
The Open Community Runtime
(OCR) Framework for Extreme

Scale Systems
Birds of a Feather Session, SC14, New Orleans

November 20, 2014

Organizers:
Vivek Sarkar (Rice U.)

Barbara Chapman (U. Houston)
William Gropp (U. Illinois)

Live poll at http://pollev/sc14

http://pollev/sc14

2

Agenda
1. Motivation and Introduction

– William Gropp, UIUC
– Vivek Sarkar, Rice

2. OCR specification
– Tim Mattson, Intel

3. Use of OCR in Applications
– David Richards, LLNL
– Laura Carrington, SDSC

4. Demos of Distributed OCR and CnC-on-OCR on today’s systems
– Vincent Cave, Rice
– Zoran Budimlic, Rice

5. OCR on future systems
– Josh Fryman, Intel

6. Closing, Q&A/discussion, live poll
– Vivek Sarkar, Rice

3

Evolutionary vs. Revolutionary Approaches
to Extreme Scale Runtime Systems

• Wide agreement that execution models for extreme scale
systems will differ significantly from past execution models

• Shoehorning a new execution model into an old runtime
system is counter-productive

• Instead, make a fresh start but carry forward ideas and
components from current runtime systems as appropriate
Motivation for Open Community Runtime framework that …

– is representative of future execution models
– can express large amounts of parallelism in a task-based model
– can explicitly capture logical dependences and data movements
– can be targeted by multiple high-level programming systems
– can be mapped efficiently on to future extreme scale platforms
– is available as an open-source testbed
– enables us to address revolutionary challenges collaboratively

4

Performance Variability is on the rise

• Concurrency --- increased performance variability
with increased parallelism

• Energy efficiency --- increased performance
variability with increased non-uniformity and
heterogeneity in processors

• Locality --- increased performance variability with
increased memory hierarchy depths

• Resiliency --- increased performance variability with
fault tolerance adaptation (migration, rollback,
redundancy, …)

Increasing performance variability need for dynamic
adaptive asynchronous runtime systems

5

OCR Vision
(https://xstackwiki.modelado.org/Open_Community_Runtime)

Hero
Programmer

Smart
Compiler

Higher-level
language

Higher-level
library

Open Community Runtime Framework
External Runtime Components

Extreme Scale Platforms

R-Stream, ROSE, LLVM
CnC, Chapel,
Legion, …

OpenSHMEM, HC-lib,
Habanero-UPC++, …

MPI, GASNet,
Portals, UCCS,
…

C, C++, Fortran

6

OCR Acknowledgments

• Design strongly influenced by
– Intel Runnemede project (via DARPA UHPC program)

– power efficiency, programmability, reliability, performance
– Codelet philosophy from CAPSL group at U. Delaware

– implicit notions of dataflow
– Habanero project at Rice U.

– data-driven tasks, data-driven futures, hierarchical places in
Habanero-C language

– Concurrent Collections model – Intel Software/Solutions Group
– decomposition of algorithm into steps/items/tags, tuning

• Partial support for the OCR development was provided through the X-
Stack program funded by U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research (ASCR)

7

Agenda
1. Motivation and Introduction

– William Gropp, UIUC
– Vivek Sarkar, Rice

2. OCR specification
– Tim Mattson, Intel

3. Use of OCR in Applications
– David Richards, LLNL
– Laura Carrington, SDSC

4. Demos of Distributed OCR and CnC-on-OCR on today’s systems
– Vincent Cave, Rice
– Zoran Budimlic, Rice

5. OCR on future systems
– Josh Fryman, Intel

6. Closing, Q&A/discussion, live poll
– Vivek Sarkar, Rice

11

The OCR specification

Tim Mattson
Parallel Computing Lab

timothy.g.mattson@intel.com

My journey into the world of OCR

• I started working with OCR as part of the Advanced
computing runtime project about one year ago.

• When I asked for documentation I was sent to doxygen
generated text.
– This described the interfaces to the functions but said nothing about

what they meant.
– There were few (if any) documented examples to help me learn OCR.
– To learn the jargon of OCR you had to “sit at the feet of the masters”

who came before you and learn from them.
– Evolution of OCR happened “in the code” … which is not a good idea

if you want a coherent “big picture” as OCR grows.

If OCR was to be the foundation for our research, it
needed a “formal” specification. One didn’t exist … so

I led the effort to write one!
2

https://xstackwiki.modelado.org/Open_Community_Runtime 3

https://xstackwiki.modelado.org/Open_Community_Runtime

https://xstackwiki.modelado.org/Open_Community_Runtime

Please help me
find a better logo!

4

https://xstackwiki.modelado.org/Open_Community_Runtime

The OCR specification: the core spec

• 1 Introduction
– 1.1 Scope
– 1.2 Glossary
– 1.3 Execution Model
– 1.3.1 OCR Platform
– 1.3.2 OCR objects
– 1.3.3 Trigger rule
– 1.3.4 OCR program execution
– 1.4 Memory Model
– 1.5 Organization of this document

• 2 OCR API Documentation

5

The OCR specification: Examples Appendix
• A OCR Examples
• A.1 OCR’s “Hello World
• A.2 Expressing a Fork-Join pattern
• A.3 Expressing unstructured parallelism
• A.4 Using a Finish EDT
• A.5 Accessing a DataBlock with “Intent-To-Write” Mode
• A.6 Accessing a DataBlock with “Exclusive-Write” Mode
• A.7 Acquiring contents of a DataBlock as a dependence input

6

Conclusion

• The fact we have a formal specification for OCR is a
REALLY BIG DEAL!!!!

• Download the specification and read it.
https://xstackwiki.modelado.org/Open_Community_Runtime

• Help us make OCR (and the specification) better. Contact
me directly if you have feedback or suggestions for
advancing OCR as defined by the specification.

timothy.g.mattson@intel.com

7

https://xstackwiki.modelado.org/Open_Community_Runtime

8

Agenda
1. Motivation and Introduction

– William Gropp, UIUC
– Vivek Sarkar, Rice

2. OCR specification
– Tim Mattson, Intel

3. Use of OCR in Applications
– David Richards, LLNL
– Laura Carrington, SDSC

4. Demos of Distributed OCR and CnC-on-OCR on today’s systems
– Vincent Cave, Rice
– Zoran Budimlic, Rice

5. OCR on future systems
– Josh Fryman, Intel

6. Closing, Q&A/discussion, live poll
– Vivek Sarkar, Rice

LLNL-PRES-XXXXXX
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

CoMD in OCR:
How a lazy programmer can use many tasks

OCR Birds-of-a-Feather

David Richards

November 20, 2014

Lawrence Livermore National Laboratory LLNL-PRES-XXXXXX
10

ExMatEx 2014 Summer School

9 Students
and a Whiteboard

CoMD Proxy App
for Molecular Dynamics

Lawrence Livermore National Laboratory LLNL-PRES-XXXXXX
11

OCR could guarantee correctness

forall iBox in boxes
forall jBox in nbrs(iBox)

forall iAtoms in iBox
forall jAtoms in jBox

fij = f(ri, rj)
Forcei += fij
Forcej -= fij

MD Force loop (simplified)

Blue and Green can be concurrent,
Blue and Red cannot (race condition)

Lawrence Livermore National Laboratory LLNL-PRES-XXXXXX
12

OCR could optimize performance

forall iBox in boxes
forall jBox in nbrs(iBox)

forall iAtoms in iBox
forall jAtoms in jBox

fij = f(ri, rj)
Forcei += fij
Forcej -= fij

MD Force loop (simplified)

Execute tasks that utilize data
already in cache

Lawrence Livermore National Laboratory LLNL-PRES-XXXXXX
13

OCR automates domain
decomposition and data motion

Node 1 Node 2

First trials with distributed OCR have helped
expose issues to the OCR team

Lawrence Livermore National Laboratory LLNL-PRES-XXXXXX
14

Students and Models
 Sam Reeve (Purdue) LAMMPS, CoMD, leanMD
 Riyaz Haque (UCLA), CNC (Habanero-C)
 Luc Jualmes (Barcelona) OmpSs, Chapel
 Sameer Abu Asal (LSU) C++11 futures, HPX
 Aaron Landmehr (Delaware) OCR
 Sanian Gaffer (NM-State) UPC++
 Gheorghe-Teodor Bercea (Imperial) PyOP2
 Zach Rubinstein (Chicago), Troels Henriksen

(Copenhagen) Embedded DSL

15

Agenda
1. Motivation and Introduction

– William Gropp, UIUC
– Vivek Sarkar, Rice

2. OCR specification
– Tim Mattson, Intel

3. Use of OCR in Applications
– David Richards, LLNL
– Laura Carrington, SDSC

4. Demos of Distributed OCR and CnC-on-OCR on today’s systems
– Vincent Cave, Rice
– Zoran Budimlic, Rice

5. OCR on future systems
– Josh Fryman, Intel

6. Closing, Q&A/discussion, live poll
– Vivek Sarkar, Rice

Distributed-OCR

Compiled
OCR Program

Configuration file
for Distributed-OCR

“ocrrun” command

Multiple instances
of OCR runtimes

Distributed
OCR program

execution

Obtaining OCR and CnC-OCR

• git clone -b sc14 --depth 1 https://github.com/01org/ocr.git
• cd hll
• git clone -b sc14 --depth 1 https://github.com/habanero-rice/cnc-ocr.git
• cd cnc_ocr
• source setup_env.sh

17

https://github.com/01org/ocr.git
https://github.com/habanero-rice/cnc-ocr.git

CnC Graph Spec (text file)

Generated Stub code
(C)

- Step code (in C)
- mainEDT() (in C)

Compiled code

make (using generated Makefile)

Output

User written Code

Generated Code

make run ARGS=“…”
(using generated Makefile)

export OCR_TYPE=x86-pthread-x86
cncocr_t

CnC-OCR Shared-Memory Build Model

18

CnC Graph Spec (text file)

Generated Stub code
(C)

- Step code (in C)
- mainEDT() (in C)

Compiled code

make (using generated Makefile)

Output

User written Code

Generated Code

make run ARGS=“…”
(using generated Makefile)

export OCR_TYPE=x86-pthread-mpi
cncocr_t --distributed

CnC-OCR Distributed-Memory Build Model

19

20

Agenda
1. Motivation and Introduction

– William Gropp, UIUC
– Vivek Sarkar, Rice

2. OCR specification
– Tim Mattson, Intel

3. Use of OCR in Applications
– David Richards, LLNL
– Laura Carrington, SDSC

4. Demos of Distributed OCR and CnC-on-OCR on today’s systems
– Vincent Cave, Rice
– Zoran Budimlic, Rice

5. OCR on future systems
– Josh Fryman, Intel

6. Closing, Q&A/discussion, live poll
– Vivek Sarkar, Rice

OCR and the “TG” Architecture:
FSim and Future Architectures
Josh Fryman, System Architect

Extreme Scale Architecture Pathfinding

Datacenter and Communications Group

ALU

RF

L1$ L1S

L2$ L2S

LL$ LLS

IPM

DDR

NVM

DDR

NVM

Disk
Pool

O
(1

0)

O
(1

00
)

O
(1

)

O
(1

0)O
(1

,0
00

)O
(1

)

C
ores per block

Blocks w
/ shared L2 per die

D
ies w

/ shared LL$/SPAD
 per socket

Boards w
/ lim

ited D
D

R
+N

VM
 per C

hassis

C
hassis w

/ large D
D

R
+N

VM
 per Exa-m

achine

M
achines + D

isk arrays

O
(1

)
Sockets w

/ IPM
 per Board

10+ Levels of Memory, O(100M) Cores

22
(c) 2014, Intel

NLNI

“Sea of Blocks” Compute Model

sL1
CE Host Processor:

Full x86,
TLBs, SSE, . . .

iL1 dL1

Async
Off.
Eng.

Tweaked
Decoder

Bus
Gasket

Bridge

uL2

Intra-Accelerator Network

sL2

Standard x86 on-die fabric
& memory map

M
C

IPM
 Bus

External DRAM & NVM

Special
I/O

Fabric

23

AU
iL1

sL1

dL1

AU
iL1

sL1

dL1

AU
iL1

sL1

dL1

AU
iL1

sL1

dL1

AU
iL1

sL1

dL1

AU
iL1

sL1

dL1

AU
iL1

sL1

dL1

AU
iL1

sL1

dL1

(c) 2014, Intel

Functional Simulator (FSIM)

• Instruction-accurate simulator
for proposed research
prototype architecture

Unit

DRAM

In
te

r-
bl

oc
k

N
et

w
or

k

XEXEXE

CE
B

lo
ck

N

et
w

or
k

BSM

NLNI

Block
XEXEXE

CE
B

lo
ck

N

et
w

or
k

BSM

NLNI

Block
XEXEXE

CE
B

lo
ck

N

et
w

or
k

BSM

NLNI

Block

USMUnit

XEXEXE

CE

B
lo

ck

N
et

w
or

k

BSM

NLNI

Block
XEXEXE

CE

B
lo

ck

N
et

w
or

k

BSM

NLNI

Block
XEXEXE

CE

B
lo

ck

N
et

w
or

k

BSM

NLNI

Block

Unit

NLNI

NLNIUSM

NLNI

NLNICSM

XEXEXE

CE

B
lo

ck

N
et

w
or

k

BSM

NLNI

Block
XEXEXE

CE

B
lo

ck

N
et

w
or

k

BSM

NLNI

Block
XEXEXE

CE

B
lo

ck

N
et

w
or

k

BSM

NLNI

Block

NLNI USM

24
(c) 2014, Intel

• OCR is ported to and runs inside FSim, along with ELF apps

• Used in various forms for internal research efforts

• Limited in simulation scale by cluster to run against

• Some clocking, power models in design & automated tools

• Will be open-source released by Aug 2015
• Will not include active end-user support

• Multiple academic and industry partners are familiar with internals

• FSim has no x86 IP issues

• Can be used according to OSS license for other projects
• Specific license TBD

(c) 2014, Intel
25

FSim and OCR

OCR Distributed Runtime (OCR-RT)

x86
COTS

x86
COTS

x86
COTS

Linux Linux Linux

Existing
Platforms

x86 x86 x86

rmd-
krnl

rmd-
krnl

rmd-
krnl

TG (FF2/XS/DF1)
Platforms

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

X
E

shim
layer

shim
layer

shim
layer

H
er

o
Pr

og
ra

m
m

er
s

M
PI

-li
te

O
M

P-
lit

e

TB
B

PO
SI

X-
lit

e

lib
C

C
++

 S
TL

C
++

 R
T

C
N

C
 R

T

Productivity Programmers

O
C

R
 A

PI
s

26

SW Ecosystem Vision for OCR Systems

(c) 2014, Intel

27

Agenda
1. Motivation and Introduction

– William Gropp, UIUC
– Vivek Sarkar, Rice

2. OCR specification
– Tim Mattson, Intel

3. Use of OCR in Applications
– David Richards, LLNL
– Laura Carrington, SDSC

4. Demos of Distributed OCR and CnC-on-OCR on today’s systems
– Vincent Cave, Rice
– Zoran Budimlic, Rice

5. OCR on future systems
– Josh Fryman, Intel

6. Closing, Q&A/discussion, live poll
– Vivek Sarkar, Rice

28

Who Should Look Into OCR

• Application researchers
– Those who would like to explore new ways of expressing intrinsic

parallelism in exascale applications
– Early adopters who would like to provide feedback on our execution

model and API

• Programming model researchers
– Higher-level language/model/DSL implementers who are interested in

determining if their abstractions can be mapped onto OCR

• System-software researchers
– Compilers: how to decompose, offer hints
– Runtimes: scalable dynamic scheduling, optimizations, ...
– Operating systems: interaction with runtime + storage, memory, …

• Hardware researchers
– Those who would like to experiment with OCR as a proxy for an

exascale runtime

29

BACKUP SLIDES START HERE

30

OCR Building Blocks

• Event-driven tasks (EDTs)
– fine-grained uninterruptible unit of computation with well-defined inputs

(events) and bounded memory accesses
– pointers cannot be reused across task boundaries
– support for dynamic mapping --- no hard assumptions can be made about

where task will be executed (though tuning hints can be provided)

• Events (Dependences)
– specified explicitly as preconditions on which EDTs are initiated
– several types of dependences

• Memory datablocks
– explicit datablock allocation is a replacement for malloc()
– relocatable by runtime for power, resilience, ...
– allows exploitation (or modeling) of NUMA, scratchpad memories, etc.

• Implemented as C APIs e.g.,
• u8 ocrEdtCreate(ocrGuid_t * guid, ocrGuid_t templateGuid, u32 paramc, u64* paramv,

u32 depc, ocrGuid_t *depv, u16 properties, ocrGuid_t affinity, ocrGuid_t
*outputEvent);

	The Open Community Runtime� (OCR) Framework for Extreme Scale Systems
	Agenda
	Evolutionary vs. Revolutionary Approaches to Extreme Scale Runtime Systems
	Performance Variability is on the rise
	OCR Vision�(https://xstackwiki.modelado.org/Open_Community_Runtime)
	OCR Acknowledgments
	Agenda
	Agenda
	CoMD in OCR:�How a lazy programmer can use many tasks
	ExMatEx 2014 Summer School
	OCR could guarantee correctness
	OCR could optimize performance
	OCR automates domain decomposition and data motion
	Students and Models
	Agenda
	Distributed-OCR
	Obtaining OCR and CnC-OCR
	Slide Number 18
	Slide Number 19
	Agenda
	OCR and the “TG” Architecture:�FSim and Future Architectures
	10+ Levels of Memory, O(100M) Cores
	“Sea of Blocks” Compute Model
	Functional Simulator (FSIM)
	FSim and OCR
	SW Ecosystem Vision for OCR Systems
	Agenda
	Who Should Look Into OCR
	BACKUP SLIDES START HERE
	OCR Building Blocks
	OCR_BOF.pdf
	The OCR specification
	My journey into the world of OCR
	Slide Number 3
	Slide Number 4
	The OCR specification: the core spec
	The OCR specification: Examples Appendix
	Conclusion

