Critical Technology Evaluations

Technology Description Status
Runtime Priority-queue scheduling for infinite level priorities Evaluating
Scheduling
Data Placement Communication avoiding data placement for Cholesky Decomposition Evaluating
Runtime Data Prefetch mechanisms for pull-based data migration Identified
Migration
Runtime Self- Metrics for modulating prefetch depth Identified
Awareness
Compiler Improving hierarchical mapping capabilities in R-Stream Identified
Compiler R-Stream SWARM backend and runtime layer Identified
Parallel Libraries [HTA library implementation in PIL Evaluating
Parallel Libraries [Extending PIL to include libraries Evaluating
Applications Identified two NWChem kernels for study Complete
Applications Creating C-only version of the Self-Consistent Field computation In progress

Summaries of Quarterly Work

Improving hierarchical mapping capabilities in R-Stream

In the context of SWARM, hierarchical mapping is the problem of creating a hierarchy of
codelet graphs to be scheduled by SWARM. The different levels of the hierarchy may run
code on different platforms, including x86 nodes and clusters and CUDA. While some
success has been met in the context of producing hierarchically mapped programs on
multiple GPGPU devices using CUDA, there is a scalability problem related to the need to
represent inner loops of the hierarchy as high-dimensional objects. We are working to reduce
the dimensionality of these objects at each level of the hierarchy.

R-Stream SWARM backend and runtime layer

The Reservoir Labs team studied both the SWARM and SCALE forms and defined that
SWARM would be a more straightforward target, for its closer resemblance to C and the fact
that more aspects can be tuned (LIFO vs FIFO scheduling) through SWARM at the moment.
The initial approach will be to dynamically declare a task graph. Each task of the graph will be
associated with one input dependence which will be satisfied when all the predecessor tasks
have validated it. The graph declaration will basically count the number of predecessors for
each graph before creating the dependence. An extra parameter will be passed to each task
that defines the set of its successor dependences. A function that satisfies all these
dependences will be called at the end of the task.

The initial version will target a one-node system, and will hence include SWARM'’s network
functions.

Cholesky Decomposition as a testbed for Scheduling, Memory
Management, and Self-Awareness

As the co-design apps are being developed, we chose to use existing applications to test
algorithms in scheduling, data placement, data migration, and self-awareness. We have found
that a finite-priority level queue is insufficient for this application and have developed a priority
scheduler to address this. Further, we have determined optimal ways of laying out the data to
minimize communication between the nodes while balancing work. Finally, we found that it
was necessary to observe metrics of outstanding work and outstanding data requests and
build a model to modulate the request of additional data when these dynamic parameters vary
from their setpoints. Details are listed below in the “Cholesky Decomposition” section of
“Topic Detail”. We intend to publish a paper next quarter describing our performance results
and findings.

NWChem Kernel extraction

We have studied the NWChem code and identified two kernels for study under the DOE
XStack program:

e Self-Consistent Field Computation

e Coupled Cluster Method

We have extracted both kernels and are developing clean, self-contained, C-only versions of
both kernels. We are preparing input and output files for testing. Details can be found below
in the “NWChem Kernel” section of “Topic Detail”.

Parallel Libraries
The Parallel Intermediate Language (PIL) has been extended to allow library functions to be
represented as collections of PIL nodes. PIL programs at the beginning of the project could
only be a collection of nodes linked by dependence arcs that represent the parallel execution
of a program in terms of codelets. With the new extension, one can now implement a
subgraph that performs a particular operation and include it as a library function. This works
by making it possible to enter the subgraph at any point in the execution of the program,
suspend the execution of the program, perform the desired operation by executing the
codelets in the order enforced by the dependences, and at the end of the process return
execution control to the program that made the request. We are now working on our first
design and implementation of the Hierarchically Tiled Arrays (HTAs) library using the new PIL
library feature.

Topic Detail:

Cholesky Decomposition

The clustered implementation of Cholesky decomposition application presents us with unique
challenges for prioritization, work balance and memory management. Cholesky
decomposition is a matrix operation, and we solve it by breaking the matrix into tiles and
modeling the dependencies between tiles as a DAG; see this paper for more information on
the problem and the tiled approach to solving it.

Data Distribution & Work Imbalance

In our implementation, compute nodes are assigned full rows of tiles, and every node typically
has many rows.

One issue with this is that of work imbalance. It is advantageous to keep the nodes making
progress at roughly the same rate, for several reasons. The first and most obvious reason is
that if one node has more (total) work to do, then, at the end of the job, all of the other nodes
end up waiting for it, which wastes CPU cycles and increases the total execution time. When
rows of tiles are assigned to nodes in a simple round-robin fashion, workload imbalance
exists. Here is a trivial example with 2 nodes and 2 rows per node:

Node 0 1op 2 ops 3 ops
Node 1 1o0p 20ops | 3ops | 4ops

Node 0 owns the yellow tiles, and node 1 owns the blue tiles. As you can see, node 0 owns 4
tiles, and is responsible for doing 7 tile operations. Node 1 owns 6 tiles, and is responsible for
doing 13 tile operations.

The work imbalance problem persists as the node/row count increases. For example, if you
have 64 compute nodes and each node has 14 rows of tile data, node 0 has 5838 tiles, and
must perform 1686062 operations on those tiles. Node 63 has 6720 tiles, and must perform
2082080 operations on those tiles. Thus, node 63 has 15% more tiles than node 0, and must
do 23% more work than node 0. Since node 63 has the most work to do, node 63 is the
bottleneck for this application.

Obviously, the simplest approach is to assign rows to nodes in a round-robin fashion.
However, as suggested above, this leads to poor workload distribution. To resolve this, we
have tried some alternative row assignment strategies.

First, we tried a simple reversal, such that row assignment progresses in round-robin fashion
for most of the rows, and then at some point, the assignment flips, so rows are assigned in
reverse round-robin fashion. If the assignment flips at the right point, the amount of work
evens out.

Node 1 1 op 2 ops 3 ops

Node 0 1 op 2 ops 3 ops 4 ops

Again, node 0 owns the yellow tiles, and node 1 owns the blue tiles. As you can see, each
node now owns 5 tiles. Node 0 is responsible for performing 11 tile operations, and node 1 is
responsible for 9 tile operations. The difference in workload is now 11-9, rather than the 13-7
it was previously, so this is an improvement. With a sufficiently large number of rows per
node, it is usually possible to find an inversion point which results in less than 1% workload
imbalance.

This solves the problem of overall workload imbalance. However, there is also a problem of
internal workload imbalance. Given a sufficiently large number of tile rows, data must be
passed between nodes all the time in order to keep the nodes busy. (There will be more
discussion of this in the Task Prioritization section, below.) If one node is progressing at a
slower rate than another node, then that node will not produce the data necessary for the
other node to continue progressing.

To improve the internal workload balance, we modeled a more complicated reversal pattern,
where the node assignment occurred in forward order, then reverse, and then repeats, going
forward, then reverse again, etc. This results in fairly even distribution for a sufficiently large
number of rows per node. For instance, for 64 nodes and 14 rows per node, the workload
imbalance is 1.5%. An even more complicated pattern, consisting of forward, reverse,
reverse, forward, is even more balanced than this. For 64 nodes and 14 rows per node, this
pattern has a workload imbalance of 0.5%. This is the pattern we are currently using.

Scheduling: Task Prioritization

Computing a tile operation in this matrix usually requires data from previous tiles. Depending
on the operation, the required tile data is always to the left in the same row, or above in the
same column, or both left and above. Because entire rows of tiles live on a node, intra-row
dependencies are always satisfied locally. These intra-row dependencies are quite common.
The data can also be satisfied locally when the data is on another row, but that row is also
owned by the same node. When a dependency cannot be satisfied locally, a copy of the data
is sent from the node which produced it, to all nodes which need it. On a node receiving this
data, a temporary buffer is allocated to store it. The node keeps track of how many tiles
require this data, using a counter. When the counter drops to 0, the memory is freed.

When running on multiple compute nodes, just keeping the work queue full on one node is no
guarantee other compute nodes will also be kept busy. Since each node depends on data
from the others, it is important that work is done in an advantageous order, so that such tasks
are finished in a timely fashion. Assigning priority levels to types of tasks (i.e. POTRF, TRSM,
GEMM) is not sufficient for Cholesky, because most high-priority tasks depend (eventually) on
a lower priority task, and it is not clear that priority inheritance systems would help. We found
that assigning priority based on a tile’s location within the matrix and the phase of the
computation is advantageous, as this ensures that parallelism is exposed as early as possible.
This solves the problem of making sure other nodes are kept busy, essentially by making sure
we compute the tasks depended upon by other nodes, and send the resulting data to those
nodes, as quickly as possible. We also found that this helps to keep a single node busy when
that node has a huge thread count, such as Intel Xeon Phi.

SWARM’s priority system, as it exists today, has 4 priority tiers. This does not allow sufficient
granularity to implement priority based on matrix location, except for very small matrices.

Such a system would need at least 1000 priority tiers in order to be useful for this task. To
accommodate a much larger priority space, we added a separate work queue to the

application. This work queue is an AVL tree which is sorted by the tile’s position within the
matrix. Worker threads find the “least” value in the AVL tree, dequeue that and work on it.

We found that multiple sort orders were effective for this tree. We can bias toward the top-
most row, by sorting on Y first, and then X. We can also bias toward the left-most column, by
sorting on X first, and then Y. For now, we settled on X-first sorting, for memory usage
reasons.

Memory Usage for Intermediate Data

As mentioned above, remote data is copied around in order to provide input to local tasks.
The priority system now tries to send these copies as quickly as possible. These copies take
up memory, and as the matrix size increases, the memory consumed by these copies can
exceed the total amount of system memory. This becomes a big problem on 32 nodes and
above.

Solving the memory problem requires two things. First, the work must occur in an order that
focuses on freeing the network buffers as quickly as possible. Second, care must be taken to
avoid sending too much data to a node at a time.

Both types of network data (POTRF results and TRSM results) are consumed by a vertical
column of tiles below them. This means, an execution pattern which goes column by column
(as is the case with X-first sorting) will do all of the work necessary to free up a network buffer,
and then the work necessary to free up another network buffer, etc. If a node is currently
working on one column, and will work on the column to the right after this, it is easy to
calculate which input data will be needed, and request that data shortly before it is needed. If
data is pre-fetched in this fashion, rather than sent automatically when it becomes available, it
is now possible to bound the amount of memory used by network buffers at any given time.

So, we added a request/response handshake so that a node can request the TRSM data it
needs before it needs it. (There are vastly more TRSM buffers than POTRF buffers, so our
solution focuses only on the TRSMs.) We combined this with some simple logic to determine
how “far along” the local node is in the overall matrix calculation, we can project these
requests several tile-columns out in front of the current computation point, as a form of
network prefetch. If all goes well, the data arrives just before it is needed, and is then
consumed, resulting in the minimum memory usage.

Unfortunately, not all columns are created equal. The memory footprint of a column’s inputs
varies throughout the course of execution; it starts out small, for low-numbered columns, and
gets quite large for high-numbered columns. The following table shows an example of this
effect. It describes the prefetch memory usage in a 64-node job, with 14 rows per node, for a
total of 896 rows of tiles in the matrix, when attempting to prefetch 10 columns ahead of the
current execution point.

Current Inputs on- Memory
column # hand usage

5 5..15 110 tile
copies
20 20..30 275 tile
copies
400 400..410 4455 tile
copies
700 700..710 7755 tile
copies

So, this system quickly becomes a balancing act. We want to expose enough parallelism to
keep the system busy, for low column numbers, without running out of memory once the
program progresses to a higher column number. Performance varies widely with this prefetch
threshold setting, and careful tuning is required.

Self-Awareness and Control

The next step is to find a more robust autotuning solution to this problem, that measures
dynamic runtime parameters and controls the prefetch request window to achieve the
appropriate set point of memory consumption and concurrency.

To achieve this, we maintain a low-water mark of outstanding requests. The application
maintains two counters, one count of how many tile copies have been requested, and another
count of how many tile copies have actually arrived. The request count is the potential max
memory usage; the copy counter is the current memory usage. The user supplies a number
of tile copies on the command line, which is used as the goal. When a request is sent, the
request count is increased by the number of expected packets. When a packet arrives, the
copy count is incremented. When a packet is freed, both counts are decremented.

Whenever the current number of requested tiles dips below this threshold, another request is
kicked off. Once the last column in the matrix has been requested, the prefetch system
disables itself and the request count is allowed to drift slowly toward zero.

On Endeavour, the compute nodes have 64GB of memory. We scale the matrix size with the
node count, in order to keep the per-node data size close to constant. For this system, we
found a low-water mark setting of 40000 works well; this equates to about 25GB of network
buffers per node.

Results

262144 T T T T T

131072

65536

32768

16384

8192

4096

2048

GFLOPS

1024

512 | 5
256 |]
128 | E

64 .

MKL ScaLAPACK —F— |
SWARM el
(ideal)

16 1 1 1 1 1 | 1

2 4 8 16 32 64 128

32

Number of nodes

NWChem Kernel

We have selected the Self-Consistent Field (SCF) calculation and Coupled Cluster Method
(CCM) as the first two NWChem Kernels to provide the DOE XStack teams. Both are stand
alone application benchmarks distributed with the Global Array software distribution. The
distributed versions use Global Arrays, include both C and Fortran source code files, and call
standard math library routines. To facilitate the port of the kernels to the Exascale execution
models being developed for XStack, we are producing clean, self-contained, C-only versions.

SCF is an iterative, fixed-point process for solving the electronic Schrodinger equation of
molecular systems. A Fock Matrix is constructed from one- and two-electron integrals and
solved. The two-electron integral process is the computationally dominate process as it
scales as n* in the number of basis functions. lIts structure is idiomatic of other key kernels in
computational chemistry codes, including Density Functional Theory and the Coupled Cluster
Method. SCF iterates until certain desired numerical tolerances are achieved or a maximum
number of iterations is reached.

We started with the GA stand alone application that uses the basis sets for Beryllium atoms.
The system is of moderate size taking a few minutes to solve on an Intel X86 manycore
system. Removing the GA code has been straightforward. The GA version creates a queue
of tasks for each parallel process. Tasks are associated with tiles of one or more of the
application’s principal two-dimensional data structures: the Schwarz, density, and Fock matrix.
The structure of each process is something like ...

while there are tasks on the queue {
get next task()
get tiles for task (iLo, iHi, jLo, JjHi)

for i = ilo to iHi {
for j = jLo to JHi {
. process code ..

byl

To produce a C-only version of each process, we removed the task loop, the GA calls, and
changed the ranges of the loops to dimensions of the data structures processed, i.e,

for i = 0 to nbfn - 1 {
for j 0O to nbfn - 1 {
. process code ..

Py ol
where nbfn is the number of basis functions.

The GA version calls Fortran modules for matrix multiply and finding eigenvalues. We are
rewriting those routines in C to provide a single language kernel.

