.3. Trigger rule

Events “trigger” when the appropriate trigger rule is met. The default trigger rule for events is
when the link on their pre-slot is satisfied, the event triggers and passes the state from the pre-slot
to its post slot. For example, if the pre-slot has an associated data block GUID, that data block
GUID will be propagated through the event’s post slot.

The trigger rule for a latch event is somewhat more complicated. The latch event has two pre-slots;
an increment slot and a decrement slot. The latch event will trigger its post-slot when the event
receives an equal but non-zero number of satisfy notifications on each of the pre-slots. Once a latch
event triggers, any subsequent triggers on the pre-slots of the latch event are undefined. For regular
events, when it is triggered with a data block, the GUID of that data block is passed along through

Introduction 9

10

the post-slot of the event. For a latch event, however, the GUID of a data block that triggers a
pre-slot is ignored.

1.3.3.1. Data Blocks

Data blocks are OCR objects used to hold data in an OCR program. A data block is the only way to
store data that persists outside of the scope of a collection of EDTs. Hence, data blocks are the only
way to share data between EDTs. The data blocks are identified by their GUIDs and occupy a
shared name space of GUIDs. While the name space is shared and globally visible, however, an
EDT can only access a) data blocks passed into the EDT through a pre-slot or b) a data block that
is created inside the body of the EDT.

When a data block is created, the default behavior is that the EDT that created the data block will
also acquire the data block. This increments the reference counter for the data block and plays a
key role in managing the memory of an OCR program. Optionally, an EDT can create a data block
on behalf of another EDT. In this case, a programmer can request that the data block is created, but
not acquired by the EDT.

Conceptually, data blocks are contiguous chunks of memory that have a start address and a size.
They have the following characteristics:

e all memory within the data block is accessible from the start-address using an offset, meaning an
EDT can manipulate the contents of a data block through pointers.

e The contents of different Data blocks are guaranteed to not overlap.

e The pointer to the start of a data block is only valid between the acquire of the data block
(implicit when the EDT starts) and the corresponding ocrDbRelease () call (or the end of the
acquiring EDT, whichever comes first)

Data blocks can be explicitly connected to other OCR objects through the OCR dependence API
(see Chapter 2). The more common usage pattern, however, is to attach data blocks to events and
pass them through the directed acyclic graph associated with an OCR program to support a
data-flow pattern of execution.

Regardless of how the data blocks are exposed among a collection of EDTs, a program may benefit
by defining constraints over how data blocks can be used. This leads to several different modes for
how an EDT may access a data block. The mode is set when the OCR dependences API is used to
dynamically set dependences between a data block and an EDT. Currently, OCR supports four
modes:

1. Read Only: The EDT is stating that it will only read from the data block. This enables the
runtime to provide a copy but with no need to manage the data blocks to support a subsequent
step to “merge” updates upon release of the data block. Alternatively, the OCR runtime may
choose to not schedule any other EDT that accesses the same read only DB in an Intent to write
or Exclusive write mode. Note that a write to a read only data block may or may not become

OCR - Version 0.9 — September 2014

visible to other EDTs (it is implementation dependent). No error will be flagged but the
resulting state of the data block is undefined.

2. Non-coherent read: The EDT is stating that it will only read from the Data Block. The EDT
does not restrict the ability of other EDTs to write to the data block, even if the writes from one
EDT might overlap with reads by the EDT with non-coherent read access.

3. Intent to write (default mode): The EDT is possibly going to write to the data block but does not
require exclusive access to it. The programmer is responsible for synchronizing between EDTs
that can potentially write to the same data block at the same time. Note that this theoretically
permits the programmer to write a data race but also enables the programmer to write programs
that update two “sections” of the same data block concurrently and in a race-free manner.

4. Exclusive write: The EDT requires that it is the only EDT writing to a data block at a given
time. If multiple EDTs are runnable and want to access the same data block in exclusive write
mode, the runtime will serialize the execution of these EDTs.

1.3.4. OCR program execution

An OCR computation starts as a single EDT called the mainEDT (). If a programmer does not
provide amain () function, the OCR runtime system will create amain () function that sets up
the OCR environment and calls the user provided mainEDT () . If a programmer chooses to
provide his or her own main () function, then it is his or her responsibility to set up the OCR
environment. The mainEDT () function has the function prototype:

#include <ocr.h>

ocrGuid_t mainEdt(

u32 paramc, // number of parameters for mainEDT
u64: paramv , // array of parameters for mainEDT
u32 depc, // number of dependences for mainEDT

ocrEdtDep_t depv[]) // array of parameters for mainEDT

// Put the code for the mainEDT here
ocrShutdown () ; // shut down OCR once all resources have been released
return NULL_GUID;

The details behind the parameters and dependences are described in Chapter 2.

The advantage of the letting the OCR runtime create the main () function is the programmer
doesn’t need to manage the low level details of initializing and cleanly shutting down OCR. This
approach, however, does not work if the programmer wishes to use OCR inside a larger body of
software perhaps as part of a library that must inter-operate with other runtimes. Hence, the OCR
specification defines a set of functions to support this “library mode” of launching an OCR
program.

In non-library mode (using just mainEdt), the arguments (argc and argv) are still
communicated through the use of the first data block passed into mainEdt. The programmer can

Introduction 11

12

use the functions getArgc and getArgv to gain access to these values. These functions are
defined in Chapter 2.

Once the main EDT is launched, it builds a directed acyclic graph of OCR objects (such as other
EDTs) with the post-slot of one OCR object connected to the pre-slots of subsequent OCR objects
(through links). These links imply either explicit events or the implied event associated with the
post-slot of an EDT. When an EDT either completes its task or when it wishes to signal another
OCR object, it sets the associated event to “satisfied” which triggers the event to signal OCR
objects connected to the link associated with the event.

Links can imply control dependences or, when a data block is associated with an event, they imply
data flow between OCR objects. In either case, the events constrain the order of execution of EDTs
typically executing the program as a data flow program.

With the overall structure of an OCR program’s DAG defined, we now turn to the behavior of a
single EDT. An EDT waits until all of its pre-slots are satisfied. At that point the EDT is said to be
runnable. Since an EDT is non-blocking, once it becomes runnable it will run on the OCR platform
at some point in the future. During its run:

e The EDT can only access data blocks that have been passed into through its pre-slots as well as
any data blocks that the EDT creates internally. This means that before an EDT starts, the OCR
runtime knows all the data blocks that will be accessed (minus the ones created within the EDT).

e The EDT can call into the runtime to create and destroy data blocks, EDTs and events.

e The EDT can create links or dependences. This is accomplished through the
ocrAddDependence () function of the OCR API. The following types of dependences can
be created:

Event to Event The destination event’s pre-slot is chained directly to the source event’s
post-slot. For all events but the latch event, this means that the triggering of the source
event will trigger the destination event.

Event to EDT One of the destination EDT’s pre-slot is chained directly to the source event’s
post-slot. When the source event is triggered, this will satisfy the EDT’s pre-slot. If a
data-block was associated with the triggering of the source event, that data-block will be
made available to the EDT in the dependence array in the position of the pre-slot. This is a
“control + data” dependence. In the other case, no data-block will be made available and
the dependence is akin to a pure control dependence.

DB to Event Adding a dependence between a data-block and an event is equivalent to
satisfying the event with the data-block.

DB to EDT Directly adding a dependence between a data-block and an EDT (a pure
data-dependence) immediately satisfies the EDT’s pre-slot and makes the data-block
available to the EDT in the dependence array in the position of the pre-slot.

e The EDT cannot perform any synchronization operations that would cause it to block inside the
body of the task (i.e. the EDT must be non-blocking). The only mechanism for synchronization

OCR - Version 0.9 — September 2014

within OCR is through dependences between OCR objects which are explicit to the runtime.

e When an EDT completes, it releases all resources associated with the EDT. It then satisfies the
event implied by its post-slot and triggers the link to any objects connected to its post-slot. It can
optionally pass a data block along with this event as the return value from the EDT function.

A computation is complete when an EDT terminates the program (e.g. with a call to
ocrShutdown ()). Typically, the EDT that terminates the program is the last EDT in the
program DAG, and the programmer has assured that all other EDTs in the DAG have completed
execution before the function to terminate the program is called.

1.4. Memory Model

A memory model defines the values that can be legally observed in memory when multiple units of
execution (e.g. processes or threads) access a shared memory system. The memory model provides
programmers with the tools they need to understand the state of memory, but it also places
restrictions on what a compiler writer can do (e.g. which aggressive optimizations are allowed) and
restrictions on what a hardware designer is allowed to do (e.g. the behavior of write buffers).

To construct a memory model for OCR, we need to present a few definitions. The operations inside
a task execute in a non-blocking manner. The order of such operations are defined by the
sequenced-before relations defined by the host C programming language.

When multiple EDTs are running, they execute asynchronously. Usually, a programmer can make
few assumptions about the relative orders of operations in two different EDTs. At certain points in
the execution of EDTs, however, the OCR program may define ordering constraints. These
constraints define synchronized-with relations.

The “transitive closure” of sequenced-before operations inside each of two EDTs combined with
the synchronized-with relations between two EDTs defines a happens-before relationship. For
example:

e if A is sequenced before B in EDT1
e if C is sequenced before D in EDT2

e and B is synchronized with C in EDT2

then A happens before D.
These basic concepts are enough to allow us to define the memory model for OCR.

OCR provides a relatively simple memory model. Before an EDT can read or write a data block, it
must first acquire the data block. This is not an exclusive relationship by which we mean it is
possible for multiple EDTs to acquire the same data block at the same time. hen an EDT has
finished with a data block and it is ready to expose any modifications to the data block to other
EDTs, it can release the data block.

Introduction 13

14

Any function in the OCR runtime that releases a data block must assure that all loads
and stores to the data block occur before the data block is released and that the release
must complete before the function returns.

The only way to establish a synchronized-with relation is through the behavior of events. If the
pre-slot EDT?2 is connected to the post-slot of EDT1, then EDT2 waits for the post-slot of EDT1 to
trigger. Therefore, the satisfy event from EDT1 synchronizes-with the triggering of the pre-slot of
EDT2. We can establish a happens-before relationship between the two EDTs if we define the
following rule for OCR.

An EDT must complete the release of all of its resources before it marks its post-event
as satisfied.

An EDT can use data blocks to satisfy events in the body of the task in addition to the event
associated with its post-slot. We can reason about the behavior of the memory model and establish
happens-before relationship if we define the following rule.

If an EDT uses a DB to satisfy an event, all writes to that data block from the EDT
must complete before the event is triggered.

Without this rule we can not assume a release operation followed by satisfying an event defines a
sequenced-before relationship that can be used to establish a happens before relation.

The core idea in the OCR memory model is that happens before relationships are defined in terms
of events (the only synchronization operation in OCR) and the release of OCR objects (such as data
blocks). This is an instance of a Release Consistency memory model which has the advantage of
being relatively straightforward to apply to OCR programs.

The safest course for a programmer is to write programs that can be defined strictly in terms of the
release consistency rules. OCR, however, lets a programmer construct code where two or more
EDTs can write to a single data block at the same time (or more precisely, the two EDTs can issue
writes in an unordered manner). This results in a data race in that the value that is ultimately stored
in memory depends on how a system chooses to schedule operations from the two EDTs.

Most modern parallel programming languages state that a program that has a data race® is an illegal

program and the results produced by such a program are undefined. These programming models
then define a complex set of synchronization constructs and atomic variables so a programmer has
the tools needed to write race-free programs. OCR, however, does not provide any synchronization
constructs beyond the behavior of events. This is not an oversight. Rather, this restricted
synchronization model helps OCR to better scale on a wider range of parallel computers.

OCR, therefore, allows a programmer to write legal programs that may potentially contain data
races. OCR deals with this situation by adding two more rules. In both of these rules, we say that
address range A and B are non-overlapping if and only if the set A; of 8-byte aligned 8-byte words
fully covering A and the set B; of 8-byte aligned 8-byte words fully covering B do not overlap. For
example, addresses 0x0 and 0x7 overlap (assuming byte level addressing) whereas 0x0 and 0x8 do

A data race occurs when loads and stores by two units of execution operate on overlaping memory regions without a
synchronized-with relation to order them

OCR - Version 0.9 — September 2014

not. The first rule deals with the situation of multiple EDTs writing to a data block with
non-overlapping address ranges.

If two EDTs write to a single data block without a well defined order, if the address
ranges of the writes do not overlap, the correct result of each write operation must
appear in memory.

This behavior may seem obvious making it trivial for a system to support. However, when
addresses are distinct but happen to share the same cache lines or when aggressive optimization of
writes occur through write buffers, an implementation could mask the updates from one of the
EDTs if this rule were not defined in the OCR specification.

The last rule addresses the case of overlapping address ranges.

If two EDTs write to a single data block without a well defined order, if the address
ranges of the writes overlap, the results written to memory must correspond to one of
the legal interleavings of statements from the two EDTs at an 8-byte aligned
granularity. Overlapping writes to non-aligned or smaller than 8-byte granularity are
not defined.

This is the well known sequential consistency rule. It states that the actual result appearing in
memory may be nondeterministic, but it will be well defined and it will correspond to values from
one EDT or the other.

Release consistency remains the safest and best approach to use in writing OCR programs. It is
conceivable that some of the more difficult rules may be relaxed in future versions of OCR
(especially the sequential consistency rule), but the relaxed consistency model will almost
assuredly always be supported by OCR.

1.5. Organization of this document

The remainder of this document is structured as follows:

o Chapter 2 contains the OCR reference manual generated from the OCR source code by the
Doxygen package.

e Appendix A contains a set of pedagogical examples.

e Appendix B documents the “change history” for OCR and this specification.

Introduction 15

2. OCR API Documentation

2.1. Module Index

2.1.1. Modules

Here is a list of all modules:

Data-block management for OCR
Event Driven Task API
Event Management for OCR
Limited "standard" APIfor OCR
OCRdependence APIs
OCR extensions/experimental APIs,
Affinity eXtension e e e e
Interface for runtimes builtontopof OCR
OCRused as alibrary extension
Supportcalls for OCR
Types and constantsused in OCR
General typesand constants Lol e e e e
Types and constants associated with EDTs
Types and constants associated with datablocks
Types and constants associated withevents

2.2. Data Structure Index

2.2.1. Data Structures

Here are the data structures with brief descriptions:

ocrConfig_t

Data-structure containing the configuration parameters for the runtime
ocrEdtDep_t

Type of values passed to an EDT on each pre-slot

16

2.3. Module Documentation

2.3.1. OCR extensions/experimental APIs

Tuning language API for OCR. This is an experimental feature.

Modules

o Affinity extension

This extension is primarily used for the distributed implementation of OCR to specify better placement
for EDTs and data blocks.

o Interface for runtimes built on top of OCR

Contains additional APIs to enable other runtimes to be developed on top of OCR.

e OCR used as a library extension

OCR APIs to use OCR in a library mode.

2.3.1.1. Detailed Description

Tuning language API for OCR. This is an experimental feature. These APIs are experimental or
extensions that are not necessarily supported on all platforms. They are subject to change

2.3.2. Affinity extension

This extension is primarily used for the distributed implementation of OCR to specify better
placement for EDTs and data blocks.

Enumerations

o enum ocrAffinityKind { AFFINITY_CURRENT, AFFINITY_PD, AFFINITY_PD_MASTER }

Types of affinities.

Functions

e u8 ocrAffinityCount (ocrAffinityKind kind, u64 xcount)
Returns a count of affinity GUIDs of a particular kind.

OCR API Documentation 17

18

o u8 ocrAffinityGet (ocrAffinityKind kind, u64 xcount, ocrGuid_t *affinities)

Gets the affinity GUIDs of a particular kind. The ’affinities’ array must have been previously allocated
and big enough to contain ’count’ GUIDs.

o u8 ocrAffinityGetCurrent (ocrGuid_t *affinity)

Returns an affinity the currently executing EDT is affinitized to.

2.3.2.1. Detailed Description

This extension is primarily used for the distributed implementation of OCR to specify better
placement for EDTs and data blocks.

2.3.2.2. Enumeration Type Documentation

2.3.2.2.1. enum ocrAffinityKind Types of affinities.

You can query for the affinities corresponding to policy domains as well as for your own affinities

Enumerator

AFFINITY_CURRENT Affinities of the current EDT
AFFINITY_PD Affinities of the policy domains. You can then affinitize EDTs and data
blocks to these affinities in the creation calls

AFFINITY_PD_MASTER Runtime reserved (do not use)
Definition at line 52 of file ocr-affinity.h.

2.3.2.3. Function Documentation

2.3.2.3.1. u8 ocrAffinityCount (ocrAffinityKind kind, u64 « count) Returns a count of
affinity GUIDs of a particular kind.
Parameters
in kind | The affinity kind to query for. See ocrAffinityKind
out count | Count of affinity GUIDs of that kind in the system
Returns

a status code
e 0: successful

2.3.2.3.2. u8 ocrAffinityGet (ocrAffinityKind kind, u64 x count, ocrGuid_t = affinities
) Gets the affinity GUIDs of a particular kind. The ’affinities’ array must have been previously

OCR - Version 0.9 — September 2014

allocated and big enough to contain ’count’ GUIDs.

Parameters
in kind | The affinity kind to query for. See ocrAffinityKind
in, out count | As input, requested number of elements; as output the actual
number of elements returned

out affinities | Affinity GUID array
Returns

a status code

e 0: successful
2.3.2.3.3. u8 ocrAffinityGetCurrent (ocrGuid_t « affinity) Returns an affinity the

currently executing EDT is affinitized to.

An EDT may have multiple affinities. The programmer should rely on ocrAffinityCount() and

ocrAffinityGet() to query all affinities.
Parameters

| out | affinity | One affinity GUID for the currently executing EDT

Returns

a status code
e 0: successful

2.3.3. OCR used as a library extension

OCR APIs to use OCR in a library mode.

Data Structures

e struct ocrConfig_t
Data-structure containing the configuration parameters for the runtime.
o void ocrlnit (ocrConfig_t *ocrConfig)

Bring up the OCR runtime.
e void ocrParseArgs (int argc, const char *argv[], ocrConfig_t xocrConfig)

Parses the arguments passed to main and extracts the relevant information to initialize OCR.

e u8 ocrFinalize ()

Prepares to tear down the OCR runtime.

OCR API Documentation

19

20

e ocrGuid_t ocrWait (ocrGuid_t outputEvent)

Waits on the satisfaction of an event.

2.3.3.1. Detailed Description

OCR APIs to use OCR in a library mode. OCR is designed to be used in a standalone manner
(using mainEdt) but can also be called from a traditional main function. These functions enable the
programmer to startup and shutdown the OCR runtime

Describes the OCR as library API

When OCR is used as a library, the user need to explicitly bring up and tear down the runtime using
the APIs provided here.

2.3.3.2. Function Documentation

2.3.3.2.1. u8 ocrFinalize () Prepares to tear down the OCR runtime.

This call prepares the runtime to be torn-down. This call will only return after the OCR program
completes (ie: after the program calls ocrShutdown()).

Returns

the status code of the OCR program:
e (: clean shutdown, no errors
e non-zero: user provided error code to ocrAbort()

2.3.3.2.2. void ocrlnit (ocrConfig_t x ocrConfig) Bring up the OCR runtime.

This function needs to be called to bring up the runtime. It should be called once for each runtime
that needs to be brought up.

Parameters
| in | ocrConfig | Configuration parameters to bring up the runtime ‘

2.3.3.2.3. void ocrParseArgs (int arge, const char « argv[], ocrConfig_t + ocrConfig
) Parses the arguments passed to main and extracts the relevant information to initialize OCR.

This should be called prior to ocrlnit() to populate the ocrConfig_t variable needed by ocrInit().

Parameters
in argc | The number of elements in argv
in argv | Array of char x argumetns.

OCR - Version 0.9 — September 2014

in, out ocrConfig | Pointer to an ocrConfig ocrParseArgs will populate. ocrConfig
needs to have already been allocated

2.3.3.2.4. ocrGuid_t ocrWait (ocrGuid_t outputEvent) Waits on the satisfaction of an
event.

Warning

The event waited on must be a persistent event (in other words, not a LATCH or ONCE event).
This call may be slow and inefficient. It is meant only to call OCR from sequential code and
should be avoided in a pure OCR program

Parameters

| in | outputEvent | GUID of the event to wait on \

Returns

The GUID of the data block on the post-slot of the waited-on event

2.3.4. Interface for runtimes built on top of OCR

Contains additional APIs to enable other runtimes to be developed on top of OCR.
e ocrGuid_t ocrElsUserGet (u8 offset)

Get the value stored at ’offset’ in the current EDT’s local storage.

e void ocrElsUserSet (u8 offset, ocrGuid_t data)

Set the value stored at ’offset in the current EDT’s local storage.

e ocrGuid_t currentEdtUserGet ()

Get the GUID of the calling EDT.
e u64 ocrNbWorkers ()

Get the number of workers the runtime currently uses.

e ocrGuid_t ocrCurrentWorkerGuid ()

Get the GUID of the calling worker.
e u8 ocrInformLegacyCodeBlocking ()

Inform the OCR runtime that the currently executing thread is logically blocked.

OCR API Documentation 21

2.3.4.1. Detailed Description

Contains additional APIs to enable other runtimes to be developed on top of OCR. Defines
additional API for runtime implementers

Warning

These APIs are not fully supported at this time and should be used with caution

2.3.4.2. Function Documentation

2.3.4.2.1. ocrGuid_t currentEdtUserGet () Get the GUID of the calling EDT.
Returns

the GUID of the calling EDT or NULL_GUID if this code is running outside an EDT (runtime
code)

2.3.4.2.2. ocrGuid_t ocrCurrentWorkerGuid () Get the GUID of the calling worker.
Note

Exposed as a convenience to runtime implementors, may be deprecated anytime.
Returns

the GUID of the calling worker

2.3.4.2.3. ocrGuid_t ocrElsUserGet (u8 offset) Get the value stored at ’offset’ in the
current EDT’s local storage.

Each EDT can store some information in its metadata in a way akin to TLS. This call retrieves this
information from the ELS. The programmer can set this information using ocrElsUserSet()
Parameters

| in | offset | Offset (in bytes) in the ELS to fetch

Returns
the value at the requested offset or NULL_GUID if there is no ELS support
Warning

Must be called from within an EDT code.

2.3.4.2.4. void ocrElsUserSet (u8 offset, ocrGuid_t data) Set the value stored at
“offset in the current EDT’s local storage.

22 OCR - Version 0.9 — September 2014

See Also

ocrElsUserGet()

Parameters
in offset | Offset (in bytes) in the ELS to set
in data | Value to write at that offset

Note

This is a no-op if there is no ELS support

2.3.4.2.5. u8 ocrinformLegacyCodeBlocking () Inform the OCR runtime that the
currently executing thread is logically blocked.
Note

Very experimental

2.3.4.2.6. u64 ocrNbWorkers () Get the number of workers the runtime currently uses.
Note

Exposed as a convenience to runtime implementors, may be deprecated anytime.

Returns

the number of workers

2.3.5. Data-block management for OCR

Data block management API for OCR.

Functions

e u8 ocrDbCreate (ocrGuid_t xdb, void xxaddr, u64 len, ul6 flags, ocrGuid_t affinity,
ocrlnDbAllocator_t allocator)

Request the creation of a data block.

e u8 ocrDbDestroy (ocrGuid_t db)

Request for the destruction of a data block.
e u8 ocrDbRelease (ocrGuid_t db)

Release the DB (indicates that the EDT no longer needs to access it)
e u8 ocrDbMalloc (ocrGuid_t guid, u64 size, void *+xaddr)

OCR API Documentation

23

Allocates memory inside a data block in a way similar to malloc.

e u8 ocrDbMallocOffset (ocrGuid_t guid, u64 size, u64 xoffset)

Allocates memory inside a data block in a way similar to malloc.

e u8 ocrDbFree (ocrGuid_t guid, void xaddr)

Frees memory allocated through ocrDbMalloc()
e u8 ocrDbFreeOffset (ocrGuid_t guid, u64 offset)

Frees memory allocated through ocrDbMallocOlffset()

e u8 ocrDbCopy (ocrGuid_t destination, u64 destinationOffset, ocrGuid_t source, u64
sourceOffset, u64 size, u64 copyType, ocrGuid_t xcompletionEvt)

Copies data between two data blocks in an asynchronous manner.

2.3.5.1. Detailed Description

Data block management API for OCR. Describes the data block API for OCR

Data blocks are the only form of non-ephemeral storage and are therefore the only way to "share"
data between EDTs. Conceptually, data blocks are contiguous chunks of memory that have a start
address and a size. They also have the following characteristics:

e all memory within the data block is accessible from the start-address using an offset (ie:
addresses [start-address; start-address+size[uniquely and totally address the entire data-block)

e non-overlaping with other distinct data blocks

e the pointer to the start of a data block is only valid between the acquire of the data-block
(implicit when the EDT starts) and the corresponding ocrDbRelease call (or the end of the EDT,
whichever comes first)

2.3.5.2. Function Documentation

2.3.5.2.1. u8 ocrDbCopy (ocrGuid_t destination, u64 destinationOffset, ocrGuid_t
source, u64 sourceOffset, u64 size, u64 copyType, ocrGuid_t + completionEvt)
Copies data between two data blocks in an asynchronous manner.

This call will trigger the creation of an EDT which will perform a copy from a source data block
into a destination data block. Once the copy is complete, the event with GUID ’completionEvt”
will be satisfied. That event will carry the destination data block.

The type of GUID passed in as source also determines the starting point of the copy:

e if it is an event GUID, the EDT will be available to run when that event is satisfied. The data
block carried by that event will be used as the source data block

24 OCR - Version 0.9 — September 2014

e if it is a data block GUID, the EDT is immediately available to run and will be used as the source

data block
Parameters
in destination | Data block to copy to (must already be created and large enough to
contain copy)
in destination- | Offset from the start of the destination data block to copy to (in
Offset | bytes)
in source | Data block to copy from
in sourceOffset | Offset from the start of the destination data block to copy from (in
bytes)
in size | Number of bytes to copy
in copyType | Reserved
out completionEvt | GUID of the event that will be satisfied when the copy is successful
Returns

a status code
e 0: successful (note that this does not mean that the copy was done)

Note

EINVAL: Invalid values for one of the arguments
EPERM: Overlapping data blocks
ENOMEM: Destination too small to copy into or source too small to copy from

This call is not supported at this time.

2.3.5.2.2. u8 ocrDbCreate (ocrGuid_t « db, void «« addr, u64 len, ulé6 flags,
ocrGuid_t affinity, ocrInDbAllocator_t allocator) Request the creation of a data block.

On successful creation, the returned memory location will be 8 byte aligned. ocrDbCreate also
implicitly acquires the data-block for the calling EDT unless DB_PROP_NO_ACQUIRE is

specified
Parameters
out db | On successful creation, contains the GUID for the newly created
data block. Will be NULL if the call fails
out addr | On successful creation, contains the 64 bit address if DB_PROP_N-
O_ACQUIRE is not specified. NULL otherwise
in len | Size in bytes of the block to allocate.
in flags | Flags to create the data block. Currently, the following properties

are supported:

e DB_PROP_NONE, indicates no specific properties

e DB_PROP_NO_ACQUIRE, the DB will be created but not
acquired (addr will be NULL).

OCR API Documentation 25

26

in, out affinity | GUID to indicate the affinity container of this DB. This is currently
unsupported and NULL_GUID should be passed

in allocator | Allocator to use to allocate within the data block. Supported values
are given by ocrInDbAllocator_t

Returns

a status code:

- @ successful

ENXIO : affinity is invalid

ENOMEM: allocation failed because of insufficient memory

EINVAL: invalid arguments (flags or something else)

EBUSY : the agent that is needed to process this request is busy. Retry is possible.
EPERM : trying to allocate in an area of memory that is not allowed

Note

The default allocator (NO_ALLOC) will disallow calls to ocrDbMalloc and ocrDbFree. If an
allocator is used, part of the data block’s space will be taken up by the allocator’s management
overhead

2.3.5.2.3. u8 ocrDbDestroy (ocrGuid_t db) Request for the destruction of a data block.

The EDT does not need to have acquired the data block to destroy it. ocrDbDestroy() will request
destruction of the DB but the DB will only be destroyed once all other EDTs that have acquired it
release it (either implicitly at the end of the EDT or with an explicit ocrDbRelease() call).

Note
If the EDT has acquired this DB, this call implicitly releases the DB.

Once a data block has been marked as "to-be-destroyed’ by this call, the following operations on
the same data block will result in an error:

e calling ocrDbDestroy() again (will return EPERM) The following operations will produce
undefined behavior:

— accessing the actual location of the data block (through a pointer)

— acquiring the data block (implicit on EDT start)
Parameters

| in | db | Data block to destroy

Returns

a status code:
e (: successful
e EPERM: db was already destroyed

OCR - Version 0.9 — September 2014

e EINVAL: db does not refer to a valid data-block

2.3.5.2.4. u8 ocrDbFree (ocrGuid_t guid, void x addr) Frees memory allocated through
ocrDbMalloc()

Parameters

in guid | Data block to free from

in addr | Address to free (as returned by ocrDbMalloc())
Returns

a status code
e (: successful
e EINVAL: Data block does not support allocation or addr is invalid

Warning

The address ’addr’ must have been allocated before the release of the containing data block.
Use ocrDbFreeOffset if allocating and freeing across EDTs for example

Note

This call is not supported at this time.

2.3.5.2.5. u8 ocrDbFreeOffset (ocrGuid_t guid, u64 offset) Frees memory allocated
through ocrDbMallocOffset()
Parameters
in guid | Data block to free from
in offset | Offset to free (as returned by ocrDbMallocOffset())
Returns

a status code
e (: successful
e EINVAL: Data block does not support allocation or offset is invalid

Note

This call is not supported at this time.

2.3.5.2.6. u8 ocrDbMalloc (ocrGuid_t guid, u64 size, void «x addr) Allocates
memory inside a data block in a way similar to malloc.

This will allocate a chunk of size ’size’ and return its address in addr’ using the memory available
in the data block. This call, and others related to it, allow you to use a data block in a heap-like
fashion

OCR API Documentation 27

28

Parameters

in guid | Data block to malloc from
in size | Size of the chunk to allocate
out addr | Address to the chunk allocated or NULL on failure
Returns

a status code

e (: successful

e ENOMEM: Not enough space to allocate

e EINVAL: Data block does not support allocation

Warning
The address returned is valid only for the current acquire of the data block (ie: it is an absolute
address). Use ocrDbMallocOffset() to get a more stable ’pointer’

Note

This call is not supported at this time.

2.3.5.2.7. u8 ocrDbMallocOffset (ocrGuid_t guid, u64 size, u64 x offset) Allocates
memory inside a data block in a way similar to malloc.

This call is very similar to ocrDbMalloc except that it returns the location of the memory allocated
as an offset from the start of the data block. This is a more preferred method as this allows the
returned pointer to be used across EDTs (provided they all have access to the data block).

Parameters

in guid | Data block to malloc from

in size | Size of the chunk to allocate

out offset | Offset of the chunk allocated in the data block
Returns

a status code

e 0: successful

e ENOMEM: Not enough space to allocate

e EINVAL: Data block does not support allocation

Note

This call is not supported at this time.

2.3.5.2.8. u8 ocrDbRelease (ocrGuid_t db) Release the DB (indicates that the EDT no
longer needs to access it)

This call can be used to indicate an early release of the data block (ie: it is not needed in the rest of
the EDT). Once the data block is released, pointers that were previously associated with it are

OCR - Version 0.9 — September 2014

invalid and should not be used to access the data.
The functionality of ocrDbRelease() is implicitly contained in:
e ocrDbDestroy()

e EDT exit
Note

ocrDbRelease should only be called once at most.

Parameters

| in | db | Data block to release

Returns

a status code:

e 0: successful

e EINVAL: db does not refer to a valid data block

e EACCES: EDT has not acquired the data block and therefore cannot release it

2.3.6. Event Management for OCR

OCR APIs for EDTs, events and dependences.

Functions

e u8 ocrEventCreate (ocrGuid_t *guid, ocrEventTypes_t eventType, bool takesArg)

Creates an event.

u8 ocrEventDestroy (ocrGuid_t guid)

Explicitly destroys an event.

u8 ocrEventSatisfy (ocrGuid_t eventGuid, ocrGuid_t dataGuid)

Satisfy the first pre-slot of an event and optionally pass a data block along to the event.
u8 ocrEventSatisfySlot (ocrGuid_t eventGuid, ocrGuid_t dataGuid, u32 slot)

Satisfy the specified pre-slot of an event.

2.3.6.1. Detailed Description

OCR APIs for EDTs, events and dependences. Describes the event management APIs for OCR

OCR API Documentation

29

2.3.6.2. Function Documentation

2.3.6.2.1. u8 ocrEventCreate (ocrGuid_t * guid, ocrEventTypes_t eventType, bool
takesArg) Creates an event.

This function creates a new programmer-managed event identified by the returned GUID.

Parameters
out guid | The GUID created by the runtime for the new event
in eventType | The type of event to create. See ocrEventTypes_t
in takesArg | True if this event will potentially carry a data block on satisfaction,
false othersie
Returns

a status code

e 0: successful

e ENOMEM: If space cannot be found to allocate the event

e EINVAL.: If eventType was malformed or is incompatible with takesArg

2.3.6.2.2. u8 ocrEventDestroy (ocrGuid_t guid) Explicitly destroys an event.

Events such as ONCE or LATCH are automatically destroyed once they trigger; others, however,
need to be explicitly destroyed by the programmer. This call enables this.

Parameters

| in | guid | The GUID of the event to destroy

Returns

a statuc code
e 0: successful
e EINVAL.: If guid does not refer to a valid event to destroy

2.3.6.2.3. u8 ocrEventSatisfy (ocrGuid_t eventGuid, ocrGuid_t dataGuid) Satisfy
the first pre-slot of an event and optionally pass a data block along to the event.

Satisfying the pre-slot of an event will potentially trigger the satisfaction of its post-slot depending
on its trigger rule:

e ONCE, IDEM and STICKY events will satisfy their post-slot upon satisfaction of their pre-slot
e LATCH events have a more complex rule; see ocrEventTypes_t.

During satisfaction, the programmer may associate a data block to the pre-slot of the event.
Depending on the event type, that data block will be passed along to its post-slot:

o ONCE, IDEM and STICKY events will pass along the data block to their post-slot

30 OCR - Version 0.9 — September 2014

o L ATCH events ignore any data block passed

Parameters

in eventGuid | GUID of the event to satisfy

in dataGuid | GUID of the data block to pass along or NULL_GUID
Returns

a status code

e 0: successful

o ENOMEM: If there is not enough memory. This is usually caused by a programmer error

e EINVAL: If the GUIDs do not refer to valid events/data blocks

o ENOPERM: If the event has already been satisfied or if the event does not take an argument
and one is given or if the event takes an argument and none is given

An event satisfaction without the optional data block can be viewed as a pure control dependence
whereas one with a data block is a control+data dependence

Note

On satisfaction, a ONCE event will pass the GUID of the optionaly attached data block to all
OCR objects waiting on it at that time and the event will destroy itself. IDEM and STICKY
events will pass the GUID of the optionaly attached data block to all OCR objects waiting on it
at that time as well as any new objects linked to it until the event is destroyed.

2.3.6.2.4. u8 ocrEventSatisfySlot (ocrGuid_t eventGuid, ocrGuid_t dataGuid, u32
slot) Satisfy the specified pre-slot of an event.

This call is used primarily for LATCH events. ocrEventSatisfySlot(eventGuid, dataGuid, 0) is
equivalent to ocrEventSatisfy(eventGuid, dataGuid)
See Also

ocrEventSatisfy()

Parameters

in eventGuid | GUID of the event to satisfy
in dataGuid | GUID of the data block to pass along or NULL_GUID
in slot | Pre-slot on the destination event to satisfy

Returns

a status code

0: successful

ENOMEM: If there is not enough memory. This is usually caused by a programmer error
EINVAL.: If the GUIDs do not refer to valid events/data blocks

ENOPERM: If the event has already been satisfied or if the event does not take an argument
and one is given or if the event takes an argument and none is given

OCR API Documentation 31

32

2.3.7. Event Driven Task API

APIs to manage EDTs in OCR.

Macros

o #define ocrEdtTemplateCreate(guid, funcPtr, paramc,
depc) ocrEdtTemplateCreate_internal((guid), (funcPtr), (paramc), (depc), NULL)

Creates an EDT template.

Functions

e u8 ocrEdtTemplateCreate_internal (ocrGuid_t xguid, ocrEdt_t funcPtr, u32 paramc, u32 depc,
const char xfuncName)

Creates an EDT template.
e u8 ocrEdtTemplateDestroy (ocrGuid_t guid)

Destroy an EDT template.

e u8 ocrEdtCreate (ocrGuid_t *guid, ocrGuid_t templateGuid, u32 paramc, u64 xparamv, u32
depc, ocrGuid_t xdepv, ul6 properties, ocrGuid_t affinity, ocrGuid_t *outputEvent)

Creates an EDT instance from an EDT template.
e u§ ocrEdtDestroy (ocrGuid_t guid)

Destroy an EDT.

2.3.7.1. Detailed Description

APIs to manage EDTs in OCR.

2.3.7.2. Macro Definition Documentation

2.3.7.2.1. #define ocrEdtTemplateCreate(guid, funcPtr, paramc, depc
) ocrEdtTemplateCreate_internal((guid), (funcPtr), (paramc), (depc), NULL) Creates an
EDT template.

See Also
ocrEdtTemplateCreate_internal()

Definition at line 174 of file ocr-edt.h.

OCR - Version 0.9 — September 2014

2.3.7.3. Function Documentation

2.3.7.3.1. u8 ocrEdtCreate (ocrGuid_t * guid, ocrGuid_t templateGuid, u32 paramc,
u64 « paramv, u32 depc, ocrGuid_t « depv, ul6 properties, ocrGuid_t affinity,
ocrGuid_t « outputEvent) Creates an EDT instance from an EDT template.

Parameters
out guid | GUID of the newly created EDT type

in templateGuid | GUID of the template to use to create this EDT

in paramc | Number of parameters (64-bit values). Set to EDT_PARAM_DEF
if you want to use the "paramc’ value specified at the time of the
EDT template’s creation

in paramy | 64-bit values for the parameters. This must be an array of paramc
64-bit values. These values are copied in. If paramc is 0, this must
be NULL.

in depc | Number of dependences for this EDT. Set to EDT_PARAM_DEF

if you want to use the ’depc’ value specified at the time of the EDT
template’s creation

in depv | Values for the GUIDs of the dependences (if known). Note that all
dependences added by this method will be in the DB_DEFAULT-
_MODE. Use ocrAddDependence() to add unknown dependences
or dependences with another mode. This pointer should either be
NULL or point to an array of size "depc’.

in properties | Used to indicate if this is a finish EDT (see EDT_PROP_FINISH).
Use EDT_PROP_NONE as a default value.
in affinity | Affinity container for this EDT. Can be NULL_GUID. This is
currently an experimental feature
in, out outputEvent | If not NULL on input, on successful return of this call, this will

return the GUID of the event associated with the post-slot of the E-
DT. For a FINISH EDT, the post-slot of this event will be satisfied
when the EDT and all of the child EDTs have completed execution.
For a non FINISH EDT, the post-slot of this event will be satisfied
when the EDT completes execution and will carry the data block
returned by the EDT. If NULL, no event will be associated with the
EDT’s post-slot

Returns

a status code
o 0: successful

2.3.7.3.2. u8 ocrEdtDestroy (ocrGuid_t guid) Destroy an EDT.

EDTs are normally destroyed after they execute. This call is provided if an EDT is created and the
programmer later realizes that it will never become runable.

OCR API Documentation 33

Parameters
| in | guid | GUID of the EDT to destroy

Returns

a status code
e 0: successful

2.3.7.3.3. u8 ocrEdtTemplateCreate_internal (ocrGuid_t * guid, ocrEdt_t funcPtr,
u32 paramc, u32 depc, const char « funcName) Creates an EDT template.

An EDT template encapsulates the EDT function and, optionally, the number of parameters and
arguments that EDTs instanciated from this template will use. It needs to be created only once for
each function that will serve as an EDT; reusing the same template from multiple EDTs of the same
type may improve performance as this allows the runtime to collect information about multiple
instances of the same type of EDT.

Parameters
out guid | Runtime created GUID for the newly created EDT Template
in funcPtr | EDT function. This function must be of type ocrEdt_t.
in paramc | Number of parameters that the EDTs will take. If not known or
variable, this can be EDT_PARAM_UNK
in depc | Number of pre-slots that the EDTs will have. If not known or
variable, this can be EDT_PARAM_UNK
in JuncName | User-specified name for the template (used in debugging)
Returns

a status code:
e 0: successful
e ENOMEM: No memory available to allocate the template

Note

You should use ocrEdtTemplateCreate() as opposed to this internal function. If
OCR_ENABLE_EDT_ NAMING is enabled, the C name of the function will be used as
funcName.

2.3.7.3.4. u8 ocrEdtTemplateDestroy (ocrGuid_t guid) Destroy an EDT template.

This function can be called if no further EDTs will be created based on this template

Parameters
| in | guid | GUID of the EDT template to destroy

Returns

a status code

34 OCR - Version 0.9 — September 2014

e 0: successful

2.3.8. OCR dependence APIs

APIs to manage OCR dependences.

Functions
e u8 ocrAddDependence (ocrGuid_t source, ocrGuid_t destination, u32 slot, ocrDbAccessMode_t

mode)

Adds a dependence between OCR objects:

2.3.8.1. Detailed Description

APIs to manage OCR dependences.

2.3.8.2. Function Documentation

2.3.8.2.1. u8 ocrAddDependence (ocrGuid_t source, ocrGuid_t destination, u32
slot, ocrDbAccessMode_t mode) Adds a dependence between OCR objects:

The following dependences can be added:

e Event to Event: The sink event’s pre-slot will become satisfied upon satisfaction of the source
event’s post-slot. Any data block associated with the source event’s post-slot will be associated
with the sink event’s pres-slot.

e Event to EDT : Upon satisfaction of the source event’s post-slot, the pre-slot of the EDT will be
satisfied. When the EDT runs, the data block associated with the post-slot of the event will be
passed in through the depv array. This represents a control or a control+data dependence.

e DB to Event : ocrAddDependence(db, evt, slot) is equivalent to ocrSatisfySlot(evt, db, slot)

e DB to EDT : This represents a pure data dependence. Adding a dependence between a data
block and an EDT immediately satisfies the pre-slot of the EDT. When the EDT runs, the data
block will be passed in through the depv array.

Parameters
in source | GUID of the source
in destination | GUID of the destination
in slot | Index of the pre-slot on the destination OCR object
in mode | Access mode of the destination for the data block. See ocrDb-
AccessMode t.

OCR API Documentation 35

Returns

a status code

e (: successful

e EINVAL: The slot number is invalid

e ENOPERM: The source and destination GUIDs cannot be linked with a dependence

2.3.9. Limited "standard" API for OCR

Limited "standard" API for OCR.

Macros

e #define ASSERT(a)

ASSERT macro to replace the assert functionality.
e #define VERIFY(cond, format,...)

Primitive method to print FAILURE or PASSED messages.

Functions

e u32 PRINTF (const char xfmt,...)

Console output.

e void _ocrAssert (bool val, const char xfile, u32 line)
Platform independent ’assert’ functionality.
2.3.9.1. Detailed Description

Limited "standard" API for OCR. Describes the limited "standard" API for OCR

This file provides APIs for very limited standard functions that replicate certain libc functions.

Note

This may be extended in the future.

2.3.9.2. Macro Definition Documentation

2.3.9.2.1. #define ASSERT(a) ASSERT macro to replace the assert functionality.

36 OCR - Version 0.9 — September 2014

Parameters
\ in | a | Condition for the assert

Definition at line 75 of file ocr-std.h.

2.3.9.2.2. #define VERIFY(cond, format, ...) Value:

o \
if (! (cond)) {
PRINTF ("FAILURE @ ’%s:%d’ " format, __ FILE_ , _ LINE_ , ## _ VA_ARGS__); \
} oelse |
PRINTF ("PASSED @ ’%s:%d’ " format, _ FILE__, _ LINE__ , ## __VA_ARGS_); \

} \
} while(0);

Primitive method to print FAILURE or PASSED messages.

This macro is used to simply verify if the execution of the program is correct and prints out either a
message starting with PASSED if successful or FAILURE if not

Parameters
in cond | If true, will print a PASSED message.
in format | Message to print (see PRINTF)
in ... | Arguments for message

Definition at line 91 of file ocr-std.h.

2.3.9.3. Function Documentation
2.3.9.3.1. void _ocrAssert (bool val, const char x file, u32 line) Platform
independent "assert’ functionality.

This will cause the program to abort and return an assertion failure. This function should be called
using the ASSERT macro

Parameters
in val | If non-zero, will cause the assertion failure
in file | File in which the assertion failure occured
in line | Line at which the assertion failure occured

2.3.9.3.2. u32 PRINTF (const char « fmt, ...) Console output.

This maps to the typical C-like printf() functionality.
Parameters

OCR API Documentation 37

in fm

~

Format specifier, as per printf(). Not all modifiers are supported.
Standard ones like d, f, s, x, p work properly

in ... | Arguments, as per printf().

Returns

number of characters printed, as per printf().

2.3.10. Types and constants used in OCR

Basic types used throughout the OCR library.

Modules

e General types and constants
e Types and constants associated with EDTs
e Types and constants associated with data blocks

e Types and constants associated with events
o #define OCR_EPERM 1

Error codes for OCR.
e #define OCR_ENOENT 2
e #define OCR_EINTR 4
e #define OCR_EIO 5
e #define OCR_ENXIO 6
e #define OCR_E2BIG 7
e #define OCR_ENOEXEC 8
e #define OCR_EAGAIN 11
e #define OCR_ENOMEM 12
e #define OCR_EACCES 13
e #define OCR_EFAULT 14
e #define OCR_EBUSY 16
e #define OCR_ENODEYV 19
e #define OCR_EINVAL 22
e #define OCR_ENOSPC 28
e #define OCR_ESPIPE 29
e #define OCR_EROFS 30
e #define OCR_EDOM 33

38 OCR - Version 0.9 — September 2014

o #define OCR_ERANGE 34

o #define OCR_ENOSYS 38

o #define OCR_ENOTSUP 95

o #define OCR_EGUIDEXISTS 100
o #define OCR_EACQ 101

e #define OCR_EPEND 102

e #define OCR_ECANCELED 125

2.3.10.1. Detailed Description

Basic types used throughout the OCR library. Collection of types and constants used throughout

the OCR API

2.3.10.2. Macro Definition Documentation

2.3.10.2.1. #define OCR_E2BIG 7 Argument list too long

Definition at line 25 of file ocr-errors.h.

2.3.10.2.2. #define OCR_EACCES 13 Permission denied

Definition at line 29 of file ocr-errors.h.

2.3.10.2.3. #define OCR_EACQ 101 Data block is already acquired

Definition at line 44 of file ocr-errors.h.

2.3.10.2.4. #define OCR_EAGAIN 11 Try again

Definition at line 27 of file ocr-errors.h.

2.3.10.2.5. #define OCR_EBUSY 16 Device or resource busy

Definition at line 31 of file ocr-errors.h.

2.3.10.2.6. #define OCR_ECANCELED 125 Operation canceled

Definition at line 46 of file ocr-errors.h.

OCR API Documentation

39

2.3.10.2.7. #define OCR_EDOM 33 Math argument out of domain of func

Definition at line 37 of file ocr-errors.h.

2.3.10.2.8. #define OCR_EFAULT 14 Bad address

Definition at line 30 of file ocr-errors.h.

2.3.10.2.9. #define OCR_EGUIDEXISTS 100 The object referred to by the given GUID
already exists

Definition at line 43 of file ocr-errors.h.

2.3.10.2.10. #define OCR_EINTR 4 Interrupted OCR runtime call

Definition at line 22 of file ocr-errors.h.

2.3.10.2.11. #define OCR_EINVAL 22 Invalid argument

Definition at line 33 of file ocr-errors.h.

2.3.10.2.12. #define OCR_EIO 5 1/O error

Definition at line 23 of file ocr-errors.h.

2.3.10.2.13. #define OCR_ENODEYV 19 No such device

Definition at line 32 of file ocr-errors.h.

2.3.10.2.14. #define OCR_ENOENT 2 No such file or directory

Definition at line 21 of file ocr-errors.h.

2.3.10.2.15. #define OCR_ENOEXEC 8 Exec format error

Definition at line 26 of file ocr-errors.h.

2.3.10.2.16. #define OCR_ENOMEM 12 Out of memory

Definition at line 28 of file ocr-errors.h.

40 OCR - Version 0.9 — September 2014

2.3.10.2.17. #define OCR_ENOSPC 28 No space left on device

Definition at line 34 of file ocr-errors.h.

2.3.10.2.18. #define OCR_ENOSYS 38 Function not implemented

Definition at line 39 of file ocr-errors.h.

2.3.10.2.19. #define OCR_ENOTSUP 95 Function is not supported

Definition at line 40 of file ocr-errors.h.

2.3.10.2.20. #define OCR_ENXIO 6 No such device or address

Definition at line 24 of file ocr-errors.h.

2.3.10.2.21. #define OCR_EPEND 102 Operation is pending

Definition at line 45 of file ocr-errors.h.

2.3.10.2.22. #define OCR_EPERM 1 Error codes for OCR.
Operation not permitted

Definition at line 20 of file ocr-errors.h.

2.3.10.2.23. #define OCR_ERANGE 34 Math result not representable

Definition at line 38 of file ocr-errors.h.

2.3.10.2.24. #define OCR_EROFS 30 Read-only file system

Definition at line 36 of file ocr-errors.h.

2.3.10.2.25. #define OCR_ESPIPE 29 Tllegal seek

Definition at line 35 of file ocr-errors.h.

OCR API Documentation

41

2.3.11. General types and constants
Macros

#define true 1

#define TRUE 1

#define false O

#define FALSE 0

#define NULL_GUID ((ocrGuid_t)0x0)

A NULL ocrGuid._t.
e #define UNINITIALIZED_GUID ((ocrGuid_t)-2)

An Unitialized GUID (ie: never set)
#define ERROR_GUID ((ocrGuid_t)-1)

An invalid GUID.

Typedefs

o typedef uint64_t u64

e typedef uint32_t u32

e typedef uintl6_tul6

o typedef uint8_t u8

o typedef int64_t s64

o typedef int32_t s32

o typedef int8_t s8

o typedef u8 bool

o typedef intptr_t ocrGuid_t

Type describing the unique identifier of most objects in OCR (EDTs, data-blocks, etc).
2.3.11.1. Detailed Description

2.3.11.2. Typedef Documentation

2.3.11.2.1. typedef intptr_t ocrGuid_t Type describing the unique identifier of most objects
in OCR (EDTs, data-blocks, etc).
GUID type

Definition at line 54 of file ocr-types.h.

42 OCR - Version 0.9 — September 2014

2.3.11.2.2. typedef int32_t s32 32-bit signed integer
Definition at line 33 of file ocr-types.h.

2.3.11.2.3. typedef int64_t s64 64-bit signed integer

Definition at line 32 of file ocr-types.h.

2.3.11.2.4. typedef int8_t s8 8-bit signed integer

Definition at line 34 of file ocr-types.h.

2.3.11.2.5. typedef uint16_t ul6é 16-bit unsigned integer

Definition at line 30 of file ocr-types.h.

2.3.11.2.6. typedef uint32_t u32 32-bit unsigned integer

Definition at line 29 of file ocr-types.h.

2.3.11.2.7. typedef uint64_t u64 64-bit unsigned integer

Definition at line 28 of file ocr-types.h.

2.3.11.2.8. typedef uint8_t u8 8-bit unsigned integer

Definition at line 31 of file ocr-types.h.

2.3.12. Types and constants associated with data blocks
Macros

e #define DB_ACCESS_MODE_MASK 0Ox1E
#define DB_DEFAULT_MODE ((ocrDbAccessMode_t)DB_MODE_ITW)
#define DB_PROP_NONE ((u16)0x0)

#define DB_PROP_NO_ACQUIRE ((u16)0x10)

#define DB_PROP_SINGLE_ASSIGNMENT ((u16)0x20)

OCR API Documentation

43

44

Enumerations

e enum ocrInDbAllocator_t { NO_ALLOC =0 }

Allocators that can be used to allocate within a data block.

e enum ocrDbAccessMode_t { DB_MODE_RO = 0x2, DB_MODE_ITW = 0x4,
DB_MODE_EW = 0x8, DB_MODE_NCR = 0x10 }

Data block access modes.

2.3.12.1. Detailed Description
2.3.12.2. Macro Definition Documentation

2.3.12.2.1. #define DB_ACCESS_MODE_MASK Ox1E Runtime reserved constant
Definition at line 121 of file ocr-types.h.

2.3.12.2.2. #define DB_DEFAULT_MODE ((ocrDbAccessMode_t)DB_MODE_ITW)
Default access mode

Definition at line 122 of file ocr-types.h.

2.3.12.2.3. #define DB_PROP_NO_ACAQUIRE ((u16)0x10) Property for a data block
indicating that the data-block is just being created but does not need to be acquired at the same time
(creation for another EDT)

Definition at line 125 of file ocr-types.h.

2.3.12.2.4. #define DB_PROP_NONE ((u16)0x0) Property for a data block indicating no
special behavior

Definition at line 124 of file ocr-types.h.

2.3.12.2.5. #define DB_PROP_SINGLE_ASSIGNMENT ((u16)0x20) Property for a data
block indicating single-assignment i.e. The user guarantees the data block is written once at
creation time.

Note
This property is experimental and not implemented consistently.

Definition at line 133 of file ocr-types.h.

OCR - Version 0.9 — September 2014

2.3.12.3. Enumeration Type Documentation

2.3.12.3.1. enum ocrDbAccessMode_t Data block access modes.

These are the modes with which an EDT can access a data block. OCR currently supports four
modes:

e Read Only (RO): The EDT is stating that it will only read from the data block. In this mode, the
runtime guarantees that the data block seen by the EDT is not modified by other concurrent
EDTs (in other words, the data block does not change "under you". Any violation of the
"no-write" contract by the program will result in undefined behavior (the write may or may not
be visible to other EDTs depending on the implementation and specific runtime conditions).

e Non-coherent read (NCR): This mode is exactly the same as RO except that the runtime does not
guarantee that the data block will not change.

e Intent to write (ITW) (default mode): The EDT is stating that it may or may not write to the data
block. The user is responsible for synchronizing between EDTs that could potentially write to
the same data block concurrently.

e Exclusive write (EW): The EDT requires that it be the only one accessing the data block. The
runtime will not schedule any other EDT that accesses the same data block in EW or ITW mode
concurrently. This can limit parallelism.

Enumerator

DB _MODE_RO Read-only mode

DB_MODE_ITW Intent-to-write mode (default mode)
DB _MODE_EW Exclusive write mode

DB _MODE_NCR Non-coherent read

Definition at line 114 of file ocr-types.h.

2.3.12.3.2. enum ocrInDbAllocator_t Allocators that can be used to allocate within a data
block.

Data blocks can be used as heaps and allocators can be defined for these heaps. This enum lists the
possible allocators.

Enumerator
NO_ALLOC No allocation is possible with the data block
Definition at line 86 of file ocr-types.h.

2.3.13. Types and constants associated with EDTs

OCR API Documentation 45

46

Data Structures

e struct ocrEdtDep_t

Type of values passed to an EDT on each pre-slot.

Macros

#define EDT_PROP_NONE ((u16) 0x0)
e #define EDT_PROP_FINISH ((ul6) 0x1)
#define EDT_PARAM_UNK ((u32)-1)

Constant indicating that the number of parameters or dependences to an EDT or EDT template is
unknown.

#define EDT_PARAM_DEF ((u32)-2)

Constant indicating that the number of parameters or dependences to an EDT is the same as the one
specified in its template.

Typedefs

o typedef ocrGuid_t(x ocrEdt_t)(u32 paramc, u64 xparamv, u32 depc, ocrEdtDep_t depv[])
Type for an EDT.

2.3.13.1. Detailed Description
2.3.13.2. Macro Definition Documentation
2.3.13.2.1. #define EDT_PARAM_UNK ((u32)-1) Constant indicating that the number of

parameters or dependences to an EDT or EDT template is unknown.

An EDT is created as an instance of an EDT template. The number of parameters or dependences
for the EDT can either be specified when creating the template or when creating the EDT. This
constant indicates that the number of parameters or dependences is still unknown (for example,
when creating the template).

When the EDT is created, the number of parameters and dependences must be known (either
specified in the template or the EDT). In other words, you cannot specify the number of parameters
or dependences to be EDT_PARAM_UNK in both the creation of the template and the EDT.

Definition at line 190 of file ocr-types.h.

OCR - Version 0.9 — September 2014

2.3.13.2.2. #define EDT_PROP_FINISH ((u16) 0x1) Property bits indicating a FINISH

EDT

Definition at line 173 of file ocr-types.h.

2.3.13.2.3. #define EDT_PROP_NONE ((ul6) 0x0) Property bits indicating a regular EDT

Definition at line 172 of file ocr-types.h.

2.3.13.3. Typedef Documentation

2.3.13.3.1. typedef ocrGuid_t(+ ocrEdt_t)(u32 paramc, u64 xparamv, u32 depc,
ocrEdtDep_t depv[]) Type for an EDT.

This is the function prototype for all EDTs.

Parameters
in paramc | Number of non-data block parameters. A parameter is a 64-bit
value known at the creation time of the EDT
in paramv | Values of the *paramc’ parameters
in depc | Number of dependences. This corresponds to the number of pre-
slots for the EDT
in depv | GUIDs and pointers to the data blocks passed to this EDT on its
pre-slots. The GUID may be NULL_GUID if the pre-slot was a
pure control dependence.
Returns

The GUID of a data block to pass along to the pre-slot of the output event optionally
associated with this EDT. NULL_GUID can also be returned.

Definition at line 213 of file ocr-types.h.

2.3.14. Types and constants associated with events

Enumerations

e enum ocrEventTypes_t {
OCR_EVENT_ONCE_T, OCR_EVENT_IDEM_T, OCR_EVENT_STICKY_T,

OCR_EVENT_LATCH_T,
OCR_EVENT_T_MAX }

Types of OCR events.

e enum ocrLatchEventSlot_t { OCR_EVENT_LATCH_DECR_SLOT =0,
OCR_EVENT_LATCH_INCR_SLOT =1}

OCR API Documentation 47

48

Pre-slots for events.

2.3.14.1. Detailed Description
2.3.14.2. Enumeration Type Documentation

2.3.14.2.1. enum ocrEventTypes_t Types of OCR events.

Each OCR event has a type that is specified at creation. The type of the event determines its
behavior, specifically:

e its persistency after it triggers its post-slot
e its trigger rule

e its behavior when satisfied multiple times

Enumerator

OCR_EVENT_ONCE_T A ONCE event simply passes along a satisfaction on its unique
pre-slot to its post-slot. Once all OCR objects linked to its post-slot have been satisfied,
the ONCE event is automatically destroyed.

OCR_EVENT _IDEM_T AnIDEM event simply passes along a satisfaction on its unique
pre-slot to its post-slot. The IDEM event persists until ocrEventDestroy() is explicitly
called on it. It can only be satisfied once and susequent satisfactions are ignored (use
case: BFS, B&B..)

OCR_EVENT _STICKY_T A STICKY event is identical to an IDEM event except that
multiple satisfactions result in an error

OCR_EVENT_LATCH_T A LATCH event has two pre-slots: a INCR and a DECR. Each
slot is associated with an internal monotonically increasing counter that starts at 0. On
each satisfaction of one of the pre-slots, the counter for that slot is incremented by 1.
When both counters are equal (and non-zero), the post-slot of the latch event is triggered.
Any data block passed along its pre-slots is ignored. A LATCH event has the same
persistent as a ONCE event and is automatically destroyed when its post-slot is triggered.

OCR_EVENT_T_MAX This is NOT an event and is only used to count the number of event
types. Its use is reserved for the runtime.

Definition at line 233 of file ocr-types.h.

2.3.14.2.2. enum ocrLatchEventSlot_t Pre-slots for events.

Currently, only the LATCH event has more than one pre-slot.
Enumerator

OCR_EVENT _LATCH DECR SLOT The decrement slot of a LATCH event
OCR_EVENT _LATCH_INCR_SLOT The increment slot of a LATCH event

OCR - Version 0.9 — September 2014

Definition at line 267 of file ocr-types.h.

2.3.15. Support calls for OCR

Top level OCR library file. Include this file in any program making use of OCR. You do not need to
include any other files unless using extended or experimental features present in the extensions/
folder.

Functions

e void ocrShutdown ()

Called by an EDT to indicate the end of an OCR program.
e void ocrAbort (u8 errorCode)

Called by an EDT to indicate an abnormal end of an OCR program.
e u64 getArgc (void *dbPtr)

Retrieves the traditional argc’ value in mainEdt.

e char x getArgv (void xdbPtr, u64 count)

Gets the argument "count’ from the data-block containing the arguments.

2.3.15.1. Detailed Description

Top level OCR library file. Include this file in any program making use of OCR. You do not need to
include any other files unless using extended or experimental features present in the extensions/
folder. Describes general support functions for OCR

2.3.15.2. Function Documentation

2.3.15.2.1. u64 getArgc (void x dbPtr) Retrieves the traditional argc’ value in mainEdt.

When starting, the first EDT (called mainEdt) gets a single data block that contains all of the
arguments passed to the program. These arguments are packed in the following format:

o first § bytes: argc

e argc count of 8 byte values indicating the offsets from the start of the data block to the argument
(ie: the first 8 byte value indicates the offset in bytes to the first argument)

o the arguments (NULL terminated character arrays)

This call will extract the number of arguments (argc)

OCR API Documentation 49

Parameters

\ dbPir | Pointer to the start of the argument data block

Returns

Number of arguments

2.3.15.2.2. charx getArgv (void « dbPtr, w64 count) Gets the argument ’count’ from
the data-block containing the arguments.

See Also

getArgce() for an explanation

Parameters

dbPtr | Pointer to the start of the argument data-block

count | Index of the argument to extract

Returns

A NULL terminated string

2.3.15.2.3. void ocrAbort (u8 errorCode) Called by an EDT to indicate an abnormal end
of an OCR program.

This call will cause the OCR runtime to shutdown with an error code. Calling this with O as an
argument is equivalent to ocrShutdown().

Parameters

\ errorCode \ User defined error code returned to the environment

2.3.15.2.4. void ocrShutdown () Called by an EDT to indicate the end of an OCR
program.

This call will cause the OCR runtime to shutdown
Note

If using the extended ocrWait() call present in ocr-legacy.h, you do not need to use
ocrShutdown() as the termination of the OCR portion will be captured in the finish EDT’s
return

2.4. Data Structure Documentation

50 OCR - Version 0.9 — September 2014

2.4.1. ocrConfig_t Struct Reference

Data-structure containing the configuration parameters for the runtime.
#include <ocr-lib.h>

Data Fields

e int userArgc
e char *x userArgv

e const char * iniFile

2.4.1.1. Detailed Description

Data-structure containing the configuration parameters for the runtime.

The contents of this struct can be filled in by calling ocrParseArgs() or by setting them manually.

The former method is strongly recommended.

Definition at line 49 of file ocr-lib.h.

2.4.1.2. Field Documentation

2.4.1.2.1. const charx ocrConfig_t::iniFile INI configuration file for the runtime

Definition at line 52 of file ocr-lib.h.

2.4.1.2.2. int ocrConfig_t::userArgc Application argc (after having stripped the OCR
arguments)

Definition at line 50 of file ocr-lib.h.

2.4.1.2.3. charxx ocrConfig_t::userArgv Application argv (after having stripped the OCR

arguments)
Definition at line 51 of file ocr-lib.h.
The documentation for this struct was generated from the following file:

e ocr-lib.h

OCR API Documentation

51

52

2.4.2. ocrEdtDep_t Struct Reference

Type of values passed to an EDT on each pre-slot.

#include <ocr-types.h>

Data Fields

e ocrGuid_t guid
e void * ptr

2.4.2.1. Detailed Description

Type of values passed to an EDT on each pre-slot.

An EDT with N pre-slots will receive an array of N elements of this type (its input dependences).
Each dependence has the GUID of the data block passed along that pre-slot as well as a pointer to
the data in the data block.

Note

The GUID passed to the EDT is not the GUID of the event linked to the pre-slot of the EDT
but rather the GUID of the data block that was associated with that event. If no data block was
associated, NULL_GUID is passed.

Definition at line 166 of file ocr-types.h.

2.4.2.2. Field Documentation

2.4.2.2.1. ocrGuid_t ocrEdtDep_t::guid GUID of the data block or NULL_GUID

Definition at line 167 of file ocr-types.h.

2.4.2.2.2. voidx ocrEdtDep_t::ptr Pointer allowing access to the data block or NULL
Definition at line 168 of file ocr-types.h.
The documentation for this struct was generated from the following file:

e ocr-types.h

OCR - Version 0.9 — September 2014

Bibliography

[1] S. Chatterjee. Runtime Systems for Extreme Scale Platforms. PhD thesis, Rice University,
Dec 2013. 6

[2] S. Chatterjee, S. Tasirlar, Z. Budimli¢, V. Cavé, M. Chabbi, M. Grossman, Y. Yan, and
V. Sarkar. Integrating Asynchronous Task Parallelism with MPI. In IPDPS ’13: Proceedings
of the 2013 IEEE International Symposium on Parallel&Distributed Processing. IEEE
Computer Society, 2013. 5

[3] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers and other cilk++
hyperobjects. In Proceedings of the Twenty-first Annual Symposium on Parallelism in
Algorithms and Architectures, SPAA °09, pages 79-90, New York, NY, USA, 2009. ACM. 2

[4] Y. Guo. A Scalable Locality-aware Adaptive Work-stealing Scheduler for Multi-core Task
Parallelism. PhD thesis, Rice University, Aug 2010. 5

[5] Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work-first and help-first scheduling policies for
async-finish task parallelism. In IPDPS ’09: Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing, pages 1-12, Washington, DC, USA, May
2009. IEEE Computer Society. 6

[6] Y. Guo, J. Zhao, V. Cavé, and V. Sarkar. SLAW: a Scalable Locality-aware Adaptive
Work-stealing Scheduler. In IPDPS ’10: Proceedings of the 2010 IEEE International
Symposium on Parallel&Distributed Processing, pages 1-12, Washington, DC, USA, Apr
2010. IEEE Computer Society. 5

[7] S. Imam and V. Sarkar. Cooperative Scheduling of Parallel Tasks with General
Synchronization Patterns. In 28th European Conference on Object-Oriented Programming
(ECOOP), Jul 2014. 9

[8] V. Sarkar et al. DARPA Exascale Software Study report, September 2009. 2

[9] V. Sarkar, W. Harrod, and A. E. Snavely. Software Challenges in Extreme Scale Systems.
January 2010. Special Issue on Advanced Computing: The Roadmap to Exascale. 2

[10] D. Sbirlea, Z. Budimli¢, and V. Sarkar. Bounded memory scheduling of dynamic task graphs.
In Proceedings of the 23rd International Conference on Parallel Architectures and
Compilation, PACT 14, pages 343-356, New York, NY, USA, 2014. ACM. 5

53

54

[11] D. Sbirlea, K. Knobe, and V. Sarkar. Folding of tagged single assignment values for
memory-efficient parallelism. In Proceedings of the 18th International Conference on Parallel
Processing, Buro-Par’ 12, pages 601-613, Berlin, Heidelberg, 2012. Springer-Verlag. 6

[12] D. Sbirlea, A. Sbirlea, K. B. Wheeler, and V. Sarkar. The Flexible Preconditions Model for
Macro-Dataflow Execution. In The 3rd Data-Flow Execution Models for Extreme Scale
Computing Workshop (DFM), Sep 2013. 5

[13] J. Shirako, V. Cave, J. Zhao, and V. Sarkar. Finish Accumulators: a Deterministic Reduction
Construct for Dynamic Task Parallelism. In The 4th Workshop on Determinism and
Correctness in Parallel Programming (WoDet), March 2013. 2

[14] S. Tagirlar and V. Sarkar. Data-Driven Tasks and their Implementation. In ICPP’11:
Proceedings of the International Conference on Parallel Processing, Sep 2011. 5

[15] S. Tasirlar. Scheduling Macro-Dataflow Programs on Task-Parallel Runtime Systems, Apr
2011. 5

[16] P. Unnikrishnan, J. Shirako, K. Barton, S. Chatterjee, R. Silvera, and V. Sarkar. A practical
approach to doacross parallelization. In Proceedings of the 18th International Conference on
Parallel Processing, Euro-Par’ 12, pages 219-231, Berlin, Heidelberg, 2012. Springer-Verlag.
6

[17] N. Vrvilo. Asynchronous Checkpoint/Restart for the Concurrent Collections Model, Aug
2014. MS thesis. 1

[18] S.Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao. Using a "codelet" program
execution model for exascale machines: Position paper. In Proceedings of the Ist
International Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop Era,
EXADAPT ’11, pages 64-69, New York, NY, USA, 2011. ACM. 5

OCR - Version 0.9 — September 2014

A. OCR Examples

This chapter demonstrates the use of OCR through a series of examples. The examples are ordered
from the most basic to the most complicated and frequently make use of previous examples. They
are meant to guide the reader in understanding the fundamental concepts of the OCR programming
model and APL

A.1. OCR’s “Hello World!”

This example illustrates the most basic OCR program: a single function that prints the message
“Hello World!” on the screen and exits.

A.1.1. Code example

The following code will print the string “Hello World!” to the standard output and exit. Note that
this program is fully functional (ie: there is no need for a main function).

#include <ocr.h>

ocrGuid_t mainEdt(u32 paramc, u64x paramv, u32 depc, ocrEdtDep_t depv[]) {
PRINTF(;
ocrShutdown () ;
return NULL_GUID;

A.1.1.1. Details

The ocr.h file included on Line 1 contains all of the main OCR APIs. Other more experimental
or extended APIs are also located in the extensions/ folder of the include directory.

EDT’s signature is shown on Line 3. A special EDT, named mainEdt is called by the runtime if
the programmer does not provide a main function'.

Note that if the programmer does provide a main function, it is the responsability of the programmer to properly
initialize the runtime, call the first EDT to execute and properly shutdown the runtime. This method is detailed in
TODO and is not recommended as it is not platform portable.

55

56

The ocrShutdown function called on Line 5 should be called once and only once by all OCR
programs to indicate that the program has terminated. The runtime will then shutdown and any
non-executed EDTs at that time are not guaranteed to execute.

A.2. Expressing a Fork-Join pattern

This example illustrates the creation of a fork-join pattern in OCR.

A.2.1. Code example

~

#« Example of a "fork—join" pattern in OCR
*

Implements the following dependence graph:
«

* mainEdt

/ \

* funl fun2

* \ /

% shutdownEdt

*

%/

#include

)

ocrGuid_t funl (u32 paramc, u64x paramv, u32 depc, ocrEdtDep_t depv[]) {

ints k;
ocrGuid_t db_guid;
18 ocrDbCreate(&db_guid ,(veid =x) &k, sizeof (int), 0, NULL_GUID, NO_ALLOC) ;
k[0]=1;
PRINTF (ik) s

return db_guid;
}
23
ocrGuid_t fun2(u32 paramc, u64x paramv, u32 depc, ocrEdtDep_t depv|[]) {

intx k;

ocrGuid_t db_guid;

ocrDbCreate(&db_guid ,(void %) &k, sizeof(int), 0, NULL_GUID, NO_ALLOC);
28 k[0]=2;

PRINTF(,xk) s

return db_guid;
}

w
&

ocrGuid_t shutdownEdt(u32 paramc, u64x paramv, u32 depc, ocrEdtDep_t depv|[]) {
PRINTF ()
int« datal (int=#) depv[0]. ptr;

intx data2 (int=) depv[1].ptr;
PRINTEF (, =datal , xdata2);
38 ocrDbDestroy (depv [0]. guid) ;

ocrDbDestroy (depv [1]. guid);
ocrShutdown () ;
return NULL_GUID;
}
43
ocrGuid_t mainEdt(u32 paramc, u64% paramv, u32 depc, ocrEdtDep_t depv[]) {
PRINTF(y:
ocrGuid_t edtl_template , edt2_template, edt3_template;

OCR - Version 0.9 — September 2014

ocrGuid_t edtl, edt2, edt3, outputEventl, outputEvent2;

48

// Create templates for the EDTs

ocrEdtTemplateCreate(&edtl_template , funl, 0, 1);

ocrEdtTemplateCreate(&edt2_template , fun2, 0, 1);

ocrEdtTemplateCreate(&edt3_template , shutdownEdt, 0, 2);

53

//Create the EDTs

ocrEdtCreate(&edtl , edtl_template , EDT_PARAM_DEF, NULL, EDT_PARAM_DEF, NULL,
EDT_PROP_NONE, NULL_GUID, &outputEventl);

ocrEdtCreate(&edt2, edt2_template , EDT_ PARAM_DEF, NULL, EDT PARAM_DEF, NULL,
EDT_PROP_NONE, NULL_GUID, &outputEvent2);

ocrEdtCreate(&edt3, edt3_template , EDT PARAM DEF, NULL, 2, NULL, EDT PROP_NONE,
NULL_GUID, NULL) ;

58

//Setup dependences for the shutdown EDT

ocrAddDependence (outputEventl , edt3, 0, DB_MODE RO) ;

ocrAddDependence (outputEvent2 , edt3, 1, DB_MODE RO);

63 // Start execution of the parallel EDTs
ocrAddDependence (NULL_GUID, edtl, 0, DB_DEFAULT MODE) ;
ocrAddDependence (NULL_GUID, edt2, 0, DB_DEFAULT MODE) ;
return NULL_GUID;

A.2.1.1. Details

The ocr . h file included on Line 13 contains all of the main OCR APIs. The mainEdt is shown
on Line 44. It is called by the runtime as a main function is not provided (more details in
hello.c).

The mainEdt creates three templates (Lines 50, 51 and 52), respectively for three different EDTs
(Lines 55, 56 and 57). An EDT is created as an instance of an EDT template. This template stores
metadata about EDT, optionally defines the number of dependences and parameters used when
creating an instance of an EDT, and is a container for the function that will be executed by an EDT.
This function is called the EDT function. For the EDTs, edt 1, edt2 and edt 3, the EDT
functions are, funl, fun2 and shutdownEdt, respectively. The last parameter to
ocrEdtTemplateCreate is the total number of data blocks on which the EDTs depends. The
signature of EDT creation API, ocrEdtCreate, is shown in Lines 55, 56 and 57. When edt1
and edt 2 will complete, they will satisfy the output events outputEvent1 and
outputEvent2 repectively. This is not required for edt 3. However, edt 3 should execute only
when the events outputEvent1 and outputEvent?2 are satisfied. This is done by setting up
dependencies on edt 3 by using the APl ocrAddDependence, as shown in Lines 60 and 61.
This spawns edt 3 but it will not execute until both the events are satisfied. Finally, the EDTs
edtl and edt 2 are spawned in Lines 64 and 65 respectively. As they do not have any
dependencies, they execute the associated EDT functions in parallel. These functions (funl and
fun?2) creates data-blocks using the API ocrDbCreate (Lines 18 and 27). The data is written to
the data-blocks and the GUID is returned (Lines 21 and 30). This will satisfy the events on which
the edt 3 is waiting. The EDT function shutdownEdt executes and calls ocrShutdown after
reading and destroying the two data-blocks.

OCR Examples 57

A.3. Expressing unstructured parallelism

A.3.1. Code example

This example illustrates several aspect of the OCR API with regards to the creation of an irregular
task graph. Specifically, it illustrates:

1. Adding dependences between a) events and EDTs, b) data-blocks and EDTs, and c¢) the
NULL_GUID and EDTs;

2. The use of an EDT’s post-slot and how a “producer” EDT can pass a data-block to a
“consumer” EDT using this post-slot;

3. Several methods of satisfying an EDT’s pre-slot: a) through the use of an explicit dependence
array at creation time, b) through the use of another EDT’s post-slot and ¢) through the use of an
explictly added dependence followed by an ocrEventSatisfy call.

Example of a pattern that highlights the
expressiveness of task dependences

Implements the following dependence graph:

mainEdt

| \

stagela stagelb

| \ |

| \ |

| \ |

stage2a stage2b
\ /
shutdownEdt

o

%/
#include

%

#define NB_ELEM_DB 20

ocrGuid_t shutdownEdt(u32 paramc, u64s paramv, u32 depc, ocrEdtDep_t depv[]) {
ASSERT (depc == 2);
u6dx data0 (u64=)depv[0]. ptr;

23 u64:+ datal (u64=)depv[1l]. ptr;

ASSERT (xdata0 == 3ULL);

ASSERT (x datal == 4ULL);
I , depv[0].guid, xdata0);
28 PRINTF (, depv[1].guid, =datal);

// Free the data—blocks that were passed in
ocrDbDestroy (depv [0]. guid) ;
ocrDbDestroy (depv [1]. guid);

// Shutdown the runtime
ocrShutdown () ;
return NULL_GUID;

}

ocrGuid_t stage2a(u32 paramc, u64x paramv, u32 depc, ocrEdtDep_t depv|[]);

ocrGuid_t stagela(u32 paramc, u64s paramv, u32 depc, ocrEdtDep_t depv[]) {
ASSERT (depc == 1);

58 OCR - Version 0.9 — September 2014

43

48

53

58

63

68

3

83

88

98

103

}

ASSERT (paramc == 1);
// paramv[0] is the event that the child EDT has to satisfy
// when it is done

// We create a data—block for one u64 and put data in it

ocrGuid_t dbGuid = NULL_GUID, stage2aTemplateGuid = NULL_GUID,
stage2aEdtGuid = NULL_GUID;

u64= dbPtr = NULL;

ocrDbCreate (&dbGuid, (voidx*=x)&dbPtr, sizeof(u64), 0, NULL_GUID, NO_ALLOC) ;

«dbPtr = 1ULL;

// Create an EDT and pass it the data—block we just created
// The EDT is immediately ready to execute
ocrEdtTemplateCreate(&stage2aTemplateGuid , stage2a, 1, 1);
ocrEdtCreate(&stage2aEdtGuid , stage2aTemplateGuid , EDT_PARAM_DEF,

paramv , EDT_PARAM_DEF, &dbGuid, EDT_PROP_NONE, NULL_GUID, NULL) ;

// Pass the same data—block created to stage2b (links setup in mainEdt)
return dbGuid;

ocrGuid_t stagelb(u32 paramc, u64x paramv, u32 depc, ocrEdtDep_t depv[]) {

}

ASSERT (depc == 1);
ASSERT (paramc == 0);

// We create a data—block for one u64 and put data in it

ocrGuid_t dbGuid = NULL_GUID;

u64x dbPtr = NULL;

ocrDbCreate (&dbGuid, (void*=*)&dbPtr, sizeof(u64), 0, NULL_GUID, NO_ALLOC) ;
#*dbPtr = 2ULL;

// Pass the created data—block created to stage2b (links setup in mainEdt)
return dbGuid;

ocrGuid_t stage2a(u32 paramc, u64x paramv, u32 depc, ocrEdtDep_t depv[]) {

}

ASSERT (depc == 1);
ASSERT (paramc == 1);

u64 =dbPtr = (u64=)depv[0]. ptr;
ASSERT (x dbPtr == 1ULL); // We got this from stagela

«dbPtr = 3ULL; // Update the value

// Pass the modified data—block to shutdown
ocrEventSatisfy ((ocrGuid_t)paramv|[0], depv[0]. guid);

return NULL_GUID;

ocrGuid_t stage2b(u32 paramc, u64:x paramv, u32 depc, ocrEdtDep_t depv[]) {

ASSERT (depc == 2);
ASSERT (paramc == 0);

u64 «dbPtr = (u64=)depv|[1].ptr;
// Here, we can run concurrently to stage2a which modifies the value

// we see in depv[O0].ptr. We should see either 1ULL or 3ULL

// On depv[1], we get the value from stagelb and it should be 2
ASSERT (s« dbPtr == 2ULL); // We got this from stage2a

#«dbPtr = 4ULL; // Update the value

return depv|[1].guid; // Pass this to the shudown EDT

OCR Examples

59

108
ocrGuid_t mainEdt(u32 paramc, u64% paramv, u32 depc, ocrEdtDep_t depv[]) {

// Create the shutdown EDT

113 ocrGuid_t stagelaTemplateGuid = NULL_GUID, stagelbTemplateGuid = NULL_GUID,
stage2bTemplateGuid = NULL_GUID, shutdownEdtTemplateGuid = NULL _GUID;

ocrGuid_t shutdownEdtGuid = NULL_GUID, stagelaEdtGuid = NULL_GUID,
stage|bEdtGuid = NULL_GUID, stage2bEdtGuid = NULL_GUID,
evtGuid = NULL_GUID, stagelaOut = NULL_GUID, stagelbOut = NULL_GUID,

118 stage2bOut = NULL_GUID;

ocrEdtTemplateCreate(&shutdownEdtTemplateGuid , shutdownEdt, 0, 2);

ocrEdtCreate (&shutdownEdtGuid, shutdownEdtTemplateGuid, 0, NULL, EDT_PARAM_DEF, NULL,
EDT_PROP_NONE, NULL_GUID, NULL);

123

// Create the event to satisfy shutdownEdt by stage 2a

// (stage 2a is created by la)

ocrEventCreate(&evtGuid , OCR_EVENT ONCE_T, true);

128 // Create stages la, 1b and 2b

// For la and 1b, add a "fake" dependence to avoid races between

// setting up the event links and running the EDT
ocrEdtTemplateCreate(&stagelaTemplateGuid , stagela, 1, 1);
ocrEdtCreate(&stagelaEdtGuid , stagelaTemplateGuid , EDT_PARAM_DEF, &evtGuid ,
133 EDT_PARAM_DEF, NULL, EDT _PROP_NONE, NULL_GUID, &stagelaOut);

ocrEdtTemplateCreate(&stagelbTemplateGuid , stagelb, 0, 1);
ocrEdtCreate(&stagel bEdtGuid , stagelbTemplateGuid , EDT_PARAM_DEF, NULL,
EDT_PARAM_DEF, NULL, EDT PROP_NONE, NULL_GUID, &stagelbOut);
138
ocrEdtTemplateCreate(&stage2bTemplateGuid , stage2b, 0, 2);
ocrEdtCreate(&stage2bEdtGuid , stage2bTemplateGuid , EDT_PARAM_DEF, NULL,
EDT_PARAM_DEF, NULL, EDT PROP_NONE, NULL_GUID, &stage2bOut);

143 // Set up all the links
// la —> 2b
ocrAddDependence (stagelaOut, stage2bEdtGuid, 0, DB_DEFAULT _MODE) ;
// 1b —> 2b

148 ocrAddDependence (stagelbOut, stage2bEdtGuid, 1, DB_DEFAULT MODE) ;

// Event satisfied by 2a —> shutdown

ocrAddDependence (evtGuid , shutdownEdtGuid, 0, DB_DEFAULT_MODE) ;

// 2b —> shutdown

153 ocrAddDependence (stage2bOut, shutdownEdtGuid, 1, DB_DEFAULT MODE) ;

// Start la and 1b

ocrAddDependence (NULL_GUID, stagelaEdtGuid, 0, DB_DEFAULT MODE) ;
ocrAddDependence (NULL_GUID, stagelbEdtGuid, 0, DB_DEFAULT MODE) ;
158
return NULL_GUID;

A.3.1.1. Details

The snippet of code shows one possible way to construct the irregular task-graph shown starting on
Line 5. mainEdt will create a) stagela and stagelb as they are the next things that need to
execute but also b) stage2b and shutdownEdt because it is the immediate dominator of those

60 OCR - Version 0.9 — September 2014

EDTs. In general, it is easiest to create an EDT in its immediate dominator because that allows any
other EDTs who need to feed it information (necessarily between its dominator and the EDT in
question) to be able to know the value of the opaque GUID created for hte EDT. stage?2a, on the
other hand, can be created by st agela as no-one else needs to feed information to it.

Most of the “edges” in the dependence graph are also created in mainEdt starting at Line 145.
These are either between the post-slot (output event) of a source EDT and an EDT or between a
regular event and an EDT. Note also the use of NULL_GUID as a source for two dependences
starting at Line 156. A NULL_GUID as a source for a dependence immediately satisfies the
destination slot; in this case, it satisfies the unique dependence of stagela and stagelb and
makes them runable. These two dependences do not exist in the graph shown starting at Line 5 but
are crucial to avoid a potential race in the program: the output events of EDTs are similar to ONCE
events in the sense that they will disappear once they are satisfied and therefore, any dependence on
them must be properly setup prior to their potential satisfaction. In other words, the
ocrAddDependence calls starting at Line 145 must happen-before the satisfaction of
stagelaOut and stagelbOut. This example shows three methods of satisfying an EDT’s
pre-slots:

e Through the use of an explicit dependence array known at EDT creation time as shown on
Line 57;

e Through an output event as shown on Line 61. The GUID passed as a return value of the EDT
function will be passed to the EDT’s output event (in this case stagelaOut). If the GUID is a
data-block’s GUID, the output event will be satisfied with that data-block. If it is an event’s
GUID, the two events will become linked;

e Through an explicit satisfaction as shown on Line 88).

A.4. Using a Finish EDT

A.4.1. Code example

The following code demonstrates the use of Finish EDTs by performing a Fast Fourier Transform
on a sparse array of length 256 bytes. For the sake of simplicity, the array contents and sizes are
hardcoded, however, the code can be used as a starting point for adding more functionality.

/% Example usage of Finish EDT in FFT.

%

Implements the following dependence graph:

%%

MainEdt
|

FinishEdt
{

DFT

OCR Examples 61

/ \
FFT—odd FFT—even
\ /
Twiddle

/
|
Shutdown
20

*
~

#include ‘‘ocr.h’’
#include ‘‘math.h’’
25
#define N 256
#define BLOCK_SIZE 16

// The below function performs a twiddle operation on an array x_in

30| // and places the results in X_real & X_imag. The other arguments

// size and step refer to the size of the array x_in and the offset therein
void ditfft2 (double #X_real, double %X_imag, double xx_in, u32 size, u32 step) {

if(size == 1) {
X_real[0] = x_in[0];
35 X_imag[0] = O0;
} else {

ditfft2 (X_real, X_imag, x_in, size/2, 2 % step);

ditfft2 (X_real+size/2, X_imag+size/2, x_in+step, size/2, 2 = step);
u32 k;

40 for (k=0;k<size /2;k++) {

double t_real = X_real[k];

double t_imag = X_imag[k];

double twiddle_real = cos(—2 % M_PI =
double twiddle_imag = sin(—2 % M_PI =
45 double xr = X_real[k+size/2];

double xi = X_imag[k+size/2];

size);
size);

~ =

/
/

// (a+bi)(c+di) = (ac — bd) + (bc + ad)i
X_real[k] = t_real +
50 (twiddle_real«xr — twiddle_imagsxi);
X_imag[k] = t_imag +

(twiddle_imags=xr + twiddle_real=xi);
X_real [k+size /2] = t_real —
55 (twiddle_real=xr — twiddle_imagsxi);
X_imag[k+size/2] = t_imag —
(twiddle_imags=xr + twiddle_real=xi);

60| }

// The below function splits the given array into odd & even portions and

// calls itself recursively via child EDTs that operate on each of the portions,

// till the array operated upon is of size BLOCK_SIZE, a pre—defined

65| // parameter. It then trivially computes the FFT of this array, then spawns

// twiddle EDTs to combine the results of the children.

ocrGuid_t fftComputeEdt(u32 paramc, u64x paramv, u32 depc, ocrEdtDep_t depv[]) {
ocrGuid_t computeGuid = paramv|[O0];
ocrGuid_t twiddleGuid = paramv[1];

70 double xdata = (doublex)depv[0]. ptr;
ocrGuid_t dataGuid = depv[0]. guid;
u64 size = paramv|[2];

u64 step = paramv[3];
u64 offset = paramv[4];

75 u64 step_offset = paramv[5];
u64 blockSize = paramv[6];
double *x_in = (doublex)data;

62 OCR - Version 0.9 — September 2014

80

85

90

95

100

105

1

S

115

120

125

130

135

140

double #X_real
double xX_imag

(doublex)(datat+offset + size=xstep);
(doubles)(datat+offset + 2ssizesstep);

if (size <= blockSize) {
ditfft2 (X_real, X_imag, x_in+step_offset, size, step);
} else {
// DFT even side
u64 childParamv[7] = { computeGuid, twiddleGuid, size/2, 2 = step,
0 + offset, step_offset, blockSize };
u64 childParamv2[7] = { computeGuid, twiddleGuid, size/2, 2 = step,
size/2 + offset, step_offset + step, blockSize };

ocrGuid_t edtGuid, edtGuid2, twiddleEdtGuid, finishEventGuid , finishEventGuid2;

ocrEdtCreate(&edtGuid , computeGuid , EDT_PARAM_DEF, childParamv ,
EDT_PARAM_DEF, NULL, EDT_PROP_FINISH, NULL_GUID,
&finishEventGuid) ;

ocrEdtCreate(&edtGuid2 , computeGuid , EDT PARAM DEF, childParamv2,
EDT_PARAM_DEF, NULL, EDT_PROP_FINISH, NULL_GUID,
&finishEventGuid2);

ocrGuid_t twiddleDependencies[3] = { dataGuid, finishEventGuid, finishEventGuid2 }

ocrEdtCreate(&twiddleEdtGuid , twiddleGuid , EDT_ PARAM _DEF, paramv, 3,
twiddleDependencies , EDT_PROP_FINISH, NULL_GUID, NULL) ;

ocrAddDependence (dataGuid , edtGuid, 0, DB_MODE ITW) ;
ocrAddDependence (dataGuid , edtGuid2, 0, DB_MODE ITW)
}

return NULL_GUID;
}

// The below function performs the twiddle operation
ocrGuid_t fftTwiddleEdt(u32 paramc, u64x paramv, u32 depc, ocrEdtDep_t depv[]) {
double xdata = (doublesx)depv[O]. ptr;
u64 size = paramv[2];
u64 step = paramv|[3];
u64 offset = paramv[4];
double xx_in = (doublex)data+offset;
double %X _real = (doublex)(datat+offset + sizesxstep);
double #X_imag = (doublex)(data+offset + 2ssizesstep);

ditfft2 (X_real, X_imag, x_in, size, step);

return NULL_GUID;
}

ocrGuid_t endEdt(u32 paramc, u64x paramv, u32 depc, ocrEdtDep_t depv[]) {
ocrGuid_t dataGuid = paramv[O0];

ocrDbDestroy (dataGuid) ;
ocrShutdown () ;
return NULL_GUID;

}

ocrGuid_t mainEdt(u32 paramc, u64:x paramv, u32 depc, ocrEdtDep_t depv[]) {

ocrGuid_t computeTempGuid, twiddleTempGuid, endTempGuid;
ocrEdtTemplateCreate (&computeTempGuid, &fftComputeEdt, 7, 1);
ocrEdtTemplateCreate (&twiddleTempGuid , &fftTwiddleEdt, 7, 3);
ocrEdtTemplateCreate (&endTempGuid, &endEdt, 1, 1);

u32 i;

double =x;

ocrGuid_t dataGuid;

OCR Examples

64

150

ocrDbCreate(&dataGuid , (void #x) &x, sizeof(double) x N % 3, DB_PROP_NONE, NULL_GUID,

NO_ALLOC) ;
145 // Cook up some arbitrary data
for (i=0;i<N;i++) {
x[i] = 03
}
x[0] = 1;
u64 edtParamv[7] = { computeTempGuid, twiddleTempGuid, N, 1, 0, 0, BLOCK_SIZE };

ocrGuid_t edtGuid, eventGuid, endGuid;

// Launch compute EDT

155 ocrEdtCreate(&edtGuid, computeTempGuid, EDT_PARAM_DEF, edtParamv ,

EDT_PARAM_DEF, NULL, EDT_PROP_FINISH, NULL_GUID,
&eventGuid) ;

// Launch finish EDT

160 ocrEdtCreate (&endGuid, endTempGuid, EDT_PARAM_DEF, &dataGuid ,

EDT_PARAM_DEF, NULL, EDT_PROP_FINISH, NULL_GUID,
NULL) ;

ocrAddDependence (dataGuid , edtGuid, 0, DB_MODE ITW) ;

165 ocrAddDependence (eventGuid , endGuid, 0, DB_MODE_ITW) ;

return NULL_GUID;

A.4.1.1. Details

The above code contains a total of 5 functions - amainEdt () required of all OCR programs, a
ditf£ft2 () thatacts as the core of the recursive FFT computation, calling itself on smaller sizes
of the array provided to it, and three other EDTs that are managed by OCR. They include -
fftComputeEdt () in Line 67 that breaks down the FFT operation on an array into two FFT
operations on the two halves of the array (by spawning two other EDTs of the same template), as
well as an instance of fft TwiddleEdt () shown in Line 111 that combines the results from the
two spawned EDTs by applying the FFT “twiddle” operation on the real and imaginary portions of
the array. The fftComputeEdt () function stops spawning EDTs once the size of the array it
operates on drops below a pre-defined BLOCK_SIZE value. This sets up a recursive cascade of
EDTs operating on gradually smaller data sizes till the BLOCK_SIZE value is reached, at which
point the FFT value is directly computed, followed by a series of twiddle operations on gradualy
larger data sizes till the entire array has undergone the operation. When this is available, a final
EDT termed endEdt () in Line 125 is called to optionally output the value of the computed FFT,
and terminate the program by calling ocrShutdown () . All the FFT operations are performed on
a single datablock created in Line 143. This shortcut is taken for the sake of didactic simplicity.
While this is programmatically correct, a user who desires reducing contention on the single array
may want to break down the datablock into smaller units for each of the EDTs to operate upon.

For this program to execute correctly, it is apparent that each of the fft TwiddleEdt instances
can not start until all its previous instances have completed execution. Further, for the sake of
program simplicity, an instance of fftComputeEdt-fftTwiddleEdt pair cannot return until

OCR - Version 0.9 — September 2014

27

the EDTs that they spawn have completed execution. The above dependences are enforced using
the concept of Finish EDTs. As stated before, a Finish EDT does not return until all the EDTs
spawned by it have completed execution. This simplifies programming, and does not consume
computing resources since a Finish EDT that is not running, is removed from any computing
resources it has used. In this program, no instance of £ftComputeEdt or fftTwiddleEdt
returns before the corresponding EDTs that operates on smaller data sizes have returned, as
illustrated in Lines 94,97 and 101. Finally, the single endEdt () instance in Line 157 is called
only after all the EDTs spawned by the parent £ ftComputeEdt () in Line 162, return.

A.5. Accessing a DataBlock with “Intent-To-Write” Mode

This example illustrates the usage model for datablocks accessed with the Intent-To-Write
(ITW) mode. The ITW mode ensures that only one master copy of the datablock exists at any time
inside a shared address space. Parallel EDTs can concurrently access a datablock under this mode
if they execute inside the same address space. It is the programmer’s responsibility to avoid data
races. For example, two parallel EDTs can concurrently update separate memory regions of the
same datablock with the ITW mode.

A.5.1. Code example

/% Example usage of ITW (Intent—To—Write)
% datablock access mode in OCR

Implements the following dependence graph:

mainEdt

[DB]

: / \
«(ITW)/ \(ITW)
® / \

x EDTI EDT2
* \ /

* [DB]

® shutdownEdt

*

#/
#include
#define N 1000

ocrGuid_t exampleEdt(u32 paramc, u64s: paramv, u32 depc, ocrEdtDep_t depv[]) {

u64 i, lb, ub;

Ib = paramv[0];

ub = paramv[1];

u32 #dbPtr = (u32=x)depv[0]. ptr;

for (i = 1b; i < ub; i++)
dbPtr[i] += i;

return NULL_GUID;

OCR Examples 65

66

32|}

ocrGuid_t awaitingEdt(u32 paramc, u64s paramv, u32 depc, ocrEdtDep_t depv[]) {

u6d i;
PRINTF ("Done '\n");
37 u32 «dbPtr = (u32=x)depv[0]. ptr;
for (i = 0; i < N; i++) {
if (dbPtr[i] != i = 2)

break;
}

if (i == N) {
PRINTF (" Passed Verification\n");
} else {
PRINTE(" !'!'l FAILED !'!'!l Verification\n");

42

47 }

ocrDbDestroy (depv[0]. guid);
ocrShutdown () ;

return NULL_GUID;

52| }

ocrGuid_t mainEdt(u32 paramc, u64x paramv, u32 depc, ocrEdtDep_t depv[]) {
u32 i;

57 // CHECKER DB
u32s ptr;
ocrGuid_t dbGuid;

for(i = 0; i < N; i++)
62 ptr[i] = i;
ocrDbRelease (dbGuid) ;

// EDT Template

ocrGuid_t exampleTemplGuid, exampleEdtGuidl , exampleEdtGuid2, exampleEventGuidl ,
exampleEventGuid2 ;

67 ocrEdtTemplateCreate(&exampleTemplGuid , exampleEdt, 2 /xparamc=/, 1 /=depc=/);

u64 args[2];

// EDTI
args[0] = 03
72 args[1] = N/2;

EDT_PROP_NONE, NULL_GUID, &exampleEventGuidl);

// EDT2
77 args[0] = N/2;
args[1] = N;

EDT_PROP_NONE, NULL_GUID, &exampleEventGuid2);

82 // AWAIT EDT
ocrGuid_t awaitingTemplGuid, awaitingEdtGuid ;
ocrEdtTemplateCreate(&awaitingTemplGuid , awaitingEdt, 0 /sparamc=/, 3 /«depc+/);

NULL,
EDT_PROP_NONE, NULL_GUID, NULL) ;
87 ocrAddDependence (dbGuid , awaitingEdtGuid , 0, DB_MODE_RO) ;

ocrAddDependence (exampleEventGuidl , awaitingEdtGuid , 1, DB_DEFAULT MODE) ;
ocrAddDependence (exampleEventGuid2 , awaitingEdtGuid , 2, DB_DEFAULT MODE) ;

// START

92 PRINTF(" Start '\n");

ocrAddDependence (dbGuid, exampleEdtGuidl , 0, DB_MODE_ITW) ;
ocrAddDependence (dbGuid, exampleEdtGuid2, 0, DB_MODE_ITW) ;

OCR - Version 0.9 — September 2014

ocrDbCreate(&dbGuid, (void:xx)&ptr, N x sizeof(u32), DB_PROP_NONE, NULL_GUID, NO_ALLOC) ;

ocrEdtCreate(&exampleEdtGuidl , exampleTemplGuid, EDT_PARAM_DEF, args, EDT_PARAM_DEF, NULL,

ocrEdtCreate(&exampleEdtGuid2 , exampleTemplGuid, EDT _PARAM_DEF, args, EDT_PARAM_DEF, NULL,

ocrEdtCreate(&awaitingEdtGuid , awaitingTemplGuid , EDT_PARAM_DEF, NULL, EDT_PARAM_DEF,

97

return NULL_GUID;

A.5.1.1. Details

The mainEdt creates a datablock (dbGuid) that may be concurrently updated by two children
EDTs (exampleEdtGuidl and exampleEdtGuid?2) using the ITW mode.
exampleEdtGuidl and exampleEdtGuid?2 are each created with one dependence on each of
them, while after execution, each of them will satisfy an output event (exampleEventGuidl
and exampleEventGuid?2). The satisfaction of these output events will trigger the execution of
an awaiting EDT (awaitingEdtGuid) that will verify the correctness of the computation
performed by the concurrent EDTs. awaitingEdtGuid has three input dependences. dbGuid
is passed into the first input, while the other two would be satisfied by exampleEventGuidl
and exampleEventGuid2. Once awaitingEdtGuid’s dependences have been setup, the
mainEdt satisfies the dependences on exampleEdtGuidl and exampleEdtGuid2 with the
datablock dbGuid.

Both exampleEdtGuidl and exampleEdtGuid2 execute the task function called
exampleEdt. This function accesses the contents of the datablock passed in through the dependence
slot 0. Based on the parameters passed in, the function updates a range of values on that datablock.
After the datablock has been updated, the EDT returns and in turn satisfies the output event. Once
both EDTs have executed and satisfied their ouput events, the await ingEdtGuid executes
function awaitingEdt. This function verifies if the updates done on the datablock by the concurrent
EDTs are correct. Finally, it prints the result of its verification and calls ocrShutdown.

A.6. Accessing a DataBlock with “Exclusive-Write” Mode

The Exclusive-Write (EW) mode allows for an easy implementation of mutual exclusion of
EDTs execution. When an EDT depend on one or several DBs in EW mode, the runtime guarantees
it is the only EDT throught the system to currently writing to those DBs. Hence, the EW mode is
useful when one wants to guarantee there’s no race condition writing to a Data-Block or when
ordering among EDTs do not matter for as long as the execution is in mutual exclusion. The
following examples shows how two EDTs may share access to a DB in ITW mode, while one EDT
requires EW access. In this situation the programmer cannot assume in which order the EDTs are
executed. It might be that EDT1 and EDT?2 are executed simultaneously or independently, while
EDT?3 happens either before, after or in between the others.

A.6.1. Code example

OCR Examples 67

68

/% Example usage of EW (Exclusive—Write)
2| % datablock access mode in OCR
*

Implements the following dependence graph:

[DB]

/| \
«(ITW)/ 1 (ITW) \(EW)
/ | \
EDTI EDT2 EDT3
\ | /
A /

\ /

[DB]
shutdownEdt

*
E3
* mainEdt
*
*

¥
~

#include "ocr.h"

#define NB_ELEM_DB 20

)
[

ocrGuid_t shutdownEdt(u32 paramc,
// The fourth slot (3 as it
u64 = data = (u64 =) depv|[3].ptr;

27 ud2 i = 0;
while (i < NB_ELEM_DB) {
PRINTF("%d " ,data[i]);
i++;
}
32 PRINTF("\n");

// Destroying the DB implicitely releases it.
ocrDbDestroy (depv[3]. guid);

// Instruct the runtime the application
ocrShutdown () ;

37 return NULL_GUID;

}

ocrGuid_t writerEdt(u32 paramc,
// An EDT has access to

2 // ocrEdtDep_t allow to

// Note

// with a DB GUID, the .guid field contains

u64 = data = (u64 =) depv[O0].ptr;

u64 1b = paramv[0];

u64s paramv,

access both the

47 u64 ub = paramv[1];
u64 value = paramv[2];
u32 i = 1b;

while (i < ub) {
data[i] += value;
52 i++;

}
// The GUID the output event
return NULL_GUID;

of this EDT is

}

ocrGuid_t mainEdt(u32 paramc,

void * dbPtr;

ocrGuid_t dbGuid;

u32 nbElem = NB_ELEM_DB;
62 // Create a DataBlock (DB). Note
// acquires the DB in Intent—To—Write (ITW) mode
ocrDbCreate(&dbGuid, &dbPtr,

u64x paramv, u32 depc,

OCR - Version 0.9 — September 2014

u64: paramv, u32 depc,
is O—indexed) was the DB.

u32 depc,
the parameters and dependences it
*.guid’ of the dependence and the
that when an EDT has an event as a dependence and this
the DB GUID,

that the currently

ocrEdtDep_t depv[]) {

is done executing

ocrEdtDep_t depv[]) {

has been created with.
.ptr
event is satisfied
not the event GUID.

satisfied with

ocrEdtDep_t depv[]) {

executing EDT

sizeof (u64) % NB_ELEM DB, 0, NULL_GUID, NO_ALLOC);

67

72

77

82

87

92

97

102

107

112

117

122

127

u64 i = 0;
int % data = (int =) dbPtr;
while (i < nbElem) {
data[i] = 0;
i++;
}
// Indicate to the runtime the current EDT is not using the DB anymore
ocrDbRelease (dbGuid) ;

// Create the sink EDT template. The sink EDT is responsible for

// shutting down the application.

// It has 4 dependences: EDTI, EDT2, EDT3 and the DB

ocrGuid_t shutdownEdtTemplateGuid;

ocrEdtTemplateCreate(&shutdownEdtTemplateGuid , shutdownEdt, 0, 4);

ocrGuid_t shutdownGuid;

// Create the shutdown EDT indicating this instance of the shutdown EDT template

// has the same number of parameters and dependences the template declares.

ocrEdtCreate(&shutdownGuid , shutdownEdtTemplateGuid, 0, NULL, EDT PARAM _DEF, NULL,
EDT_PROP_NONE, NULL_GUID, NULL) ;

// EDT is created, but it does not have its four dependences set up yet.

// Set the third dependence of EDT shutdown to be the DB

ocrAddDependence (dbGuid, shutdownGuid, 3, DB_MODE RO) ;

// Writer EDTs have 3 parameters and 2 dependences
ocrGuid_t writeEdtTemplateGuid;
ocrEdtTemplateCreate(&writeEdtTemplateGuid , writerEdt, 3, 2);

// Create the event that enable EDTI, EDT2, EDT3 to run

// It is a once event automatically destroyed when satisfy
// has been called on it. Because of that we need to make
// sure that all its dependences are set up before satisfied
// is called.

ocrGuid_t eventStartGuid;

ocrEventCreate(&eventStartGuid , OCR_EVENT_ONCE_T, false);

// ITW 1’ from 0 to N/2 (potentially concurrent with writer 1, but different range)
ocrGuid_t oeWriter1Guid;
ocrGuid_t writerlGuid;
// parameters composed of lower bound, upper bound, value to write.
// parameters are passed by copy to the EDT, so it’s ok to use the stack here.
u64 writerParamvl [3] = {0, NB_LELEM_DB/2, 1};
// Create the EDTI. Note the output event parameter 'oeWriterlGuid .
// The output event is satisfied automatically by the runtime when EDTI
// is done executing. This event is by default a ONCE event. The user must
// make sure dependences on that event are set up before the EDT is scheduled.
// This is the main reason why we have a start event. It allows to create all the
// EDT before—hand and set up all the dependences before any scheduling occurs.
ocrEdtCreate(&writer1Guid , writeEdtTemplateGuid , EDT_PARAM_DEF, writerParamvl ,
EDT_PARAM_DEF, NULL,
EDT_PROP_NONE, NULL_GUID, &oeWriterlGuid);
// Set up the sink EDT dependence slot 0 (2 dependences added so far)
ocrAddDependence (oeWriter1 Guid , shutdownGuid, 0, false);
// EDTI depends on the DB in ITW mode on its slot '0°
ocrAddDependence (dbGuid, writerlGuid, 0, DB_MODE_ITW) ;
// EDTI depends on the start event on its slot 1’
ocrAddDependence (eventStartGuid , writerlGuid, 1, DB_MODE RO) ;
// At this poomt EDT

// ITW 27 from N/2 to N (potentially concurrent with writer 0, but different range)
ocrGuid_t oeWriter2Guid ;
ocrGuid_t writer2Guid ;
u64 writerParamv2[3] = {NB_ELEM_DB/2, NB_ELEM DB, 2};
ocrEdtCreate(&writer2Guid , writeEdtTemplateGuid , EDT_PARAM_DEF, writerParamv2 ,
EDT_PARAM _DEF, NULL,
EDT_PROP_NONE, NULL_GUID, &oeWriter2Guid);

OCR Examples

69

// Set up the sink EDT dependence slot 1 (3 dependences added so far)
ocrAddDependence (oeWriter2Guid , shutdownGuid, 1, false);
ocrAddDependence (dbGuid, writer2Guid , 0, DB_MODE _ITW) ;
ocrAddDependence (eventStartGuid , writer2Guid, 1, DB_MODE RO) ;
132
// EW '3’ from N/4 to 3N/4
ocrGuid_t oeWriter3Guid ;
ocrGuid_t writer3Guid ;
u64 writerParamv3[3] = {NB_ELEM _DB/4, (NB_ELEM DB/4)x3, 3};
137 ocrEdtCreate(&writer3Guid , writeEdtTemplateGuid , EDT_PARAM_DEF, writerParamv3 ,
EDT_PARAM_DEF, NULL,
EDT_PROP_NONE, NULL_GUID, &oeWriter3Guid);
// Set up the sink EDT dependence slot 2.
// At this point the shutdown EDT has all its dependences
// and will be eligible for scheduling when they are satisfied
142 ocrAddDependence (oeWriter3Guid , shutdownGuid, 2, false);
// EDT3 request the DB in Exclusive—Write (EW) mode. This is essentially
// introducing an implicit ordering dependence between all other EDTs
// that are also acquiring this DB. The actual EDTs execution ordering
// is schedule dependent.
147 ocrAddDependence (dbGuid, writer3Guid , 0, DB_MODE EW) ;
ocrAddDependence (eventStartGuid , writer3Guid, 1, DB_MODE RO) ;

// At this point all writers EDTs have their DB dependence satisfied and

// are only missing the start event to be satisfied.

152 // Doing so enable EDTI, EDT2, EDT3 to be eligible for scheduling.

// Because there’s no control dependence among the writer EDT, the

// runtime is free to schedule them in any order, potentially in parallel.

// In this particular example, EDTI and EDT2 can execute in parallel because

// they both access the DB in ITW mode which allow for concurrent writers.

157 // EDT3 will be executed in mutual exclusion with EDT] and EDT2 at any point in time
// since it requires EW access.

ocrEventSatisfy (eventStartGuid , NULL_GUID) ;

return NULL_GUID;

162 }

A.6.1.1. Details

A.7. Acquiring contents of a DataBlock as a dependence
input

This example illustrates the usage model for accessing the contents of a datablock. The data
contents of a datablock are made available to the EDT through the input slots in depv. The input
slots contain two fields: the guid of the datablock and pointer to the contents of the datablock. The
runtime process grabs a pointer to the contents through a process called “acquire”. The acquires of
all datablocks accessed inside the EDT has to happen before the EDT starts execution. This implies
that runtime requires knowledge of which datablocks it needs to acquire. That information is given
to the runtime through the process of satisfaction of dependences. As a result, a datablock’s
contents are available to the EDT only if that datablock has been passed in as the input on a
dependence slot or if the datablock is created inside the EDT.

70 OCR - Version 0.9 — September 2014

23

28

33

38

43

48

53

58

A.7.1. Code example

/% Example to show how DB guids can be passed through another DB.
Note: DB contents can be accessed by an EDT only when they arrive
in a dependence slot.

Implements the following dependence graph:

* mainEdt

* [DBI |
|

* EDTI

* |

» [DBO]

* shutdownEdt
#/

#include "ocr.h"
#define VAL 42

ocrGuid_t exampleEdt(u32 paramc, u64sx paramv, u32 depc, ocrEdtDep_t depv[]) {
ocrGuid_t xdbPtr = (ocrGuid_t=)depv[0]. ptr;
ocrGuid_t passedDb = dbPtr[0];
PRINTF (" Passing DB: 0x%lx\n", passedDb);
ocrDbDestroy (depv[0]. guid);
return passedDb;

}

ocrGuid_t awaitingEdt(u32 paramc, u64sx paramv, u32 depc, ocrEdtDep_t depv[]) {
u32 «dbPtr = (u32x)depv[0]. ptr;
PRINTF("Received: %u\n", dbPtr[0]);
ocrDbDestroy (depv[0]. guid) ;
ocrShutdown () ;
return NULL _GUID;
}

ocrGuid_t mainEdt(u32 paramc, u64x paramv, u32 depc, ocrEdtDep_t depv[]) {

// Create DBs

u32sx ptr0;

ocrGuid_t= ptrl;

ocrGuid_t dbOGuid, dblGuid;

ocrDbCreate(&db0Guid, (void=x#)&ptr0, sizeof(u32), DB_PROP_NONE, NULL GUID, NO_ALLOC) ;

ocrDbCreate(&dblGuid, (void==)&ptrl , sizeof (ocrGuid_t), DB_PROP_NONE, NULL _GUID,
NO_ALLOC) ;

ptrO[0] = VAL;

ptr1 [0] = dbOGuid;

PRINTF("Sending: %u in DB: O0x%lx\n", ptr0[0], dbOGuid);

ocrDbRelease (db0Guid) ;

ocrDbRelease (db1Guid) ;

// Create Middle EDT

ocrGuid_t exampleTemplGuid, exampleEdtGuid, exampleEventGuid;

ocrEdtTemplateCreate(&exampleTemplGuid, exampleEdt, 0 /sxparamcs=/, 1 /«depc=/);

ocrEdtCreate(&exampleEdtGuid , exampleTemplGuid , EDT PARAM DEF, NULL, EDT PARAM DEF, NULL,
EDT_PROP_NONE, NULL_GUID, &exampleEventGuid);

// Create AWAIT EDT
ocrGuid_t awaitingTemplGuid, awaitingEdtGuid;
ocrEdtTemplateCreate(&awaitingTemplGuid , awaitingEdt, 0 /«paramcs/, 1 /xdepc+/);
ocrEdtCreate(&awaitingEdtGuid , awaitingTemplGuid , EDT_PARAM_DEF, NULL, EDT_PARAM_DEF,
NULL,
EDT_PROP_NONE, NULL_GUID, NULL) ;

OCR Examples 71

72

63

ocrAddDependence (exampleEventGuid , awaitingEdtGuid , 0, DB_DEFAULT MODE) ;

// START Middle EDT
ocrAddDependence (db1Guid, exampleEdtGuid, 0, DB_DEFAULT MODE) ;

return NULL_GUID;

A.7.1.1. Details

The mainEdt creates two datablocks (db0Guid and db1Guid). Then it sets the content of
dbO0Guid to be an user-define value, while the content of db1Guid is set to be the guid value of
db0Guid. Then the runtime creates an EDT (exampleEdtGuid) that takes one input
dependence. It creates another EDT (awaitingEdtGuid) and makes it dependent on the
satisfaction of the exampleEdtGuid’s output event (exampleEventGuid). Finally, mainEdt
satisfies the dependence of exampleEdtGuid with the datablock db1Guid.

Once exampleEdtGuid starts executing function “exampleEdt”, the contents of db1Guid are
read. The function then retrieves the guid of datablock db0Guid from the contents of db1Guid.
Now in order to read the contents of db0Guid, the function satisfies the output event with
dbOGuid.

Inside the final EDT function “awaitingEdt”, the contents of db0Guid can be read. The function
prints the content read from the datablock and finally calls “ocrShutdown”.

OCR - Version 0.9 — September 2014

B. OCR Change History

September 2014 Release of OCR 0.9 including the first version of this specification.

73

	Introduction
	Scope
	Glossary
	Execution Model
	OCR Platform
	OCR objects
	Trigger rule
	OCR program execution

	Memory Model
	Organization of this document

	OCR API Documentation
	Module Index
	Modules

	Data Structure Index
	Data Structures

	Module Documentation
	OCR extensions/experimental APIs
	Affinity extension
	OCR used as a library extension
	Interface for runtimes built on top of OCR
	Data-block management for OCR
	Event Management for OCR
	Event Driven Task API
	OCR dependence APIs
	Limited `¨standard`¨ API for OCR
	Types and constants used in OCR
	General types and constants
	Types and constants associated with data blocks
	Types and constants associated with EDTs
	Types and constants associated with events
	Support calls for OCR

	Data Structure Documentation
	ocrConfig_t Struct Reference
	ocrEdtDep_t Struct Reference

	OCR Examples
	OCR's ``Hello World!''
	Code example

	Expressing a Fork-Join pattern
	Code example

	Expressing unstructured parallelism
	Code example

	Using a Finish EDT
	Code example

	Accessing a DataBlock with ``Intent-To-Write'' Mode
	Code example

	Accessing a DataBlock with ``Exclusive-Write'' Mode
	Code example

	Acquiring contents of a DataBlock as a dependence input
	Code example

	OCR Change History

