
High Performance
Languages

Original Charter
After a long era of only one new dominant programming
language per decade (FORTRAN in the 60s, C in the 70s, C+
+ in the 80s, and Java in the 90s), there is a resurgence of
new languages. Languages such as Go, Swift, Hack, Rust,
Julia, Scala and Dart are only a few years old, but are already
used by thousands of programmers.
Another promising trend is domain specific languages
(DSLs). How will these trends affect high performance
computing? Can high performance language(s) solve many of
the productivity and performance portability issues burdening
high performance computing? How can we make this a
reality?

�Completely new syntax, semantics, need to be learned
Embedded DSLs are not that different from libraries (extended libraries)
Marketing issues - DSL has the dreaded ‘L’. Rename to smart libraries (Milind is right!)

�New (i.e. untested/buggy) compiler
�Build and link issues (need to be interoperable with the rest of the code)
�Debugger (is there debugging support?)
�Interoperability between languages

Is there a ABI or native interface
Can data be exchanged (managed vs. direct)
Resource sharing (will multiple components coexist?)

In the single threaded world, libraries time-multiplexed, i.e. easily interoperable. But in
complex parallel environments, this advantage is gone

�Support
How close is the collaboration with the technology developers

�Risk in case of an early demise?
A black box, if it breaks, can make the entire system useless
Source-to-source can partially mitigate (i.e. will work, perhaps slowly, without the technology)
Accessibility -- if the app. person is comfortable that they can fix a problem (libraries have an

advantage over languages)

Risk Factors in Adopting a New
Language
(compared to adopting a library)

Rewrite vs. Incremental
Adoption
Benefit of complete rewrite may be greater, e.g. LLNL effort
to transition from vector to MPP; out of ten app teams, four
chose a complete rewrite, and others chose incremental
adoption to preserve existing approaches. All the ‘rewrite’
applications demonstrated much greater performance
improvements than the ‘incremental’ applications. (ref.
Industrial Strength Parallel Computing).

Today we face similar uncertainty over major technology
changes.

Evaluating Proposed
Technologies
●  Can the software technology provider demonstrate that they have an

application partner for whom the risk/reward proposition is attractive?
Having closer interaction between language developers and
application users is a must.

●  Are there quality standards that language developers can work to
meet to ensure adoption by labs and other users?

●  Support for infrastructure to do the exploration and development of
language / compiler / runtime?

●  How to develop confidence in quality of the model and
implementation?

●  How can features of new languages be incorporated into existing
languages/standards?

How to lower (real/perceived)
barrier to entry? Hackathons: 2-3 day efforts to try out new approach on a real-world

problem

National center for evaluation: longer-running projects to evaluate
approaches on large, real-world applications

Embedding graduate students with application teams

Funding for ‘micro-interactions’: ~3 month mini-project for technology
stakeholder (language researchers) to collaborate with science
stakeholder (application developers).
Outcomes: learning about application/technology requirements;
integration of code into application; performance evaluation; proposal
for future collaboration (or reasons why not!)

