
PIL API
v0.4

Adam R. Smith, Chih-Chieh Yang,
David Padua

Department of Computer Science
University of Illinois
Urbana, IL 61801

May 23, 2013

Contents

1 PIL API 4
1.1 Introduction . 4

1.1.1 Supported Runtimes . 4
1.1.2 Using the PIL compiler 4

1.2 Control Flow . 5
1.2.1 Fundamental Parallel Operations 5
1.2.2 Task Graphs . 6

1.3 Data Management in PIL . 7
1.3.1 Data Availability . 7
1.3.2 Primitive Types . 7
1.3.3 Data Acquisition . 7

1.4 Writing Libraries in PIL . 11
1.5 Arrays in PIL . 12

1.5.1 Array Declaration and Allocation 12
1.5.2 Array Deallocation . 13
1.5.3 Array Accesses . 14
1.5.4 Array Dimension Indices 15
1.5.5 High Level Array Operations 16

1.6 Code Examples . 18
1.6.1 Hello World . 18
1.6.2 Parallel Hello World . 18
1.6.3 Matrix-Matrix Multiply 19
1.6.4 PIL Library Example . 20

2 SPIL:
Syntatic Sugar for PIL 22
2.1 Overview . 22
2.2 SPIL Control Constructs . 22

2.2.1 Sequential Functions . 22
2.2.2 Control Constructs . 22
2.2.3 Compound Parallel Operations 24

2.3 SPIL Arrays and Tiling . 24
2.3.1 Data Layout . 24

2.4 SPIL Task Graphs . 24

2

2.5 Code Examples . 25
2.5.1 Hello World . 25
2.5.2 Parallel Hello World . 25
2.5.3 Array Example . 25
2.5.4 Parallel Tiled Matrix-Matrix Multiplication 26

3 SPMD PIL 27
3.1 Introduction . 27
3.2 Program Execution . 27
3.3 SPMD PIL Code Examples . 30

3.3.1 Barrier Synchronization 30
3.3.2 Send/Receive . 31

Index 32

3

Chapter 1

PIL API

1.1 Introduction

The Parallel Intermediate Language (PIL) is intended to be used as the target of
parallel compilers for any parallel programming language or the implementation
language for any high level API, and it is expected that efficient code could
be generated from it for any parallel runtime. We call this the any-to-any
implementation goal. Once a program is represented in PIL, the user can choose
which parallel runtime to generate code for. This document describes the PIL
API that can be the target of a compiler of a parallel programming language,
or can be handwritten by a user.

1.1.1 Supported Runtimes

PIL can generate code for a variety of runtimes. Currently, PIL can target
sequential C (C), C with parallel OpenMP annotations (OMP), the SWARM
Codelet Association Language (SCALE), and the Open Community Runtime
(OCR).

1.1.2 Using the PIL compiler

The PIL compiler takes as input a source file written in the PIL programming
language and generates code for the specified runtime which is output to stdout.
PIL can generate code for any of the backends described in Section 1.1.1 by
specifying which backend to generate code for with the -o option. An example
to generate SCALE code can be seen here.

> pilc -o scale src.pil >out.swc

By default, if no runtime is specified with the -o option, sequential C will be
assumed.

4

1.2 Control Flow

A PIL node can be created with the following line.

node(label, index, [lower:step:upper], target,

[label1, label2, ..., labelN], func(arg1, arg2, ..., argN))

Each node must have a unique label. In PIL each node is labeled with a
unique integer chosen by the user. The label 0 is a special case that means exit
and can only be used as the target of a node.

1.2.1 Fundamental Parallel Operations

Forall

A forall loop is the easiest parallel construct to use in PIL. Each node in a PIL
graph is a forall loop. If the user wants to create a loop with only one iteration
for sequential execution, then there will only be one PIL node created for that
loop and it will execute sequentially.

Flattened Nested Forall This will allow the use of more than one index
variable in the parallel loop. The user will needs to tell us how many loops
there will be with the num loops variable. Then they will provide one index
variable, range pair for each of the loops. The general form is as follows.

node(label, num_loops, index1, index2, index3, [lower1:step1:upper1],

[lower2:step2:upper2], [lower3:step3:upper3], target,

[label1, label2, ..., label3], func(arg1, arg2, ..., arg3))

The Following example will create 2 unique values for i, 3 unique values for
j, and 4 unique values for k for a total of 2 × 3 × 4 = 24 node instances each
with a different combination of i, j, and k.

// pseudo code

forall i in [0..1] do

forall j in [0..2] do

forall k in [0..3] do

func(&target, i, j, k)

// pil code

node(1, 3, i, j, k, [0:1:1], [0:1:2], [0:1:3], target, [0],

func(&target, i, j, k))

Reductions

See Section 1.5

5

1 // global data
2 int x;
3 float y;
4 index_t i;
5 index_t j;
6 pil_target_t target;

8 // functions
9 void a(int *target) {...}

10 void b(int *target) {...}
11 void c(int *target , float y) {...}
12 void d(int *target) {...}
13 void e(int *target) {...}

15 // PIL nodes
16 node(1, i, [l:s:u], target , [1, 2, 3], a(& target))
17 node(2, j, [l:s:u], target , [2, 3], b(&target , x))
18 node(3, i, [l:s:u], target , [4], c(&target , y))
19 node(4, i, [l:s:u], target , [5, 2], d(& target))
20 node(5, i, [l:s:u], target , [0], e(& target))

Codelet 1

Codelet 2

Codelet 3

Codelet 4

Codelet 5

Figure 1.1: A sample PIL program and its task graph.

1.2.2 Task Graphs

A task graph can easily be constructed by traversing at the targets of each node.
For example the task graph in Figure 1.1 corresponds to the code in Figure 1.1.
In that example, it is easy to see that there are three outgoing edges from node
1 that go to nodes 1, 2, and 3. Outgoing edges can be determined for each of
the nodes in the graph. Currently, the first node specified in the file is the entry
node.

6

1.3 Data Management in PIL

All variables that are used as parameters in PIL nodes must be declared in the
“global” data section. All variables declared here will be available to the user
when their body function that uses the variable is executed.

1.3.1 Data Availability

Since PIL code is agnostic to the underlying runtime, the compiler must de-
termine which variables should be passed between nodes. This is achieved by
looking at the parameters of the functions associated with each node. PIL will
ensure that the data is available when the node executes. For example, the user
may want to generate code for a distributed memory machine. If the variable
they wish to access is stored in a different address space from the one their
node is currently running in they may not be able to access it. PIL will ensure
that the data is reachable in the node either automatically by the compiler or
manually by the user as described in the remainder of this section.

1.3.2 Primitive Types

PIL supports all of the primitive data types in C including, but not limited to
float, double, long double, signed/unsigned char, and signed/unsigned short/-
long/long long int. PIL also supports pointers to any of the primitive types.
However, PIL only manages access to the pointer itself and not the data it points
to. For example, if a PIL node uses a pointer void *p in a function, PIL will
only ensure that the pointer p is available for use, and not the data that it points
to, since it has no knowledge of the number of bytes pointed to by the pointer.
Any non-primitive data that is allocated in PIL should be managed with the
memory operations in Section 1.3.3. Since manual data movement can be cum-
bersome for users, we provide one of the most commonly used structures, the
Array, and provide ways to have PIL perform automatic data movement of this
structure. The built-in structure Array and its associated routines are described
in Section 1.5 and automatic data movement is discussed in Section 1.3.3.

1.3.3 Data Acquisition

Since data needs to be made available before it can be used in a node, it can
be acquired in one of two ways: it can be acquired automatically by PIL or
manually by the user. We expect that most algorithms can be formed in a way
that allows the use of automatic movment of arrays. However, if the user should
desire the lower level and more involved manual data movement operations, we
provide those as well.

Automatic Data Movement

Data movement can be handled automatically for the primitive data types in
C as described in Section 1.3.2 or for the built-in array structure described

7

in Section 1.5. The automatic data movment is implemented in terms of the
manual data movement operations described later. To provide automatic data
movement, the user can use the keywords in Table 1.1.

Table 1.1: Data movement keywords.

Keyword Description
in Consumed by the node.
out Produced by the node.
inout Consumed, changed, and reproduced by the node.

A simple example node using these keywords can be seen here.

node(1, i, [1:1:1], target, [0], f(out &target, in i))

The in directive tells the PIL compiler that the variable will be needed by
the current node, but will not be forwarded to the next node that is fired after
this one. The out directive tells the PIL compiler that the value will be needed
by the next node and the compiler should ensure that the data is available to
the next node. The inout is a combination of the in and out where the value
is used as input in the current node, modified in some way, and then needs to
be forwarded to the next node.

In this example, the variable target is an out variable since it will be pro-
duced by the node. The target variable is a special case in PIL where it is an
output of a node, but it is not necessarily and input to the next node. However,
it is needed by the PIL runtime to determine which node to fire next, and so is
output from this node to the runtime. In general, the target of a node should
usually be an out variable. The variable i is an in variable since it is needed
by the node to perform some computation. Since it is only used as input, PIL
does not need to forward to the next node.

Further examples of how to use these keywords can be found in Section 1.6.

Manual Data Movement

The automatic management of data movement described in Section 1.3.3 is
provided to the user as a convenience and for syntactic sugar. If the user wishes
to do data movement manually because they wish to have their own complex
data structures or for any other reason they may do so. The routines in Table 1.2
are provided to the user for manual data movement.

pil alloc. Memory allocation is performed with the pil alloc routine. This
is very similar to the malloc routine in the C language in that it takes as input
the number of bytes required by the user and allocates a chunk of contiguous
memory of that size. However, there is one very important distinction. The
return value of the routine is an ID. IDs are unique identifiers for a piece of
memory. Each allocation of a memory block will be assigned a new and unique
ID.

8

Table 1.2: Reduction Dimensions

Routine Description
int pil alloc(size t NumBytes) Allocate memory
void *pil mem(int id) Acquire a pointer to memory

void pil release(int id)
Notify runtime you are done
accessing memory

void pil free(int id) Deallocate memory

pil mem. IDs are needed in case the data the user wants to access is migrated
in between node executions by the runtime, since pointers by themselves contain
no information about the size of the data being pointed to. Once a user has
acquired a pointer to a memory block, they can be sure that the pointer will be
valid throughout the lifetime of the node the pointer was acquired in. However,
once the node ends, the pointer may become invalid if the data the pointer points
to is moved by the runtime. This means that all pointers must be assumed to
be invalid when a node begins to execute and that the user will need to use the
ID associated with the data block to acquire a valid pointer to the data. This
can be achieved with the pil mem routine. The user provides as input a valid
ID and the runtime will return to the user a pointer to the block associated
with that ID. The runtime also registers the block of memory as in use by the
current node to ensure that the data is not moved while the node is executing.

pil release. Before a node finishes, it must release its associations will all
acquired memory blocks. This can be done with the pil release routine.

pil free. When a user wishes to deallocate data and free it from the heap,
they may do so with the pil free routine. This routine takes as input the ID
of the memory block the user wants to deallocate.

Data serialization. Since pointers must be assumed to be invalidated when
crossing node boundaries, complex pointer based structures like the arrays de-
scribe in Section 1.5 must have each their pointers revalidated every time the
data is passed to a new node. This means that every field of a struct and every
pointer used must be passed as a separate input to nodes where they are used.
It is convenient for the user to create a serialization and deserialization routine
for any complex data structure they wish to create. Serialization routines turn
a complex data structure into a single contiguous memory block to be accessed
with a single pointer. This means that the data can all be passed as a single
memory block between PIL nodes, with a single pil mem and pil release call
for that block. As soon as the user acquires a pointer to the serialized structure,
they may call the deserialize routine to rebuild the structure to a more useful
state. Then, before the end of the node the user can serialize the data and pass
it to the next node. These serialization and deserialization routines can greatly
simplify a user’s code.

9

All of the operations of acquiring and releasing memory blocks and serializing
and deserializing data structures can be performed automatically for supported
data types as described in Section 1.3.3.

10

1.4 Writing Libraries in PIL

We provide a way for a user to write libraries in PIL. Each library operation in
PIL is relatively small collection of PIL nodes. These nodes work together to
perform some operation. We refer to a collection of PIL nodes that performs a
library operation as a PIL library routine.

In order to use PIL library routines, the user will use the pil main routine
to write their program. An example of how the control flow through a PIL
library routine can be seen in Figure 1.2. The pil main routine is the body of a
special PIL node. Each statement in this routine is executed sequentially until
the pil enter routine is encountered. At this point the PIL node associated
with the pil main routine suspends execution and the node that is specified
with the pil enter routine begins execution. The nodes associated with the
PIL library routine are executed. At the completion of the last node in the
library routine, control is passed back to the pil main function and executions
continues as normal.

If the user wishes to use the library functionality in PIL, their program will
need to be structured slightly differently from a regular PIL program. First, by
creating a pil main function in a user’s code, the user is letting the compiler
know that they will be using PIL library routines. This means that the execution
of the users program will begin with the execution of the pil main routine and
the only way to execute other PIL nodes is with calls to the bulk synchronous
PIL library routines. Secondly, the node 0 no longer exits the program. Instead,
it is used in the PIL library routine when the library routine wants to finish. It
can be thought of as a return statement in a C function.

Once the user has their library operation written as a PIL library routine,
they may write programs that use that routine many times. This can be best
used when providing a user with a prewritten package of library routines.

An example of a PIL program that uses PIL library routines can be seen in
Section 1.6.4.

11

...

graph1()

...

graph2()

int pil_main() {
 init();
 // seq code

 // seq code
}

pil_enter(graph1, …);

 pil_enter(graph2, …);

 // seq code

LibraryUser Program

Figure 1.2: Control flow when using pil enter.

1.5 Arrays in PIL

In order to handle the complex data structure of arrays, we have chosen to
provide the user with a built-in array structure. Arrays in PIL are N-dimensional
arrays that are made up of tiles.

1.5.1 Array Declaration and Allocation

To declare an array, the user will have to specify the number of dimensions of
the array, the size of each dimension, and the size of each tile. The new array

function will allocate the required space for the array and return an initialized
Array structure. The user must also specify how to store the data as described
below.

Array A1 = new_array(ROW, 1, X, N);

Array A2 = new_array(TILE, 2, X, Y, N, M);

Array A3 = new_array(SPARSE, 3, X, Y, Z, N, M, L);

Array Layout. Data in dense arrays are stored in either row-major or tile-
major data layout. Examples of these layout schemes can be seen in Figure 1.3.

12

Figure 1.3: Row-major and Tile-major data layout.

If the array is in row-major layout, each element across every row of every tile in
the array will be contiguous in memory. In other words, the entire array is laid
out such that it is in row-major order. The tiles, however, will have consecutive
rows stored in noncontiguous locations in memory. If the array is in tile-major
layout then every tile will be stored in row-major layout such that the entire tile
is in one contiguous memory block. The tiles themselves will also be laid out
in row-major order such that neighboring tiles will be in consecutive memory
blocks. However, in this layout scheme, if you access every element in a row,
the elements in each tile will be contiguous, but at the tile boundaries, the first
element of the next tile will be the start of new memory block. Alternatively,
arrays can be stored as sparse arrays. The keywords for specifying how to store
an array can be seen in Table 1.3

Table 1.3: Array Storage Schemes

Keyword Storage Scheme
ROW Row-major
TILE Tile-major
SPARSE Sparse

1.5.2 Array Deallocation

To release the memory used by an array the user will call the free array

routine.

free_array(A1);

13

1.5.3 Array Accesses

The user can use the get tile routine to get access to a specific tile in an
array. For example, to get the tile in Figure 1.4 that contains the red element,
the user would want to get tile [2,2]. The get tile routine expects the number
of dimensions of the tile as well as the tile indices.

Tile get_tile(Array A, 1, int x);

Tile get_tile(Array A, 2, int x, int y);

Tile get_tile(Array A, 3, int x, int y, int z);

Tile T2 = get_tile(A2, 2, 2, 2);

In order to find a specific element in an array we will provide macros to
access elements. Macros are needed to perform this action since the arrays may
be stored in one of the dense forms or sparse forms from Section 1.5.1. Macros
are used to alleviate the overhead of requiring functions to access elements.
Elements in an array can be accessed with a tile coordinate and indices in the
tile pair or as an absolute index into an array. For example the red element of
array C in Figure 1.4 can be accessed in either of the two ways below.

C{1,1}(1,1)
C(1,1)

C{1,1}(1,2)
C(1,2)

C{1,1}(1,3)
C(1,3)

C{1,1}(1,4)
C(1,4)

C{1,2}(1,1)
C(1,5)

C{1,2}(1,2)
C(1,6)

C{1,2}(1,3)
C(1,7)

C{1,2}(1,4)
C(1,8)

C{1,1}(2,1)
C(2,1)

C{1,1}(2,2)
C(2,2)

C{1,1}(2,3)
C(2,3)

C{1,1}(2,4)
C(2,4)

C{1,2}(2,1)
C(2,5)

C{1,2}(2,2)
C(2,6)

C{1,2}(2,3)
C(2,7)

C{1,2}(2,4)
C(2,8)

C{1,1}(3,1)
C(3,1)

C{1,1}(3,2)
C(3,2)

C{1,1}(3,3)
C(3,3)

C{1,1}(3,4)
C(3,4)

C{1,2}(3,1)
C(3,5)

C{1,2}(3,2)
C(3,6)

C{1,2}(3,3)
C(3,7)

C{1,2}(3,4)
C(3,8)

C{1,1}(4,1)
C(4,1)

C{1,1}(4,2)
C(4,2)

C{1,1}(4,3)
C(4,3)

C{1,1}(4,4)
C(4,4)

C{1,2}(4,1)
C(4,5)

C{1,2}(4,2)
C(4,6)

C{1,2}(4,3)
C(4,7)

C{1,2}(4,4)
C(4,8)

C{2,1}(1,1)
C(5,1)

C{2,1}(1,2)
C(5,2)

C{2,1}(1,3)
C(5,3)

C{2,1}(1,4)
C(5,4)

C{2,2}(1,1)
C(5,5)

C{2,2}(1,2)
C(5,6)

C{2,2}(1,3)
C(5,7)

C{2,2}(1,4)
C(5,8)

C{2,1}(2,1)
C(6,1)

C{2,1}(2,2)
C(6,2)

C{2,1}(2,3)
C(6,3)

C{2,1}(2,4)
C(6,4)

C{2,2}(2,1)
C(6,5)

C{2,2}(2,2)
C(6,6)

C{2,2}(2,3)
C(6,7)

C{2,2}(2,4)
C(6,8)

C{2,1}(3,1)
C(7,1)

C{2,1}(3,2)
C(7,2)

C{2,1}(3,3)
C(7,3)

C{2,1}(3,4)
C(7,4)

C{2,2}(3,1)
C(7,5)

C{2,2}(3,2)
C(7,6)

C{2,2}(3,3)
C(7,7)

C{2,2}(3,4)
C(7,8)

C{2,1}(4,1)
C(8,1)

C{2,1}(4,2)
C(8,2)

C{2,1}(4,3)
C(8,3)

C{2,1}(4,4)
C(8,4)

C{2,2}(4,1)
C(8,5)

C{2,2}(4,2)
C(8,6)

C{2,2}(4,3)
C(8,7)

C{2,2}(4,4)
C(8,8)

Figure 1.4: The two different ways to access elements in an 8x8 array with 2x2 tiles.

int get_element(Array A, int numDim, Idx i, Idx j, ..., Idx N);

int c = get_element(C, 2, 5, 5);

14

// in Array C with 2 dimensions, access in tile [2,2] element [1,1]

int c = get_element_tiled(C, 2, 2, 2, 1, 1);

Similarly, we provide macros to write to an array.

int write_element(Array A, float val, int numDim, Idx i, Idx j, ..., Idx N);

write_element(C, c, 2, 5, 5);

// in Array C with 2 dimensions, write the value c

// in tile [2,2] element [1,1]

write_element_tiled(C, c, 2, 2, 2, 1, 1);

Dense array optimization.

The ways to access elements in an array described above will work for an array
with any layout scheme. However, due to the overhead and verbosity of these
functions, we expect their usage to be limited mostly to sparse arrays. We also
provide macros to turn array indices in dense arrays into the explicit index in
the array storage. We provide these macros for two and three dimensions.

int Index2D(Array A, Idx i, Idx j);

int Index3D(Array A, Idx i, Idx j, Idx k);

int IndexTiled2D(Array A, TIdx x, TIdx y, Idx i, Idx j);

int IndexTiled3D(Array A, TIdx x, TIdx y, TIdx z, Idx i, Idx j, Idx k);

To access the element at location A[i,j] the user can write the following
code.

A.data[Index2D(A, i, j)]

The array A must be passed to the macro Index2D so the macro can make
the appropriate calculation based off of the data layout of array A, which is a
filed in the array structure. The return value of the macro is the index into the
one dimensional array storage field data.

Examples on how to use these macros can be seen in Section 1.6.

1.5.4 Array Dimension Indices

Table 1.4 shows the translation from a dimension index to the corresponding di-
mension. In this document whenever accessing an array with an index variable,
we always use the same index variable with the same dimension. For example,
we will always use i when accessing the X dimension. In some instances it is ap-
propriate to specify either a negative or positive array index value. For example,
in the circshift routine described in Section 1.5.5, array values can be shifted
to the right by one by specifying a circular shift with the array dimension 1.
Similarly, the values could be shifted to the left by one by specifying a circular
shift with the array dimension -1.

15

Table 1.4: Array Dimension Indices

Number Dimension Index
0 X i
1 Y j
2 Z k

repmat(A, 1, 3)

circshift(A, 0, -1)

transpose(A)

reduce(A, 0, MUL)

Figure 1.5: Array operations

1.5.5 High Level Array Operations

The operations on an array in Figure 1.5 will be provided along with PIL as
a collection of PIL library routines. If the user writes code with the library
style of PIL, they will have access to them by default. They are expressed to
the user as a regular C function, but underneath will be implemented as PIL
library operations.

Array Serialization

In order to facilitate the transfer of data across nodes, all data must be serialized.
We provide built-in routines for the serialization and deserialization of arrays
in PIL. The serialize array routine takes as input an Array and produces
a pointer to a serialized buffer that contains the contents of the array. The

16

deserialize array routine takes as input a pointer to a buffer that contains a
serialized array and returns an Array constructed from the buffer.

void *serialize_array(Array);

Array deserialize_array(void *);

The user should never have to explicitly call these routines, but they should
know that they exist, and, more importantly, that all data in PIL must be
serializable to be transferred between nodes. If the user should wish to create
their own data structures, they will have to create their own serialization and
deserialization routines for that data structure. PIL automatically takes care
of the serialization, deserialization and data transfer of arrays as described in
Section 1.3.3. The manual movement of data is discussed in Section 1.3.3.

17

1.6 Code Examples

1.6.1 Hello World

global data

int i;

int target;

body functions

void f(int *target)

{

printf("Hello World!\n");

*target = 0;

}

pil nodes

node(1, i, [1:1:1], target, [0], f(&target))

1.6.2 Parallel Hello World

global data

int i;

int target;

body functions

void f(int *target, int i)

{

printf("Hello from node %d!\n", i);

*target = 0;

}

pil nodes

node(1, i, [0:1:9], target, [0], f(&target, i))

18

1.6.3 Matrix-Matrix Multiply

int i;

int X;

int Y;

int target;

int argc;

char **argv;

Array A;

Array B;

Array C;

void setup(int *target, int argc, char **argv, int *X, int *Y,

Array *A, Array *B, Array *C) {

int Z;

// read command line paramaters for X, Y, Z

read_command_line(argv, argc, X, Y, &Z);

// generate data for A, B. Set C to 0s.

initialize_arrays(A, B, C, *X, *Y, Z);

*target = 2;

}

void multiply(int *target, int i, int j, Array *A, Array *B, Array *C) {

int k;

for (k = 0; k < A->numcols; k++) {

C->data[Index2D(C,i,j)] += A->data[Index2D(A,i,j)] * B->data[Index2D(B,i,j)];

}

*target = 3;

}

void cleanup(int *target, Array *C) {

/* use result in C */

*target = 0;

}

node(1, i, [1:1:1], target, [2], setup(out &target, in argc,

in argv, out &X, out &Y,, out &A, out &B, out &C));

node(2, 2, i, j, [0:1:X], [0:1:Y], target, [3],

multiply(out &target, in i, in j, in &A, in &B, inout &C));

node(3, i, [1:1:1], target, [0], cleanup(out &target, in &C));

19

1.6.4 PIL Library Example

In this example we create three library functions in PIL. Each is a simple col-
lection of two PIL nodes. While this example was kept simple to be contained
in this document, it is easy to see how having a collection of several PIL nodes
into a library function could be implemented.

#define ADD 10

#define MMM 20

#define INIT 30

int i;

int X;

int Y;

int target;

Array A;

Array B;

Array C;

int val;

void add_enter(int *target, int *X, int *Y, Array *A) {

*X = A->numrows;

*Y = A->numcols;

*target = 11;

}

void add(int *target, int i, int j, Array *A, Array *B, Array *C) {

C->data[Index2D(C,i,j)] = A->data[Index2D(A,i,j)] + B->data[Index2D(B,i,j)];

*target = 0;

}

void mmm_enter(int *target, int *X, int *Y, Array *A) {

*X = A->numrows;

*Y = A->numcols;

*target = 21;

}

void multiply(int *target, int i, int j, Array *A, Array *B, Array *C) {

int k;

for (k = 0; k < A->numcols; k++) {

C->data[Index2D(C,i,j)] += A->data[Index2D(A,i,j)] * B->data[Index2D(B,i,j)];

}

*target = 0;

}

void init_enter(int *target, int *X, int *Y, Array *A) {

*X = A->numrows;

*Y = A->numcols;

*target = 31;

}

void init(int *target, int i, int j, Array *A, int val) {

A->data[Index2d(A,i,j)] = val;

*target = 0;

}

20

node(10, i, [1:1:1], target, [11],

add_enter(out &target, out &X, out &Y, in &A));

node(11, 2, i, j, [0:1:X], [0:1:Y],

add(out &target, in i, in j, in &A, in &B, out &C);

node(20, i, [1:1:1], target, [21],

mmm_enter(out &target, out &X, out &Y, in &A));

node(21, 2, i, j, [0:1:X], [0:1:Y], target, [0],

multiply(out &target, in i, in j, in &A, in &B, out &C));

node(30, i, [1:1:1], target, [31],

init_enter(out &target, out &X, out &Y, in &A));

node(31, 2, i, j, [0:1:X], [0:1:Y], target, [0],

init(out &target, in i, in j, in &A, in val));

void pil_main() {

A = new_array(2, 10, 10);

B = new_array(2, 10, 10);

C = new_array(2, 10, 10);

// note: sequential code is allowed between each

// pil_enter call if desired

pil_enter(INIT, 2, A, 1); // set A to all 1s

pil_enter(INIT, 2, B, 2); // set B to all 2s

pil_enter(INIT, 2, C, 0); // set C to all 0s

pil_enter(MMM, 3, C, A, B); // C = A * B

pil_enter(ADD, 3, B, C, A); // B = C + A

}

21

Chapter 2

SPIL:
Syntatic Sugar for PIL

2.1 Overview

In this chapter we describe a high level language for parallel computation called
Structured PIL (SPIL) . This high level language has a source-to-source compiler
that generates PIL code. Once the PIL code has been generated, it can then be
targeted to any of the runtimes that PIL supports as described in Chapter 1.

2.2 SPIL Control Constructs

In general, programs in SPIL are written as two sections. The first is a collection
of functions that perform the work of the program. The second is a recipe for
how the functions should be executed with various control constructs.

2.2.1 Sequential Functions

All functions in SPIL are to be written as valid sequential C functions. There will
be one special function called spil main that will contain all parallel constructs.

2.2.2 Control Constructs

Sequential Execution

The user can write sequential code in SPIL as either a single function or a
sequence of functions. By default, if no information is given at the end of
execution of a function, the next function in the program is executed.

func1();

func2();

func3();

22

Conditional Statements

If the user wants to conditionally execute code to specify which function should
be executed next instead of the next function in the program, the user can use
the case statement.

case f()

0: g()

1: h()

In this example, the function f will return a value that specifies which of the
cases to return next. If g should be executed, f should return 0. If h should be
executed, f should return 1. With this construct the user can have an arbitrary
number of options for functions to execute next. The number for cases should
begin at 0 and proceed incrementally.

Loops

Loop ranges. A user can specify a range of values with a triplet l:s:u . In
the example below, l is the lower bound, u is the upper bound, and s is the
step for the loop bounds. All three values are required for a loop range. The
step can be negative if desired.

While loops. The user can write loops in SPIL with a while loop. The
condition function c must return an integer. A return value of 0 will fail the
condition check and the loop body will not be executed. A nonzero value will
succeed and the loop body will execute. The body of the loop is a collection
of statements that will execute in order. Upon completion of the body, the
condition function is executed again and the return value checked.

while c() {

func1();

forall i in 0:1:N-1 do func2();

func3();

}

For loops. The user can write loops in SPIL as with a for loop. For loops
are similar to while loops, but an explicit loop range is specified for a loop index
variable. The index variable can be used in the loop body.

for j in 0:1:N-1 {

func1();

forall i in 0:1:j do func2();

func3();

}

23

Parallel Forall Loops

Parallel execution of functions can be achieved with the parallel forall loop.
Forall loops can only have a single function as the body of the loop. Any
necessary arguments must be passed to the function as parameters. There will
be a single function implemented for each forall loop body.

forall i in l:s:u do func();

2.2.3 Compound Parallel Operations

Compound parallel constructs such as reduce, repmat, circshift, and transpose
will not be primitive operations in SPIL, but can easily be constructed with a
combination of constructs in Section 2.2.2. These operations are provided as
library routines that can be called in a users program.

2.3 SPIL Arrays and Tiling

The only data structure in SPIL are the Array and the Tile . Arrays in SPIL
will be constructed as a collection of tiles.

// one dimensional tile with 10 elements

Tile T1 = new_tile([10]);

// two dimensional tile with 4x4 elements

Tile T2 = new_tile([4, 4]);

// 2x2 tiles of 4x4 elements each stored in row-major layout

Array A2 = new_array([2, 2], [4, 4], ROW);

2.3.1 Data Layout

Data layout of Arrays in Tiles in SPIL is achieved through the formats supported
in PIL. Please refer to Section 1.5.1 for more information.

2.4 SPIL Task Graphs

Should the user find that these new syntactic constructs do not fit their needs
for any reason, they may insert a section of PIL code into their SPIL code.
This is achieved by allowing the use of the pil enter routine to call PIL li-
brary routines. This allows existing PIL library routines to be called from SPIL
and arbitrarily complex task graphs to be created in SPIL. Please refer to Sec-
tion 1.2.2 for more information about task graphs and Section 1.4 for more
information on writing libraries in PIL.

24

2.5 Code Examples

2.5.1 Hello World

void hello() {

printf("Hello World!\n");

}

void spil_main() {

hello();

}

2.5.2 Parallel Hello World

void hello(int i) {

printf("Hello from %d!\n", i);

}

void spil_main() {

forall i in 0:1:9 do hello(i);

}

2.5.3 Array Example

void init(int *N, Array *A2) {

// initialize N and A2

}

// There are N instance of work() called. One for each value of i.

void work(Array A2, int i) {

// perform computation on A2

}

void func3(Array A2) {

// use result in A2

}

void spil_main() {

int N;

Array A2 = new_array([2, 2], [4, 4], ROW);

init(&N, &A2);

forall i in 0:1:N-1 do work(A2, i);

finalize(A2);

}

25

2.5.4 Parallel Tiled Matrix-Matrix Multiplication

// This is here for completion. It could be replaced with a call to MKL

// or some other efficient GEMM.

void gemm(Tile c, Tile a, Tile b, int TS) {

int i, j, k;

for (i = 0; i < TS; i++)

for (j = 0; j < TS; i++)

for (k = 0; k < TS; k++)

c[i,j] += a[i,k] * b[k,j];

}

// There is one instance of matmul for each thread/codelet that iterates

// through the tiles to calculate the tile C[i,j] they are assigned.

void matmul(Array C, Array A, Array B, int i, int j, int NT, int TS) {

int k;

c = get_tile(C, i, j);

for (k = 0; k < NT; k++) {

a = get_tile(A, i, k);

b = get_tile(B, k, j);

gemm(c, a, b, TS);

}

}

void spil_main() {

int TS = TILE_SIZE;

int NT = NUM_TILES;

Array A = new_array([NT, NT], [TS, TS], TILE);

Array B = new_array([NT, NT], [TS, TS], TILE);

Array C = new_array([NT, NT], [TS, TS], TILE);

// initialize A, B. Set C to 0.

forall i in 0:1:NT-1, j in 0:1:NT-1 do matmul(C, A, B, i, j, NT, TS);

}

26

Chapter 3

SPMD PIL

3.1 Introduction

SPMD PIL is an extension of PIL to support programming in distributed mem-
ory environment. In this programming model, all Processing Elements (PE)
execute the same code independently, and collaboration among PEs is achieved
by programmers explicitly specifying where to communicate and synchronize.
PEs manage computational data locally, and programmers are responsible for
writing the algorithm in a way that each execution instance is able to derive
information about the source and destination.

Section 3.2 describes the execution flow of SPMD PIL and the new key-
words and API functions. Section 3.3 are short examples of how SPMD PIL
applications can be written.

3.2 Program Execution

The typical execution flow of SPMD PIL programs starts from pil main()

function. All PEs in the system execute independently before a call to enter
some PIL node is made, which transfers the control flow to the PIL node se-
lected. All PEs keep running independently while executing a PIL node, until
communication APIs are called or encountering the function exit.

In the case of communication, PIL node execution continues without block-
ing until it exits the function, where the execution is suspended. The completion
of communication will trigger the PE to execute the continuation function. At
this point, data is received in buffer and computation that depends on it can be
performed. For barrier synchronization, the execution continues when all PEs’
executions reach the barrier.

27

int i;

int target_id;

_pil_node foo void f(int *target_id) {

_pil_context int data;

/* Perform computation */

pil_recv(src, &data, sizeof(int), recv);

}

_pil_nodelet foo void recv(int *target_id) {

/* Perform computation after receiving data */

}

node(1, i, [0:1:2], target_id, [0], foo(&target_id))

void pil_main(int argc, char ** argv) {

pil_enter(1, 0);

}

Figure 3.1: Short example of SPMD PIL.

P1 P2
pil_main

foo

pil_main

recv

Figure 3.2: Execution flow of SPMD PIL with communication among PEs.

Figure 3.1 is a pseudo code example, and Figure 3.2 illustrates the execution
flow. In this example, both PEs execute pil main() in the beginning, and then
enters PIL node 1, which invokes function foo marked with keyword pil node.
This keyword is newly added for indicating the functions used in SPMD mode.
In a call to a communication or synchronization API function, programmer can
optionally mark a function with keyword pil nodelet for invocation when
the corresponding communication function is completed (in this case, the recv

function) to continue unfinished computation tasks. Control is transferred back
to pil main() when foo and its pairing nodelet function recv both finish.

In a pil node function, programmers can add a modifier pil context

at the beginning of a variable definition to tell PIL compiler that the variable
belongs to program context that has to be passed to nodelet functions. Variables
without this modifier are treated as ordinary stack variables, and their lifetime

28

ends when pil node function exits, while variables stored in program context
are accessible in the corresponding pil nodelet function.

The following is the description of new communication and synchronization
APIs added for SPMD PIL.

pil get nwID. By calling this function, an execution instance can get an in-
teger ID to identify which PE it runs on. Different decisions can be made
according to the ID. For example, consider performing a circular shift opera-
tion on a distributed array in the system. Each execution instance can set the
destination ID to be an incremented value of its own ID.

pil barrier all. This is an implementation of a global barrier among all PEs.
All the execution instances have to reach the barrier before any of them contin-
ues. Programmers may specify a continuation nodelet function to deal with the
work that needs to be done after the barrier. Currently, this is the only way to
explicit synchronize. We are still evaluating whether there is a need to add a
synchronization function that is able to block only those PEs involved.

pil send. The function, when invoked, copies a memory object and sched-
ules a receiving codelet at the destination PE. If the code written in the same
pil node function after the line of pil send() modifies the memory object

sent, the changes will not be propagated to the receiver.

pil recv. This function is used to indicate the PE expects to receive a memory
object from some source PE in the system. A nodelet function has to be specified
as the continuation of execution, and pil context variables can be used in its
scope. No changes should be made to pil context variables or the memory
buffer allocated for receiving the data from remote PE, since the changes are
not thread-safe.

29

3.3 SPMD PIL Code Examples

3.3.1 Barrier Synchronization

// global data

int i;

int target_id;

_pil_node f void f(int *target_id)

{

fprintf(stdout, "%d: before barrier\n", pil_get_nwID());

fflush(stdout);

pil_barrier_all(bar);

}

// continuation

_pil_nodelet f void bar(int *target_id)

{

fprintf(stdout, "%d: after barrier barrier\n", pil_get_nwID());

fflush(stdout);

*target_id = 0;

}

// node declaration

node(1, i, [0:1:9], target_id, [0], f(&target_id))

void pil_main(int argc, char **argv)

{

pil_enter(1, 0);

if (pil_get_nwID() == 0)

printf("SUCCESS");

}

30

3.3.2 Send/Receive

// global data

int i;

int target_id;

_pil_node f void f(int *target_id)

{

_pil_context int num;

_pil_context size_t size;

int target = 1;

int src = 0;

size = sizeof(int);

if (pil_get_nwID() == 0)

{

num = 42;

printf("%d: sending %d to node %d\n", pil_get_nwID(), num, target); fflush(stdout);

pil_send(target, &num, size, recv);

}

else if (pil_get_nwID() == 1)

{

pil_recv(src, &num, size, recv);

}

*target_id = 0;

}

// continuation

_pil_nodelet f void recv(int *target_id)

{

// _pil_context int num inherited from above

// _pil_context size_t size inherited from above

fprintf(stdout, "%d: num = %d\n", pil_get_nwID(), num); fflush(stdout);

}

// node declaration

node(1, i, [0:1:9], target_id, [0], f(&target_id))

void pil_main(int argc, char **argv)

{

pil_enter(1, 0);

if (pil_get_nwID() == 0)

printf("SUCCESS");

}

31

Index

Array, 7, 24

case, 23
Compiler, 4

for, 23
forall, 5, 24

flattened nested, 5

in, 8
inout, 8

loop range, 23

node, 5

out, 8

PIL, 4
Compiler, 4
Examples, 18

pil alloc, 8
pil enter, 11, 24
pil free, 9
pil main, 11
pil mem, 9
pil release, 9

SPIL, 22
Examples, 25

spil main, 22
SPMD PIL, 27

pil context, 28
pil node, 28
pil nodelet, 28

barrier, 27
communication, 27
Examples, 30

pil barrier all, 29
pil get nwID, 29
pil recv, 29
pil send, 29

task graph, 6, 24
Tile, 24

while, 23

32

	PIL API
	Introduction
	Supported Runtimes
	Using the PIL compiler

	Control Flow
	Fundamental Parallel Operations
	Task Graphs

	Data Management in PIL
	Data Availability
	Primitive Types
	Data Acquisition

	Writing Libraries in PIL
	Arrays in PIL
	Array Declaration and Allocation
	Array Deallocation
	Array Accesses
	Array Dimension Indices
	High Level Array Operations

	Code Examples
	Hello World
	Parallel Hello World
	Matrix-Matrix Multiply
	PIL Library Example

	SPIL: Syntatic Sugar for PIL
	Overview
	SPIL Control Constructs
	Sequential Functions
	Control Constructs
	Compound Parallel Operations

	SPIL Arrays and Tiling
	Data Layout

	SPIL Task Graphs
	Code Examples
	Hello World
	Parallel Hello World
	Array Example
	Parallel Tiled Matrix-Matrix Multiplication

	SPMD PIL
	Introduction
	Program Execution
	SPMD PIL Code Examples
	Barrier Synchronization
	Send/Receive

	Index

