Dynamic Exascale Global Address Space

Katherine Yelick, LBNL PI
Vivek Sarkar & John Mellor-Crummey, Rice
James Demmel, Krste Asanovi¢c & Armando Fox, UC Berkeley
Mattan Erez, UT Austin
Dan Quinlan, LLNL
Surendra Byna, Marc Day, Tony Drummond, Paul Hargrove, Steven
Hofmeyr, Costin lancu, Khaled Ibrahim, Frank Mueller (NCSU), Leonid
Oliker, Eric Roman, John Shalf, David Skinner, Erich Strohmaier, Brian
Van Straalen, Samuel Williams, Yili Zheng, LBNL

DEGAS Mission

Mission Statement: To ensure the broad success of
Exascale systems through a unified programming
model that is productive, scalable, portable, and
interoperable, and meets the unique Exascale
demands of energy efficiency and resilience

r N ()
v Hierarchical Programming
& |\ Models)
g [Communication-Avoiding || &
I B Complers)|
& 0 Adaptive Interoperable o
= Runtimes oc
E [Lightweight One-Sided
L ~ Communication JU

XStack Review 2

DEGAS Proposal: Goals and Objectives

Scalability:
— Billion-way concurrency, thousand-way on chip with new architectures
Programmability:

— Convenient programming through a global address space and high-level
abstractions for parallelism, data movement and resilience

Performance Portability:

— Ensure applications can be moved across diverse machines using implicit
(automatic) compiler optimizations and runtime adaptation

Resilience:
— Integrated language support for capturing state and recovering from faults
Energy Efficiency:

— Avoid communication, which will dominate energy costs, and adapt to
performance heterogeneity due to system-level energy management

Interoperability:
— Encourage use of languages and features through incremental adoption

XStack Review 3

Two Distinct Parallel Programming Questions

 What is the parallel control model?

LN
Sl

data parallel dynamic single program
(singe thread of control) threads multiple data (SPMD)

 What is the model for sharing/communication?

L receive
store /v ~_
load A send
shared memory message passing

synchronization may be coupled (implicit) or separate (explicit)

4

Applications Drive New Programming Models

Message Passing Programming Global Address Space Programming
Divide up domain in pieces Each start computing

Compute one piece and exchange Grab whatever / whenever

MPI, and many libraries UPC, CAF, X10, Chapel, Fortress, Titanium,

GlobalArrays

Mechanisms,
not Policies

PGAS + Mixins

Create your;own
Blendini' treat.

Choose your favorite ice, custard
and a delicious mix-in.

A Needs Mozre y

33
O

DEGAS: Hierarchical Programming Model

Goal: Programmability of exascale applications while providing

scalability, locality, energy efficiency, resilience, and portability

* Implicit constructs: parallel multidimensional loops, global distributed
data structures, adaptation for performance heterogeneity

e Explicit constructs: asynchronous tasks, phaser synchronization, locality

Built on scalability,

performance, and

asynchrony of PGAS models
* Language experience
from UPC, Habanero-C,
Co-Array Fortran,

focus is on node model

XStack Review 7

DEGAS: Hierarchical Programming Models

Languages demonstrate DEGAS programming model

* Habanero-UPC: Habanero’s intra-node model with UPC’s inter-node model
* Hierarchical Co-Array Fortran (CAF): CAF for on-chip scaling and more

* Exploration of high level languages: E.g., Python extended with H-PGAS

Language-independent H-PGAS Features:

e Hierarchical distributed arrays, asynchronous tasks, and compiler
specialization for hybrid (task/loop) parallelism and heterogeneity

* Semantic guarantees for deadlock avoidance, determinism, etc.
* Asynchronous collectives, function shipping, and hierarchical places

* End-to-end support for asynchrony (messaging, tasking, bandwidth utilization
through concurrency)

e Early concept exploration for applications and benchmarks

XStack Review 8

DEGAS: Communication-Avoiding Compilers

Goal: massive parallelism, deep memory and network hierarchies,
plus functional and performance heterogeneity

* Fine-grained task and data parallelism: enable performance portability
 Heterogeneity: guided by functional, energy and performance characteristics
* Energy efficiency: minimize data movement and hooks to runtime adaptation
* Programmability: manage details of memory, heterogeneity, and containment
e Scalability: communication and synchronization hiding through asynchrony

H-PGAS into the Node

e Communication is all data movement

Build on code-generation infrastructure

* ROSE for H-CAF and Communication-
Avoidance optimizations

e BUPC and Habanero-C; Zoltan

e Additional theory of CA code generation

XStack Review 9

Exascale Programming: Support for Future

Atgorithms

“c shadow” 2.5D MM on BG/P (n=65,536)
100

|
2.5D Broadcast-MM ———

" Perfect Strong Scaling QZ-BDMCKAa?SgEh'\é'm ——

80 - T~ ScalAPACK PDGEMM —&—
= ! -+

- N‘*Q
Q0 -]
Q ® o 20 i\s\s_\;

ﬂ h

) , . ' Solomonik, Demmel
i A shadow J 0 .

256 512 1024 2048
< #nodes

Approach: “Rethink” algorithms to optimize for data movement

—> X
Percentage of machine peak

* New class of communication-optimal algorithms
 Most codes are not bandwidth limited, but many should be

Challenges: How general are these algorithms?

 (Can they be automated and for what types of loops?
* How much benefit is there in practice?

10

DEGAS: Adaptive Runtime Systems (ARTS)

Goal: Adaptive runtime for manycore systems that are hierarchical,
heterogeneous and provide asymmetric performance

* Reactive and proactive control for utilization and energy efficiency

* Integrated tasking and communication: for hybrid programming

e Sharing of hardware threads: required for library interoperability
Novelty: scalable control; integrated tasking with communication

» Adaptation: Runtime annotated with performance history/intentions
* Performance models: guide runtime optimizations, specialization

* Hierarchical: resource / energy InfiniBand - 8 byte Msg Throughput
* Tunable control: Locality / load balance gii — ~~Gliid
Leverages: existing runtimes gi'?.’ = 2%
e Lithe scheduler composition; Juggle éiz L e

e BUPC and Habanero-C runtimes

4 8 12 16 20 24 28 32
Cores Active

Synchronization Avoidance vs Resource Management

Management of critical resources will be more important:
* Memory and network bandwidth limited by cost and energy

* Capacity limited at many levels: network buffers at interfaces, internal
network congestion are real and growing problems

Can runtimes manage these or do users need to help?
» Adaptation based on history and (user-supplied) intent?
 Where will bottlenecks be for a given architecture and application?

Resource management is
complicated. Progress, deadlock,
etc. are much more complex (or
expensive) in distributed memory

i some edges omitted
' |

12

Lithe Scheduling Abstraction: “Harts”. Hardware Threads

POSIX Threads Harts

App 2 Hardware Partitions

App 1

Appl || /App2

Virtualized § § Harts

%-g-g% Threads » S 3 (HW Thread Contexts)
OS 0S

0 1 2 | 3 0 1 2 3

Hardware Hardware
* More accurate
* Merged resource and resource abstraction.
computation abstraction. * Let apps provide own computation

abstractions

13

DEGAS: Lightweight Communication (GASNet-EX)

Goal: Maximize bandwidth use with lightweight communication
* One-sided communication: to avoid over-synchronization

* Active-Messages: for productivity and portability

* Interoperability: with MPI and threading layers

Novelty:

* Congestion management: for 1-sided communication with ARTS
e Hierarchical: communication management for H-PGAS
* Resilience: globally consist states and fine-grained fault recovery

* Progress: new models for scalability and [y Y (“accure [cnaper |
interoperatbility T e

Leverage GASNet (redesigned)
e Major changes for on-chip interconnects Lo | | coy | | ser | | ntbana || cthermer |
e Each network has unique opportunities - - - -- -

XStack Review 14

DEGAS: Resilience through Containment Domains

Goal: Provide a resilient runtime for PGAS applications

* Applications should be able to customize resilience to their needs,
* Resilient runtime that provides easy-to-use mechanisms

Novelty: Single analyzable abstraction for resilience

* PGAS Resilience consistency model

e Directed and hierarchical preservation

* Global or localized recovery

e Algorithm and system-specific detection, elision, and recovery
Leverage: Combined superset of prior approaches

* Fast checkpoints for large bulk updates
e Journal for small frequent updates

* Hierarchical checkpoint-restart

* OS-level save and restore

e Distributed recovery

XStack Review 15

DEGAS Resilience: Research Questions

1. How to define consistent (i.e.
allowable) states in the PGAS model?

Theory well understood for fail-stop
message-passing, but not PGAS.

2. How do we discover consistent states
once we've defined them?

Containment domains offer a new
approach, beyond conventional sync-
and-stop algorithms.

3. How do we reconstruct consistent
states after a failure?

Explore low overhead techniques that
minimize effort required by
applications programmers.

Leverage BLCR, GASnet, Berkeley UPC
for development, and use
Containment Domains as prototype
API for requirements discovery

DEGAS
Resilience
Research
Areas

External Components

DEGAS: Energy and Performance Feedback

Goal: Monitoring and feedback of performance and energy for
online and offline optimization

* Collect and distill: performance/energy/timing data

 |dentify and report bottlenecks: through summarization/visualization
* Provide mechanisms: for autonomous runtime adaptation

Novelty: Automated runtime introspection

* Provide monitoring: power / network utilization

* Machine Learning: identify common characteristics |_NVIDIA C2050 (Fermi)

* Resource management: including dark silicon o rany
Leverage: Performance / energy counters o oL
* Integrated Performance Monitoring (IPM) i A7 Pt

e Roofline formalism ; .-'
 Performance/energy counters ‘- ?.Hﬁl ccccc i

XStack Review 17

DEGAS Software Stack

PyGAS Habanero-UPC H-CAF

ROSE Berkele

Energy / Performance Feedback - IPM,Roofline

Resilience Support - Containment Domains + BLCR

i Unfunded activity

DEGAS Pieces of the Puzzle

2 & i dl,

Communication-
Avoiding optimization
in Rose

Containment
Domains with
state capture

GASNet-EX to avoid
synchronization

Lithe for managing H-PGAS (C/F) for
hardware threads generating DSL code;
‘ intra node locality

management

r

XStack Review 19

Team Members

Vivek Sarkar Kathy Yelick John MC Costin lancu Paul Hargrove John Shalf Dan Quinlan

{ ol
-
'_ 19

Brian VS Yili Zheng

Tony Erich Armando Steve Surendra David Frank Sam
Drummond Strohmaier Fox Hofmeyer Bayna Skinner Mueller Williams

DEGAS Retreats Highlight and Encourage Integration

* Semi-annual 2-day meeting of entire team, stakeholders
— Application and Vendor Advisory groups

 Updates on progress, open problems, plans

* Demos showing integration of tools and driving applications

* Enforces teamwork, demos for milestones and progress metrics
* Feedback from team and stakeholders to refine goals and effort

* Long tradition of retreats at UC Berkeley
— Many successful large projects (from RAID to ParlLab)

