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I. SOFTWARE PRODUCTS AND WEB SITES

• Pisces Co-kernel (http://www.prognosticlab.org/pisces/) Pisces is a lightweight co-kernel architecture that is designed to
allow multiple native Operating Systems to run concurrently on the same local compute node. Each Operating System
instance provides an isolated enclave to a co-located workload while ensuring that it’s performance not impacted by other
workloads on the same local node. Pisces is primarily designed to support in-situ and composed HPC applications, which
require strong performance isolation to prevent cross workload interference. Pisces currently supports co-kernels based
on the Kitten Lightweight Kernel and Palacios Virtual Machine Monitor.

• Kitten Lightweight Kernel (https://software.sandia.gov/trac/kitten) Kitten is a lightweight kernel (LWK) compute node
operating system, similar to previous LWKs such as SUNMOS, Puma, Cougar, and Catamount. Kitten distinguishes itself
from these prior LWKs by providing a Linux-compatible user environment, a more modern and extendable codebase, and a
virtual machine monitor capability via Palacios that allows full-featured guest operating systems to be loaded on-demand.
Kitten is used as the operating system for isolated enclaves in the current Pisces Co-kernel architecture implementation.

• Palacios VMM (http://www.v3vee.org/palacios/) Palacios is a virtual machine monitor (VMM) that is available for public
use as a community resource. Palacios is highly configurable and designed to be embeddable into different host operating
systems, such as Linux and the Kitten lightweight kernel. Palacios is a non-paravirtualized VMM that makes extensive
use of the virtualization extensions in modern Intel and AMD x86 processors. Palacios is a compact codebase that has
been designed to be easy to understand and readily configurable for different environments. It is unique in being designed
to be embeddable into other OSes instead of being implemented in the context of a specific OS. Palacios is distributed
under the BSD license.

• Palacios VMM for Pisces (http://www.prognosticlab.org/palacios/) A fork of the original Palacios VMM was created for
the Pisces Co-kernel architecture. This version of Palacios has additional functionality that is needed to operate in the
Pisces environment. Development of the original version of Palacios and this Pisces version of Palacios is occurring in
parallel.

• Leviathan Node Manager (http://www.prognosticlab.org/leviathan/) Leviathan is a intra-node management and information
service for multi-enclave environments. It’s goal is to explore the use of in memory databases to manage and integrate
enclave instances, each running independent and isolated OS/Rs. Leviathan also serves to integrate many of our other
projects under a common runtime API. At the heart of Leviathan is an information service built on a in-memory No-SQL
database.

• XEMEM Shared Memory (http://www.prognosticlab.org/xemem/) XEMEM is a cross enclave local shared memory archi-
tecture meant to allow applications to directly share memory even when they are deployed inside separate OS/R instances.
XEMEM provides a common API that is portable across arbitrary enclave topologies and allows unmodified application
binaries to be deployed to any OS/R instance based on runtime configuration decisions.

• Node Virtualization Layer (https://github.com/HobbesOSR/nvl) The Node Virtualization Layer (NVL) is the compute node
operating system component of the Hobbes project. It is designed to integrate with the Linux-based compute node operating
systems typically provided by vendors and to extend them with Hobbes-project developed technologies, including the
Pisces Co-kernel, Kitten Lightweight Kernel, Palacios Virtual Machine Monitor, Leviathan Node Manager, and XEMEM
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inter-enclave memory sharing mechanism. This enables isolated enclaves of resources (e.g., CPUs and memory) to be
carved off from the vendor’s operating system and booted into customized OS/R environments. The Hobbes NVL provides
interfaces for managing the collection of OS/R enclaves running on a compute node and for inter-enclave composition.
The NVL currently supports running on commodity x86 PC “white boxes” running standard Linux, as well as Cray XE
and XK systems running Cray’s Linux Environment.

• Philix (http://philix.halek.co) is a toolchain for simplifying the creation of new third party operating systems for the Intel
Xeon Phi.

• Nautilus Aerokernel (http://nautilus.halek.co/) is an extremely lightweight kernel framework designed for building hybrid
run-times (HRTs). An HRT is a parallel run-time system (and its application) that runs entirely in kernel mode with full
privileged access to the hardware and the ability to implement any kernel abstractions it finds useful. Currently, Nautilus
runs on x86-64 NUMA machines, on the Intel Xeon Phi, and within a Hybrid Virtual Machine (HVM). We have ported
the Stanford Legion parallel run-time to be an HRT with LANL’s port of the HPCG benchmark to Legion as the typical
benchmark. We have seen performance gains of 10-40% on x86-64 and Phi compared to HPCG and Legion on Linux.
Additional run-times (with less extensive implementations) running on Nautilus include the NESL VCODE interpreter
and a home-grown nested data parallel language.

• HVM (Hybrid Virtual Machine) is a component of Palacios (http://www.v3vee.org/palacios/) that allows the creation of
a VM that has its cores, memory, and interrupt logic partitioned between a “regular” OS (ROS, like Linux) and an HRT,
which run simultaneously. This allows an HRT to operate on the data of a user process in the ROS (via a merger of
address spaces), allowing this process to treat the HRT much like an accelerator. Additionally, the HRT can be booted
and invoked with latencies comparable to a process startup and an IPI, respectively. Continued development of HVM has
the goal of making the ROS process/HRT interaction increasingly seamless. The overall purpose is to ease the porting of
parallel run-times into the HRT model by allowing the ROS to always be used as a fallback, and by allowing a partitioning
of legacy compatibility concerns (e.g., Linux system calls, files, etc) and performance concerns.

• TCASM (Transparent, Consistent, Asynchronous Shared Memory) is a cross enclave local shared memory architecture
meant to allow applications to directly share memory within a single OS/R enclave or between multiple OS/R enclaves.
TCASM allows an application to make asynchronous progress from the coupled co-application(s) and frees the user from
having to manually manage locking. TCASM leverages copy-on-write (COW) to present a simpler interface to applications
and coordinates different versions of application data.
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