Evolving MPI to Address the Challenges of Exascale Systems

Myths

 Several myths surrounding MPI: it cannot support dynamic execution, it is not fault tolerant, it cannot take advantage of new architectures, ...

Project Goals and Core Problems Tackled

- Efficient Runtime for High-level Programming
 - Dynamic execution environments (e.g., Charm++, ADLB)
 - Global communication models
 (e.g., PGAS models, Global Arrays, GVR)
- Interoperability for Hybrid Programming
 - Interoperability of MPI with lightweight threading and task models
 - Interoperability of MPI with heterogeneous computing models
- Performance, Scalability, and Resilience
 - Techniques to address challenges posed by new architectures and systems with millions of cores (performance and memory scalability, resilience, ...)

Impact

- Vendors and Supercomputers
 - MPICH is used on virtually every supercomputer in the world (IBM, Cray, Intel, Microsoft, OSU MVAPICH) and on the largest systems in the Top500 list
 - 9 of the top 10 systems in the June 2014 Top500 list use MPICH
 - This project will enable the deployment of a high-performance implementation of the newest version of the MPI standard (MPI-3) on these systems

Applications

- Close interactions with applications to enable them to use advanced functionality in MPI (either directly or through domainspecific models)
- Recently demonstrated impact with massive-scale computations in various domains including Chemistry, Biology and Nuclear Physics
- Ongoing effort in solving large computations in other domains

Some Success Stories with Applications

Terascale Genome Assembly

- Graph assembly problem that deals with finding an Hamiltonian path in a fuzzy graph with erroneous edges (or non-edges)
- Highly communication intensive, with (seemingly) random global communication
- Genome assembly at this scale (2.3TB on Cray XE6) has, for the first time, allowed scientists to study multiorganism genome colonies of completely or partially unknown species

Cyclops Tensor Framework (Chemistry)

- Fundamental component of quantum chemistry for coupled-cluster methods
- Supersedes existing algorithms and software for parallel tensor contractions
- Enabled quantum simulations of 250 electrons in 1000 orbitals (no point-group symmetry) on Argonne Mira
 - Order of magnitude larger scale problem than anything that has been previously done

Recent Accomplishments

Publications

- SC14: "Nonblocking Epochs in MPI One-Sided Communication," Judicael Zounmevo, Xin Zhao, Pavan Balaji, William Gropp, Ahmad Afsahi. (Selected as Finalist for Best Paper Award)
- SC14: "MC-Checker: Detecting Memory Consistency Errors in MPI One-Sided Applications,"
 Zhezhe Chen, James Dinan, Zhen Tang, Pavan Balaji, Hua Zhong, Jun Wei, Tao Huang, Feng
 Qin
- ICS'14: "MT-MPI: Multithreaded MPI for Many-Core Environments," Min Si, Antonio Peña,
 Pavan Balaji, Masamichi Takagi, Yutaka Ishikawa
- PPoPP'14: "Portable, MPI-Interoperable Coarray Fortran," Chaoran Yang, Wesley Bland,
 Pavan Balaji, John Mellor-Crummey
- ScalComm'13: "Optimization Strategies for MPI-Interoperable Active Messages," Xin Zhao,
 Pavan Balaji, William Gropp, Rajeev Thakur (Best Paper Award)

Tutorials

- SC14: "Advanced MPI Programming," Pavan Balaji, William Gropp, Torsten Hoefler, Rajeev Thakur. Accepted as full-day tutorial.
- Gave a full-day tutorial on June 6th at Argonne to around 180 attendees from local area institutions (Argonne, Northwestern, UChicago, UIUC, UIC, NIU, Loyola)

