
 Develop correctness tools for a large spectrum of
programming and execution models: PGAS, MPI,
dynamic parallelism
 Explore state-of-the-art techniques that use dynamic

analysis
 Develop precise tools with no more than 2x run-time

overhead at large scale

 Novel approaches to assist with debugging
 Use minimal amount of concurrency to reproduce bug
 Support two-level debugging of high-level abstractions
 Detect causes of floating-point anomalies and determine

the minimum precision needed to fix them

 Reproducible concurrency bugs and floating-point
behavior
 Identify sources of non-determinism in executions
 Concurrency bugs include data races, atomicity violations,

and deadlocks

Message Passing Concurrency

 MPI is ubiquitous
 MPI processes communicate with messages only
 Usually no data races between processes

 Data races may occur
 Between local memory accesses and communication

operations (ISend/IRecv)
 Between communication operations (Send/Recv)

 MPI-3 introduces one-sided communication and
non-blocking collectives

Example: Dynamic Analysis of UPC Programs
(See our SC’11 paper)

 Efficient Data Race Detection for UPC
 Thread Interposition Library and Lightweight Extensions
 Framework for active testing UPC programs

 Instrument UPC source code at compile time
 Using macro expansions, add hooks for analyses

 Phase 1: Race detector
 Observe execution and predict which accesses may

potentially have a data race
 Filtering and sampling to reduce communication costs

 Phase 2: Race tester
 Re-execute program while controlling the scheduler to

create actual data race scenarios predicted in phase 1

Extensions to Hybrid Programming Models

 PGAS (or MPI) for inter-node, shared-memory
for intra-node

 Challenge: tracing all memory accesses
 Research heuristics for reducing impact of

instrumentation

Current Techniques for Finding Anomalies

 Altering rounding mode of floating-point
arithmetic hardware
 May not normally be usable to remedy the problems

 Extending precision of floating-point computation
 May increase run-time significantly

 Using interval arithmetic
 Produces a certificate, but run-time cost is the greatest

Common Anomalies

 Rounding error accumulations
 Conditional branches involving floating-point

comparisons
 May go astray due to the subtleties of floating-point

arithmetic (e.g., NaN values)
 Convergence misbehavior

 Under/overflows, resolution of ill-conditioned
problems
 Result may be wrong

 Benign vs. catastrophic cancellations

Corvette: Program Correctness, Verification and Testing for Exascale
Koushik Sen and James Demmel (UC Berkeley) Costin Iancu (LBNL)

1. Motivation

 High performance scientific computing
 Exascale: O(106) nodes, O(103) cores per node
 Productivity requires asynchrony and “relaxed” memory

consistency
 Non-deterministic execution is likely to cause hard to

diagnose correctness and performance bugs

 Limited usage of testing and correctness tools
 Tools are hard to find and use for HPC
 Tools for multi-threaded programs ported to distributed

systems do not scale

 Scientific applications are also difficult to debug
 Floating-point programs in particular
 Numerical exceptions (anomalies) can cause rare but

critical bugs that are hard for non-experts to detect and fix

4. Floating-Point Support3. Distributed Memory Support

2. Goals

Approach: Automated Delta Debugging

 Like binary search
 Find a local minimal set

of changes so that the
result remains within a
given threshold

Project website: https://crd.lbl.gov/organization/computer-and-data-sciences/future-technologies/projects/corvette

