
Traleika Glacier

Shekhar Borkar
Acknowledgment: TG Team

Intel Corp.
May 28, 2014

1



2

• Technology outlook and challenges
• Vision & Status
• SW Stack for both:

– Evolutionary & Revolutionary approaches
• Open community runtime for research
• Applications and results
• Summary

Outline



3

Exascale Technology Challenges
NTV Logic & Memory for low energy

1

101

103

104

102

10-2 

10-1

1

101

102

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Supply Voltage (V)

M
ax

im
um

 F
re

qu
en

cy
 (M

Hz
)

To
ta

l P
ow

er
 (m

W
)

320mV

65nm CMOS, 50°C

320mV

Su
bt

hr
es

ho
ld

 R
eg

io
n

9.6X

65nm CMOS, 50°C

10-2 

10-1

1

101

0

50

100

150

200

250

300

350

400

450

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Supply Voltage (V)

En
er

gy
 E

ffi
ci

en
cy

 (G
O

PS
/W

at
t)

A
ct

iv
e 

Le
ak

ag
e 

Po
w

er
 (m

W
)

Break the Vmin barrier
FPU, logic & latches
Register Files,
SRAM

Hierarchical, heterogeneous IC fabric
Busses
X Bars
Circuit & Packet 
Switched

Fine grain energy & power management
Voltage Regulator
Buck or Switched Cap
Power gating, frequency control

Extreme parallelism O(billion)

Programming model
Data locality
Legacy compatibility

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1986 1996 2006 2016

G

Tera

Peta

36X

Exa

4,000X
Concurrency

2.5M X

Transistor Performance

New introspective execution model
Tiny threads
Synchronization
Dynamic scheduling
Runtime system

Self awareness
Observation based
Monitor, continuously adapt
Objective function based 
runtime optimization

Action

System level resiliency researchData movement becomes expensive

6X compute vs 60% interconnect energy

0
0.2

0.4
0.6
0.8

1

1.2

45 32 22 14 10 7

Re
la

tiv
e

Technology (nm)

Compute Energy

Interconnect Energy



4

Straw-man HW System Architecture

Switch CabinetExascale System (2022)

1 EF Peak, 20 MW

Cabinet



5

X-Stack (TG) Software Stack

FSim - TG 
Architecture

Low-level 
compilers

Platforms

OCR 
implementations

LLVM

OCR targeting TG

Reservoir

ETI
U Del

C, Array 
DSL CnC Hero 

CodeHC

CnC
Translator

HC 
CompilerR-Stream

HTA

PIL

UIUC Reservoir Rice U UIUC
UC–San Diego
Ore. State U

Programming 
platforms

OCR API + Tuning Annotations
Open 
Community 
Runtime

Rice U

x86

GCC

OCR 
targeting x86

Cluster

Evaluation 
platforms



6

Legacy Support

Linux

Product 
Platform
Product 
Platform

Bare Metal 
Shim

Bare Metal 
Shim

Prototype(s)

Evolutionary Ecosystem Revolutionary Environment

C C++ FortranPy

HTA

OCL2OCL2

CNC

Translators

Tuning 
Guides
Tuning 
Guides

Low-level 
compiler
Low-level 
compiler

MPI OMP OCL1TBB

HabC

Open 
Community 
Runtime

Event driven
Resiliency support
Introspection 
Adaptation
Async support

Posix
Subset

Minimal syscall(),
libC, libFortran, 
libM, libstdc++

Bootstrap, 
Gradual migration

Step 3



7

Software Components Put Together for Evaluation

7

Energy Efficiency
Data locality

Resiliency

Energy Efficiency
Data locality

ResiliencyAlgorithms and 
Applications

Algorithms and 
Applications

High level notations 
Compiler 

Transformations
Separation of domain 
specification & tuning

High level notations 
Compiler 

Transformations
Separation of domain 
specification & tuningPGM SystemPGM System

Generate codeGenerate code
Tools

Low level Compilers, 
LLVM

Tools
Low level Compilers, 

LLVM

Dynamic scheduling
Self-aware, Fine grain 
resource management

Resiliency manager

Dynamic scheduling
Self-aware, Fine grain 
resource management

Resiliency manager

System SW
Exec Model, Open 

Runtime

System SW
Exec Model, Open 

Runtime

Separation of concerns
Large local stores

Sensors: self-awareness
Fine grain E management

Separation of concerns
Large local stores

Sensors: self-awareness
Fine grain E management

Straw-man System 
Architecture

Straw-man System 
Architecture

HW/SW co-design
Reactive & proactive

HW/SW co-design
Reactive & proactive

ResiliencyResiliency

Native & target code 
execution, PMU

Statistics

Native & target code 
execution, PMU

Statistics

Simulators, Tools
Behavioral, Functional
Simulators, Tools
Behavioral, Functional

User 
Defined 

Objective



8

mainEdt

fibIterEdt

fibIterEdt

fibIterEdt

sumEdt

N

finishEdt

N-2N-1

Dataflow-inspired Programming Model

EDT

Datablock
Create

Event sL2

AU
iL1

sL1

dL1

AU
iL1

sL1

dL1

AU
iL1

sL1

dL1

AU
iL1

sL1

dL1

AU
iL1

sL1

dL1

AU
iL1

sL1

dL1

AU
iL1

sL1

dL1

AU
iL1

sL1

dL1

Runtime maps the constructed
data-flow graph to architecture

Event driven tasks



9

• A research platform to evaluate revolutionary 
concepts
– Event driven programming model
– Introspection based resource management
– Self-awareness
– Resiliency

• Provides framework for future research
• Provides a reference implementation
• Provides runtime statistics for evaluation

– Energy consumption
– Data movement and computation

Open Community Runtime—Research Platform

Intel 2014



10

OCR modules



11

EDT Profiling using OCR

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

0 20 40 60 80 100

Re
ad

s,
 W

rit
es

 =
 B

yt
es

Fl
oa

tin
g 

Po
in

t O
ps

 =
 C

ou
nt

TileSize

Sequential_cholesky() EDT Bytes read

Bytes written

FP Ops

• Runtime statistics to evaluate benefits of the new approach



12

Introspection-based Projection

0

2

4

6

8

10

12

14

16

SCF-NWCHEM Cholesky Lulesh Conjugate
Gradient

Embarrassingly
Parallel

Fourier
Transform

Integer Sort LU Solver Multi-Grid

W
ei

gh
te

d 
N

or
m

al
ize

d 
Pr

oj
ec

tio
n 

RM
S 

Er
ro

rs
 (%

) Instr Count
FP Ops
Reads

Acknowledgment: Chih-Chieh Yang, Adam Smith (NAS), Roger Golliver (LULESH), Jamie Arteaga (SCF)

Two phases

Three modes

• Introspection based resource management looks promising

Lower 
is 

better



13

OCR on 32-Thread SNB (Reservoir)

• Incomplete OCR implementation (no data blocks)
• Simple work-stealing scheduler
• Still… OCR is comparable or better than OMP in several benchmarks

0.1

1

10

100

DIV-3D-1 FDTD-2D GS-3D-27P JAC-3D-27P LUD P-Matmult Poisson STRSM

Re
la

tiv
e 

pe
rfo

rm
an

ce
 (O

CR
 v

s O
M

P)
Performance comparison (OCR/OMP)

1T 8T 16T 32T

(Shows a few benchmarks, for details please contact Reservoir Labs)



14

Thread Scaling with OCR (OR State University)

• Large data-blocks limit performance gains
• OSU scheduler (with back-off) increases 

performance due to fewer work-stealing 
attempts (less work present)

• Small data-blocks provide better speedup
• Runtime overhead seems to manifest 

itself 



15

• Hand-written OCR:
– Cholesky (ETI)
– CoMD (UCSD)
– FFT (Oregon State)
– HPCG (Oregon State and, separately, UCSD)
– Lulesh 1.x (Roger Golliver)
– SAR (Roger Golliver)
– Stream (Oregon State)

• Written in CnC (Nick Vrvilo):
– Smith-Waterman
– Cholesky

• Written in HTA (UIUC):
– Subset of NAS benchmarks (CG, FFT, Integer sort, LU decomposition, 

Multigrid solver) (UIUC)
• Several converted from RStream (Reservoir)

Applications Evaluated on TG Stack with OCR



16

• TG SW Stack established
• Supports evolutionary & revolutionary 

approaches
• Open community runtime makes progress
• Results from applications look promising

Summary


