
SAIMI: Separating Algorithm and Implementation
 via Programming Model Injection

Early Career Award, DOE grant DE-SC3956
April 2010 through March 2015

Problem: Algorithms in programs are
obfuscated due to implementation details
and performance tuning done per machine
and by hand.
Solution: Use simpler, more restricted
programming models to express important
sub-computations. Express implementation
details as transformations of sub-
computations.
Status: We are evaluating separation in
existing programming models and
developing look-up table, grid, and task
graph injectable programming models.

http://www.cs.colostate.edu/hpc/SAIMI/

Illustration of the SAIMI concept.

This won’t hurt a bit!	

Full Application

Source to Source
Compilation Tool

Optimized Code
for Machine A

Optimized Code
for Machine B

Separating Grid Details
Earth simulation applications often have grid
details tangled with algorithm and
communication code. The GridWeaver
project aims to separate these details with a
library interface where grids are described
declaratively. Code generation techniques
are used to replace library calls with more
efficient code.

Modeled grids in the GridWeaver library are
defined as a series of regular subgrids
connected together. The following picture
represents a cube-sphere grid. The blue
boxes represent regular subgrids, the green
edges represent connections between these
subgrids.

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

of cores

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
)

POP solver w/PGI [Hopper]
CGpop w/Cray [Hopper]
CGpop w/PGI [Hopper]
POP solver w/XLF [Frost]
CGpop w/XLF [Frost]
POP solver w/PGI [Kraken]
CGpop w/PGI [Kraken]

Many simulation applications become tangled
with the underlying discretization grid. We are
developing ways to express grid details
orthogonally from the computation performed
on the grid. We will evaluate our solutions
with CGPOP, which is a miniapp that models
the conjugate gradient solver in the Parallel
Ocean Program. The figure below shows that
the 3000 line CGPOP mini app behaves as a
performance proxy for the 75K line POP
application.

Grid-Based Computation

Participant Role

Michelle Strout Principal Investigator and developer of sparse polyhedral framework.

Christopher Krieger Ph.D. student investigating dynamic task graphs.

Andrew Stone Ph.D. student investigating orthogonal specification of atmosphere grids.

Christopher Wilcox New Ph.D. who developed source to source look-up table optimizations tool Mesa.

John Dennis NCAR collaborator on CGPOP mini app. Provided CGPOP vs. POP graph.

http://www.cs.colostate.edu/hpc/SAIMI/

SAIMI: Separating Algorithm and Implementation
 via Programming Model Injection

Libraries for Sparse Tiling

Future Directions
We plan incorporate the injectable
programming models we are investigating
into our existing source-to-source
compilation tool and evaluate this
approach in the context of more DOE
applications.

Currently, sparse tiling (also
called communication avoiding)
is applied to algorithms in an ad
hoc fashion. Hand coding these
techniques creates a significant

barrier to their adoption. Regardless of the
specific application, full sparse tiling
requires the same building blocks – a work
unit, e.g. the updating of an atom during
one timestep of a simulation or one row of
a sparse matrix computation, a tiler that
aggregates these work items together while
respecting intra-tile data dependences, a
tile sequencer that generates partially
ordered task graphs, and an engine that
efficiently schedules and executes the task
graphs using available compute resources.
We are developing a C++ library that
provides these building blocks, reducing
barriers to using FST techniques and
increasing efficiency.

Lookup Table Injectable
Programming Model

Developed source to
source translation tool
called Mesa for applying
LUT optimization to
scientific codes. Mesa
uses ROSE to perform
source code analysis and
program transformation to
achieve up to a 6.8x
speedup on set of 5
applications. It provides
the user with a set of
pareto optimal expression
sets that benefit the most
from LUT transformation
while introducing minimal
error.

Performance Profiling &
Scope Identification

Original
Code

Error Analysis &
Performance Modeling

Code Generation &
Integration

Optimized
Code

Performance & Accuracy
Evaluation

Construct & Solve
Optimization Problem

Expression Enumeration &
Domain Profiling

