
Experience developing CnC versions of DOE Applications 
 

Developing applications for exascale systems involves dealing with complexities such as 
resilience, power management, data movement and parallelism.  A key exascale challenge is to 
define programming models, such as CnC, that hide these complexities from the user.  CnC is an 
asynchronous, high-level task-based programming model matched to our OCR execution model.  In 
this report, we describe our experience converting the Livermore Unstructured Lagrangian Explicit 
Shock Hydrodynamics (LULESH) code to a CnC application. 

 
The process of developing a CnC application starts with a domain-expert’s white board view 

of the application depicting the dataflow among software components.  This sketch is then 
formalized, which allows compiler analysis, and optimization of parallelism, energy efficiency, and 
data movement.  A LULESH whiteboard sketch was produced at the TG Application Workshop in 
August 2013 (see Figure 1).  Next, we converted the whiteboard sketch to a formal graph (see 
Figure 2), a straightforward process that can usually be done by domain experts.  In addition to 
being a good software design practice, formalizing the application description enables compiler 
analysis and optimization.  It also reduces the cost associated with the development and testing 
stages and serves as documentation that, by the nature of its role in the process, tracks the 
applications evolution. 

We found the process of formalizing the original graph enlightening.  At the graph level 
before the computation steps were implemented, some things became apparent.  These included 
misunderstandings among us, some actual bugs and some simplifications.  The resulting graph hid 
distinctions among computations that didn’t contain any communication. This caused the 
communication issues to pop out loud and clear.  It became apparent that some optimizations we 
thought might have been possible were not actually legal and that several legal optimizations were 
now obvious.  After formalizing the graph, we took the computation code from the existing version 
of LULESH, broke it down into to chunks corresponding to the CnC steps in our graph and wrapped 
them up as CnC steps and then executed the resulting application to ensure correctness.  

Our next stage will be to tune the application.  A tuning spec can be developed by tuning 
experts, domain experts or it might be automatically generated by analysis and optimization 
techniques.  Because the tuning spec is separate there may be many tuning specs for a fixed domain 
spec, each of which can be developed without altering any of the CnC application code.  The 
different specs might be for different platforms, tuning goals, input characteristics, or just multiple 
attempts for the same scenario.   

With the implementation of LULESH completed, our next tasks will be to develop tuning 
specifications for it and to apply the same CnC conversion process to a second code, MiniGMG. 
Using LULESH, we have shown how to transform an existing application into a formal CnC 
specification which can then be implemented and executed using an approach that will be able to 
take advantage of future exascale systems.   

Figure 1 LULESH whiteboard sketch Figure 2 Formal CnC graph of LULESH 


