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Evolutionary vs. Revolutionary Approaches 
to Extreme Scale Runtime Systems

• Wide agreement that execution models for extreme scale 
systems will differ significantly from past execution models

• Shoehorning a new execution model into an old runtime 
system is counter-productive

• Instead, make a fresh start but carry forward ideas and 
components from current runtime systems as appropriate
Motivation for Open Community Runtime framework that …

– is representative of future execution models
– can express large amounts of parallelism in a task-based model
– can explicitly capture logical dependences and data movements
– can be targeted by multiple high-level programming systems
– can be mapped efficiently on to future extreme scale platforms
– is available as an open-source testbed 
– enables us to address revolutionary challenges collaboratively
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Performance Variability is on the rise

• Concurrency --- increased performance variability 
with increased parallelism

• Energy efficiency --- increased performance 
variability with increased non-uniformity and 
heterogeneity in processors

• Locality --- increased performance variability with 
increased memory hierarchy depths

• Resiliency --- increased performance variability with 
fault tolerance adaptation (migration, rollback, 
redundancy, …)

Increasing performance variability  need for dynamic 
adaptive asynchronous runtime systems
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OCR Vision
(https://xstackwiki.modelado.org/Open_Community_Runtime)

Hero
Programmer

Smart
Compiler

Higher-level
language

Higher-level
library

Open Community Runtime Framework
External Runtime Components

Extreme Scale Platforms

R-Stream, ROSE, LLVM
CnC, Chapel,
Legion, …

OpenSHMEM, HC-lib, 
Habanero-UPC++, …

MPI, GASNet,
Portals, UCCS, 
…

C, C++, Fortran
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OCR Acknowledgments

• Design strongly influenced by
– Intel Runnemede project (via DARPA UHPC program)

– power efficiency, programmability, reliability, performance
– Codelet philosophy from CAPSL group at U. Delaware

– implicit notions of dataflow
– Habanero project at Rice U.

– data-driven tasks, data-driven futures, hierarchical places in 
Habanero-C language

– Concurrent Collections model – Intel Software/Solutions Group
– decomposition of algorithm into steps/items/tags, tuning

• Partial support for the OCR development was provided through the X-
Stack program funded by U.S. Department of Energy, Office of 
Science, Advanced Scientific Computing Research (ASCR)
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The OCR specification

Tim Mattson
Parallel Computing Lab

timothy.g.mattson@intel.com



My journey into the world of OCR

• I started working with OCR as part of the Advanced 
computing runtime project about one year ago.

• When I asked for documentation I was sent to doxygen
generated text. 
– This described the interfaces to the functions but said nothing about 

what they meant.
– There were few (if any) documented examples to help me learn OCR.
– To learn the jargon of OCR you had to “sit at the feet of the masters” 

who came before you and learn from them.
– Evolution of OCR happened “in the code” … which is not a good idea 

if you want a coherent “big picture” as OCR grows.

If OCR was to be the foundation for our research, it 
needed a “formal” specification.   One didn’t exist … so 

I led the effort to write one!
2
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https://xstackwiki.modelado.org/Open_Community_Runtime


https://xstackwiki.modelado.org/Open_Community_Runtime

Please help me 
find a better logo!
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https://xstackwiki.modelado.org/Open_Community_Runtime


The OCR specification: the core spec

• 1 Introduction
– 1.1 Scope
– 1.2 Glossary 
– 1.3 Execution Model 
– 1.3.1 OCR Platform 
– 1.3.2 OCR objects 
– 1.3.3 Trigger rule
– 1.3.4 OCR program execution 
– 1.4 Memory Model
– 1.5 Organization of this document 

• 2 OCR API Documentation
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The OCR specification: Examples Appendix
• A OCR Examples 
• A.1 OCR’s “Hello World 
• A.2 Expressing a Fork-Join pattern 
• A.3 Expressing unstructured parallelism 
• A.4 Using a Finish EDT 
• A.5 Accessing a DataBlock with “Intent-To-Write” Mode 
• A.6 Accessing a DataBlock with “Exclusive-Write” Mode 
• A.7 Acquiring contents of a DataBlock as a dependence input 
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Conclusion

• The fact we have a formal specification for OCR  is a 
REALLY BIG DEAL!!!!

• Download the specification and read it.
https://xstackwiki.modelado.org/Open_Community_Runtime

• Help us make OCR (and the specification) better.  Contact 
me directly if you have feedback or suggestions for 
advancing OCR as defined by the specification.

timothy.g.mattson@intel.com
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LLNL-PRES-XXXXXX
This work was performed under the auspices of the U.S. Department 
of Energy by Lawrence Livermore National Laboratory under Contract 
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

CoMD in OCR:
How a lazy programmer can use many tasks 

OCR Birds-of-a-Feather

David Richards

November 20, 2014
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ExMatEx 2014 Summer School

9 Students 
and a Whiteboard

CoMD Proxy App
for Molecular Dynamics
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OCR could guarantee correctness

forall iBox in boxes
forall jBox in nbrs(iBox)

forall iAtoms in iBox
forall jAtoms in jBox

fij = f(ri, rj)
Forcei += fij
Forcej -= fij

MD Force loop (simplified)

Blue and Green can be concurrent,
Blue and Red cannot (race condition)
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OCR could optimize performance

forall iBox in boxes
forall jBox in nbrs(iBox)

forall iAtoms in iBox
forall jAtoms in jBox

fij = f(ri, rj)
Forcei += fij
Forcej -= fij

MD Force loop (simplified)

Execute tasks that utilize data 
already in cache
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OCR automates domain 
decomposition and data motion

Node 1 Node 2

First trials with distributed OCR have helped 
expose issues to the OCR team
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Students and Models
 Sam Reeve (Purdue) LAMMPS, CoMD, leanMD
 Riyaz Haque (UCLA), CNC (Habanero-C)
 Luc Jualmes (Barcelona) OmpSs, Chapel
 Sameer Abu Asal (LSU) C++11 futures, HPX
 Aaron Landmehr (Delaware) OCR
 Sanian Gaffer (NM-State) UPC++
 Gheorghe-Teodor Bercea (Imperial) PyOP2
 Zach Rubinstein (Chicago), Troels Henriksen 

(Copenhagen) Embedded DSL
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Distributed-OCR

Compiled 
OCR Program

Configuration file
for Distributed-OCR

“ocrrun” command

Multiple instances
of OCR runtimes

Distributed
OCR program 

execution



Obtaining OCR and CnC-OCR

• git clone -b sc14 --depth 1 https://github.com/01org/ocr.git
• cd hll
• git clone -b sc14 --depth 1 https://github.com/habanero-rice/cnc-ocr.git
• cd cnc_ocr
• source setup_env.sh
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https://github.com/01org/ocr.git
https://github.com/habanero-rice/cnc-ocr.git


CnC Graph Spec (text file)

Generated Stub code
(C)

- Step code (in C)
- mainEDT() (in C)

Compiled code

make (using generated Makefile)

Output

User written Code

Generated Code

make run ARGS=“…”
(using generated Makefile)

export OCR_TYPE=x86-pthread-x86
cncocr_t

CnC-OCR Shared-Memory Build Model
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CnC Graph Spec (text file)

Generated Stub code
(C)

- Step code (in C)
- mainEDT() (in C)

Compiled code

make (using generated Makefile)

Output

User written Code

Generated Code

make run ARGS=“…”
(using generated Makefile)

export OCR_TYPE=x86-pthread-mpi
cncocr_t --distributed

CnC-OCR Distributed-Memory Build Model

19
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OCR and the “TG” Architecture:
FSim and Future Architectures
Josh Fryman, System Architect

Extreme Scale Architecture Pathfinding

Datacenter and Communications Group



ALU

RF

L1$ L1S

L2$ L2S

LL$ LLS

IPM

DDR

NVM

DDR

NVM

Disk
Pool

O
(1

0)

O
(1

00
)

O
(1

)

O
(1

0)O
(1

,0
00

)O
(1

)

C
ores per block

Blocks w
/ shared L2 per die

D
ies w

/ shared LL$/SPAD
 per socket

Boards w
/ lim

ited D
D

R
+N

VM
 per C

hassis

C
hassis w

/ large D
D

R
+N

VM
 per Exa-m

achine

M
achines + D

isk arrays

O
(1

)
Sockets w

/ IPM
 per Board

10+ Levels of Memory, O(100M) Cores

22
(c) 2014, Intel



NLNI

“Sea of Blocks” Compute Model
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CE Host Processor: 
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Functional Simulator (FSIM)

• Instruction-accurate simulator 
for proposed research 
prototype architecture
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• OCR is ported to and runs inside FSim, along with ELF apps

• Used in various forms for internal research efforts

• Limited in simulation scale by cluster to run against

• Some clocking, power models in design & automated tools

• Will be open-source released by Aug 2015
• Will not include active end-user support

• Multiple academic and industry partners are familiar with internals

• FSim has no x86 IP issues

• Can be used according to OSS license for other projects
• Specific license TBD

(c) 2014, Intel
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FSim and OCR



OCR Distributed Runtime (OCR-RT)
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SW Ecosystem Vision for OCR Systems

(c) 2014, Intel
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Who Should Look Into OCR

• Application researchers
– Those who would like to explore new ways of expressing intrinsic 

parallelism in exascale applications
– Early adopters who would like to provide feedback on our execution 

model and API

• Programming model researchers
– Higher-level language/model/DSL implementers who are interested in 

determining if their abstractions can be mapped onto OCR

• System-software researchers
– Compilers: how to decompose, offer hints
– Runtimes: scalable dynamic scheduling, optimizations, ...
– Operating systems: interaction with runtime + storage, memory, …

• Hardware researchers
– Those who would like to experiment with OCR as a proxy for an 

exascale runtime
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BACKUP SLIDES START HERE



30

OCR Building Blocks

• Event-driven tasks (EDTs)
– fine-grained uninterruptible unit of computation with well-defined inputs 

(events) and bounded memory accesses
– pointers cannot be reused across task boundaries 
– support for dynamic mapping --- no hard assumptions can be made about 

where task will be executed (though tuning hints can be provided)

• Events (Dependences)
– specified explicitly as preconditions on which EDTs are initiated
– several types of dependences

• Memory datablocks
– explicit datablock allocation is a replacement for malloc()
– relocatable by runtime for power, resilience, ...
– allows exploitation (or modeling) of NUMA, scratchpad memories, etc.

• Implemented as C APIs e.g.,
• u8 ocrEdtCreate(ocrGuid_t * guid, ocrGuid_t templateGuid, u32 paramc, u64* paramv, 

u32 depc,  ocrGuid_t *depv, u16 properties, ocrGuid_t affinity, ocrGuid_t 
*outputEvent);
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