
OpenTuner

• A general framework for building autotuners

• A toolbox, not a one-size-fits-all autotuner

• Taking advantage of what we have learned in
the 10+ years of using machine learning in
compilers

• Available at http://www.opentuner.org

http://www.opentuner.org

Machine Learning and Compilers

• OpenTuner: An Extensible Framework for Program Autotuning,
OOPSLA 2014

• Portable Performance on Heterogeneous Architectures, ASPLOS
2014

• SiblingRivalry: Online Autotuning Through Local Computitions,
CASES 2012

• Language and Compiler Support for Auto-Tuning Variable Accuracy
Algorithms, CGO 2011

• Autotuning Multigrid with PetaBricks, SC 2009
• PetaBricks: A Language and Compiler for Algorithmic Choice, PLDI

2009.
• Adapting Convergent Scheduling Using Machine. LCPC 2003.
• Meta Optimization: Improving Compiler Heuristics with Machine

Learning. PLDI 2003.

Lesson #1

• Configuration representation is critical

• Cartesian coordinates often natural/useful

• Represents things like trees poorly

OpenTuner:

• Custom format with dual interfaces:

o Primitive Parameters
 Point in high dimensional space

o Complex Parameters
 Dynamic number "moves" can be taken from any current position

Lesson #2

• There is no perfect search technique

• Techniques have differing strengths

o Experience with many novel techniques

• Exploitation/exploration tradeoff

OpenTuner:

• Library of competing techniques:

o Ensembles of techniques run in parallel

o Credit assignment gives larger testing budgets to
successful techniques

o Long term (cross-run) performance informs which
techniques are best for each problem

Lesson #3

• Usage, aggregation, and interpretation of
results data varies widely

• Often accessed in different ways at different
times

OpenTuner:

• Fully featured database of results (SQL):

o Cross cutting access and mining of results data

o Supports transactional parallelism

o Long term knowledge sharing between runs

OpenTuner Modules/Processes

Nelder-Mead
Simplex
(Hill climber)

Differential
Evolution

Particle
Swarm
Optimization

Model Driven
Optimization

• Many different techniques
• Each best suited to solve different problems
• Hard to write a single autotuner that performs well in

different domains
• Can we make these techniques work together?

OpenTuner: Combining ensembles
of techniques

Nelder-Mead
Simplex
(Hill climber)

Differential
Evolution

Particle
Swarm
Optimization

Model Driven
Optimization

• Meta-technique divides testing budget between sub-
techniques

• Results are shared between all techniques

AUC Bandit Meta-technique

OpenTuner: Combining ensembles
of techniques

Nelder-Mead
Simplex
(Hill climber)

Differential
Evolution

Particle
Swarm
Optimization

Model Driven
Optimization

Exploitation versus exploration:
How to allocate testing budget?

Exploitation: estimated
payoff probabilities based
on recent results

0.62 0.46 0.21 0.03

Exploration: based on optimal solution to
multi-armed bandit problem
(nt = number of times technique t has
been tried)

Pick the technique to maximize weighted combination of exploitation and exploration terms

