The Open Community Runtime (OCR) Framework for Extreme Scale Systems

Birds of a Feather Session, SC14, New Orleans November 20, 2014

> <u>Organizers:</u> Vivek Sarkar (Rice U.) Barbara Chapman (U. Houston) William Gropp (U. Illinois)

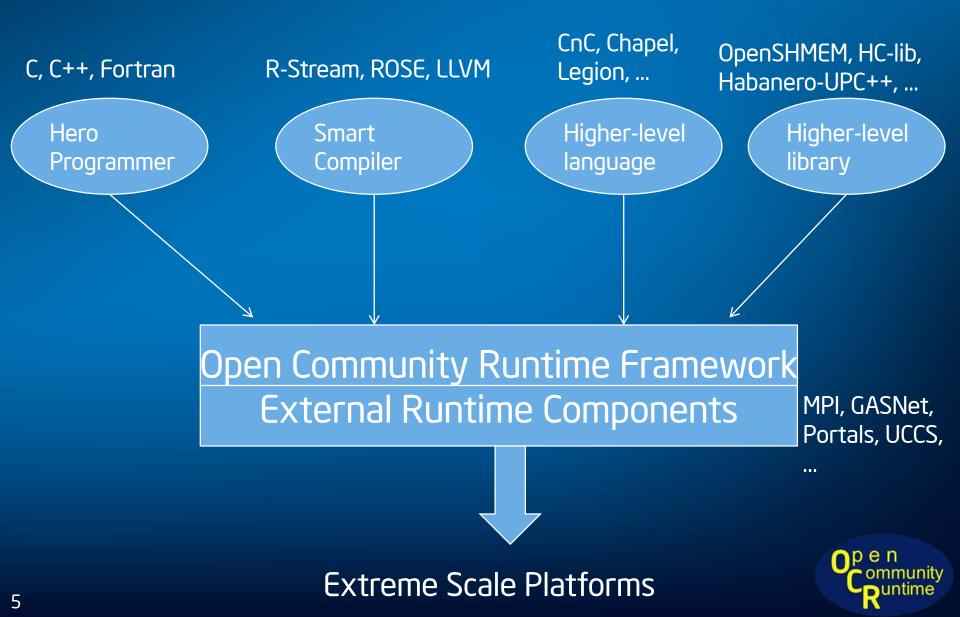
Live poll at http://pollev/sc14

Agenda

- 1. Motivation and Introduction
 - William Gropp, UIUC
 - Vivek Sarkar, Rice
- 2. OCR specification
 - Tim Mattson, Intel
- 3. Use of OCR in Applications
 - David Richards, LLNL
 - Laura Carrington, SDSC
- 4. Demos of Distributed OCR and CnC-on-OCR on today's systems
 - Vincent Cave, Rice
 - Zoran Budimlic, Rice
- 5. OCR on future systems
 - Josh Fryman, Intel
- 6. Closing, Q&A/discussion, live poll
 - Vivek Sarkar, Rice

Evolutionary vs. Revolutionary Approaches to Extreme Scale Runtime Systems

- Wide agreement that execution models for extreme scale systems will differ significantly from past execution models
- Shoehorning a new execution model into an old runtime system is counter-productive
- Instead, make a fresh start but carry forward ideas and components from current runtime systems as appropriate
- → Motivation for Open Community Runtime framework that ...
 - is representative of future execution models
 - can express large amounts of parallelism in a task-based model
 - can explicitly capture logical dependences and data movements
 - can be targeted by multiple high-level programming systems
 - can be mapped efficiently on to future extreme scale platforms
 - is available as an open-source testbed
 - enables us to address revolutionary challenges collaboratively


Performance Variability is on the rise

- Concurrency --- increased performance variability with increased parallelism
- Energy efficiency --- increased performance variability with increased non-uniformity and heterogeneity in processors
- Locality --- increased performance variability with increased memory hierarchy depths
- Resiliency ---- increased performance variability with fault tolerance adaptation (migration, rollback, redundancy, ...)

Increasing performance variability -> need for dynamic adaptive asynchronous runtime systems

OCR Vision (https://xstackwiki.modelado.org/Open_Community_Runtime)

OCR Acknowledgments

- Design strongly influenced by
 - Intel Runnemede project (via DARPA UHPC program)
 - power efficiency, programmability, reliability, performance
 - Codelet philosophy from CAPSL group at U. Delaware
 - implicit notions of dataflow
 - Habanero project at Rice U.
 - data-driven tasks, data-driven futures, hierarchical places in Habanero-C language
 - Concurrent Collections model Intel Software/Solutions Group
 decomposition of algorithm into steps/items/tags, tuning
- Partial support for the OCR development was provided through the X-Stack program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research (ASCR)

Agenda

- 1. Motivation and Introduction
 - William Gropp, UIUC
 - Vivek Sarkar, Rice

2. OCR specification

Tim Mattson, Intel

3. Use of OCR in Applications

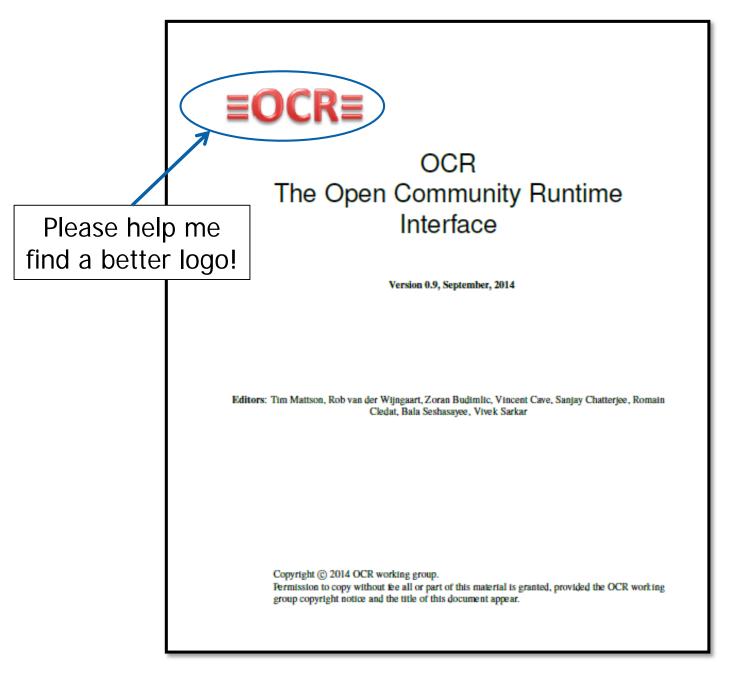
- David Richards, LLNL
- Laura Carrington, SDSC

4. Demos of Distributed OCR and CnC-on-OCR on today's systems

- Vincent Cave, Rice
- Zoran Budimlic, Rice
- 5. OCR on future systems
 - Josh Fryman, Intel
- 6. Closing, Q&A/discussion, live poll
 - Vivek Sarkar, Rice

The OCR specification

Tim Mattson Parallel Computing Lab timothy.g.mattson@intel.com


My journey into the world of OCR

- I started working with OCR as part of the Advanced computing runtime project about one year ago.
- When I asked for documentation I was sent to doxygen generated text.
 - This described the interfaces to the functions but said nothing about what they meant.
 - There were few (if any) documented examples to help me learn OCR.
 - To learn the jargon of OCR you had to "sit at the feet of the masters" who came before you and learn from them.
 - Evolution of OCR happened "in the code" ... which is not a good idea if you want a coherent "big picture" as OCR grows.

If OCR was to be the foundation for our research, it needed a "formal" specification. One didn't exist ... so I led the effort to write one!

EOCR OCR The Open Community Runtime Interface	
Version 0.9, September, 2014	
Editors: Tim Mattson, Rob van der Wijngaart, Zoran Budimlic, Vincent Cave, Sanjay Chatterjee, Romain Cledat, Bala Seshasayee, Vivek Sarkar	
Copyright (© 2014 OCR working group. Permission to copy without fee all or part of this material is granted, provided the OCR working group copyright notice and the title of this document appear.	

https://xstackwiki.modelado.org/Open_Community_Runtime

https://xstackwiki.modelado.org/Open_Community_Runtime

The OCR specification: the core spec

1 Introduction

- 1.1 Scope
- 1.2 Glossary
- 1.3 Execution Model
- 1.3.1 OCR Platform
- 1.3.2 OCR objects
- 1.3.3 Trigger rule
- 1.3.4 OCR program execution
- 1.4 Memory Model
- 1.5 Organization of this document

• 2 OCR API Documentation

The OCR specification: Examples Appendix

• A OCR Examples

- A.1 OCR's "Hello World
- A.2 Expressing a Fork-Join pattern
- A.3 Expressing unstructured parallelism
- A.4 Using a Finish EDT
- A.5 Accessing a DataBlock with "Intent-To-Write" Mode
- A.6 Accessing a DataBlock with "Exclusive-Write" Mode
- A.7 Acquiring contents of a DataBlock as a dependence input

Conclusion

- The fact we have a formal specification for OCR is a REALLY BIG DEAL!!!!
- Download the specification and read it. <u>https://xstackwiki.modelado.org/Open_Community_Runtime</u>
- Help us make OCR (and the specification) better. Contact me directly if you have feedback or suggestions for advancing OCR as defined by the specification.

timothy.g.mattson@intel.com

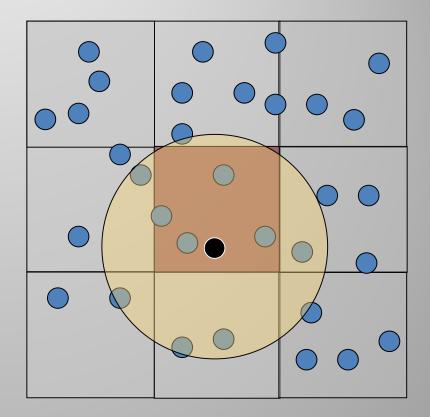
Agenda

- 1. Motivation and Introduction
 - William Gropp, UIUC
 - Vivek Sarkar, Rice
- 2. OCR specification
 - Tim Mattson, Intel
- 3. <u>Use of OCR in Applications</u>
 - David Richards, LLNL
 - Laura Carrington, SDSC
- 4. Demos of Distributed OCR and CnC-on-OCR on today's systems
 - Vincent Cave, Rice
 - Zoran Budimlic, Rice
- 5. OCR on future systems
 - Josh Fryman, Intel
- 6. Closing, Q&A/discussion, live poll
 - Vivek Sarkar, Rice

CoMD in OCR: How a lazy programmer can use many tasks

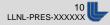
OCR Birds-of-a-Feather November 20, 2014

Lawrence Livermore National Laboratory **David Richards**



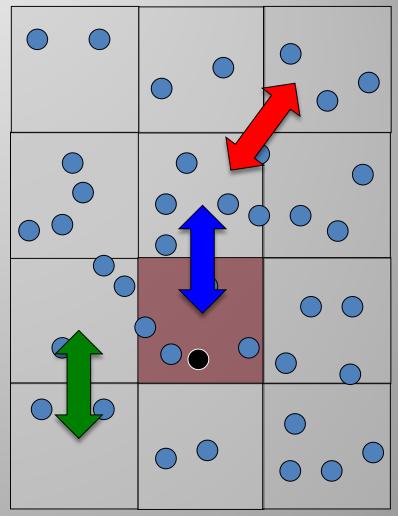
LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC


ExMatEx 2014 Summer School

9 Students and a Whiteboard

CoMD Proxy App for Molecular Dynamics

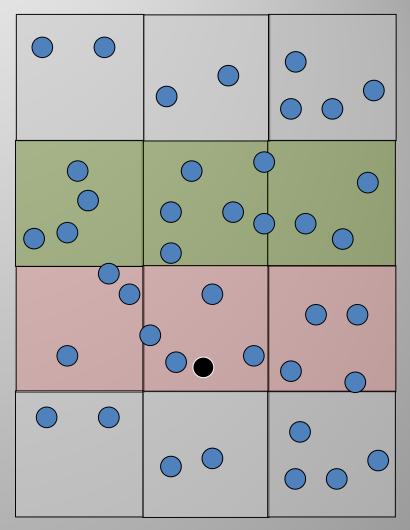


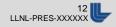
OCR could guarantee correctness

MD Force loop (simplified)

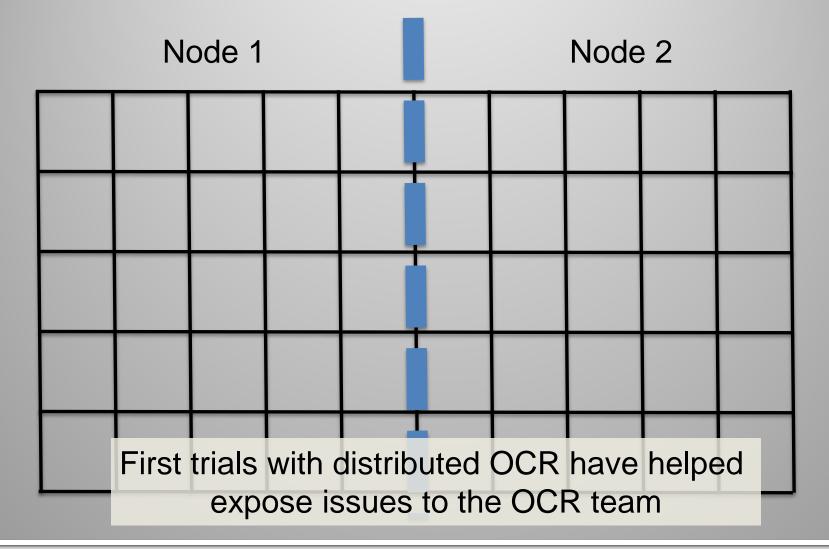
```
forall iBox in boxes
forall jBox in nbrs(iBox)
forall iAtoms in iBox
forall jAtoms in jBox
fij = f(ri, rj)
Forcei += fij
Forcej -= fij
```

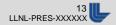
Blue and Green can be concurrent, Blue and Red cannot (race condition)




OCR could optimize performance

MD Force loop (simplified)

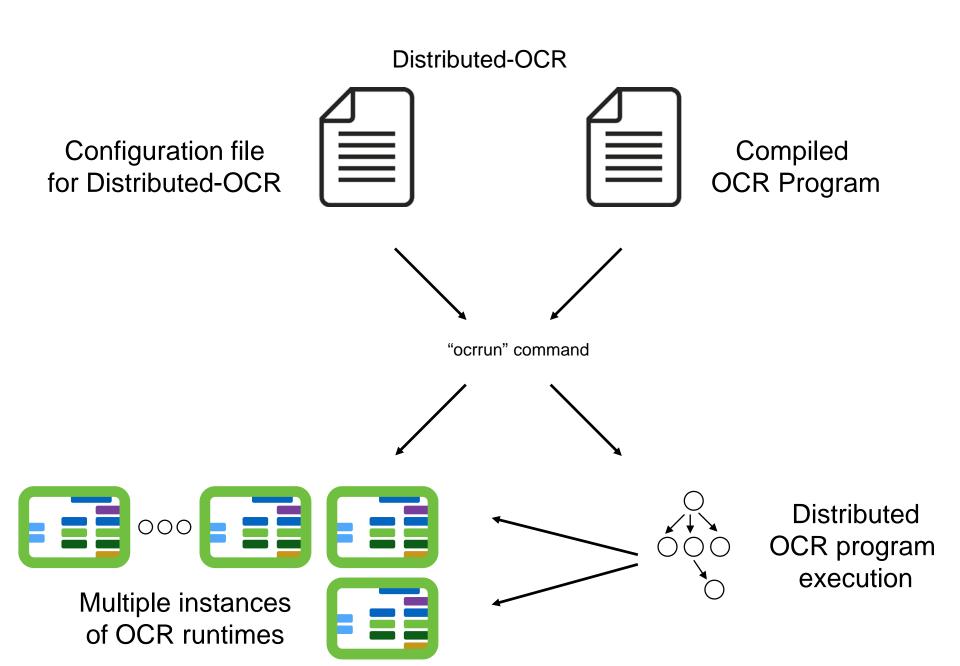

```
forall iBox in boxes
forall jBox in nbrs(iBox)
forall iAtoms in iBox
forall jAtoms in jBox
fij = f(ri, rj)
Forcei += fij
Forcej -= fij
```


Execute tasks that utilize data already in cache

OCR automates domain decomposition and data motion

Students and Models

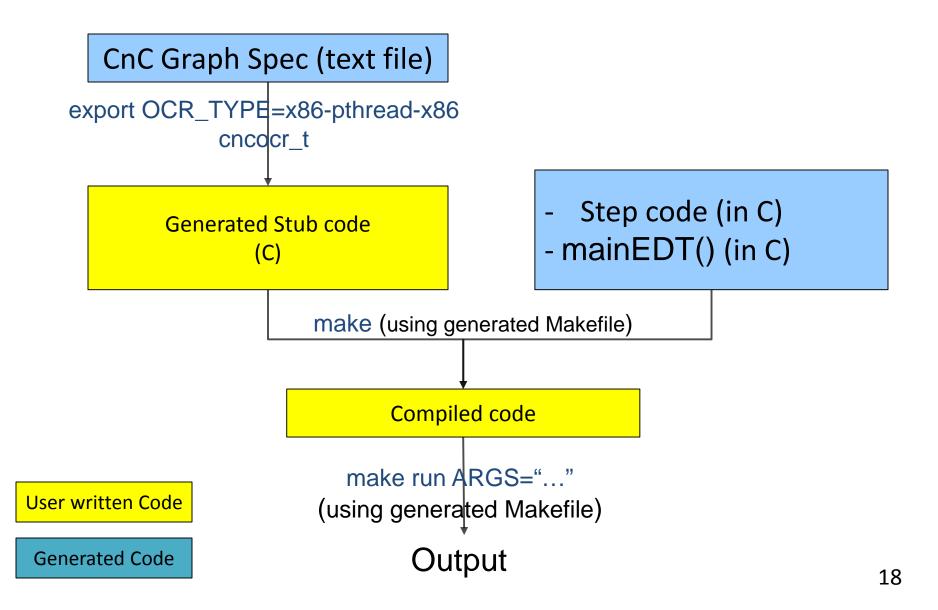
- Sam Reeve (Purdue) LAMMPS, CoMD, leanMD
- Riyaz Haque (UCLA), CNC (Habanero-C)
- Luc Jualmes (Barcelona) OmpSs, Chapel
- Sameer Abu Asal (LSU) C++11 futures, HPX
- Aaron Landmehr (Delaware) OCR
- Sanian Gaffer (NM-State) UPC++
- Gheorghe-Teodor Bercea (Imperial) PyOP2
- Zach Rubinstein (Chicago), Troels Henriksen (Copenhagen) Embedded DSL

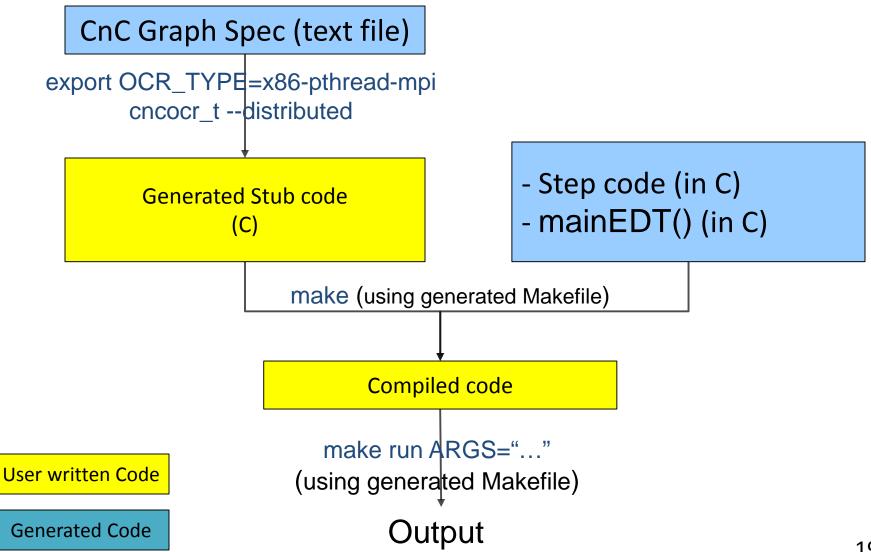

Agenda

- 1. Motivation and Introduction
 - William Gropp, UIUC
 - Vivek Sarkar, Rice
- 2. OCR specification
 - Tim Mattson, Intel
- 3. Use of OCR in Applications
 - David Richards, LLNL
 - Laura Carrington, SDSC

4. Demos of Distributed OCR and CnC-on-OCR on today's systems

- Vincent Cave, Rice
- Zoran Budimlic, Rice
- 5. OCR on future systems
 - Josh Fryman, Intel
- 6. Closing, Q&A/discussion, live poll
 - Vivek Sarkar, Rice




Obtaining OCR and CnC-OCR

- git clone -b sc14 --depth 1 <u>https://github.com/01org/ocr.git</u>
- cd hll
- git clone -b sc14 --depth 1 https://github.com/habanero-rice/cnc-ocr.git
- cd cnc_ocr
- source setup_env.sh

CnC-OCR Shared-Memory Build Model

CnC-OCR Distributed-Memory Build Model

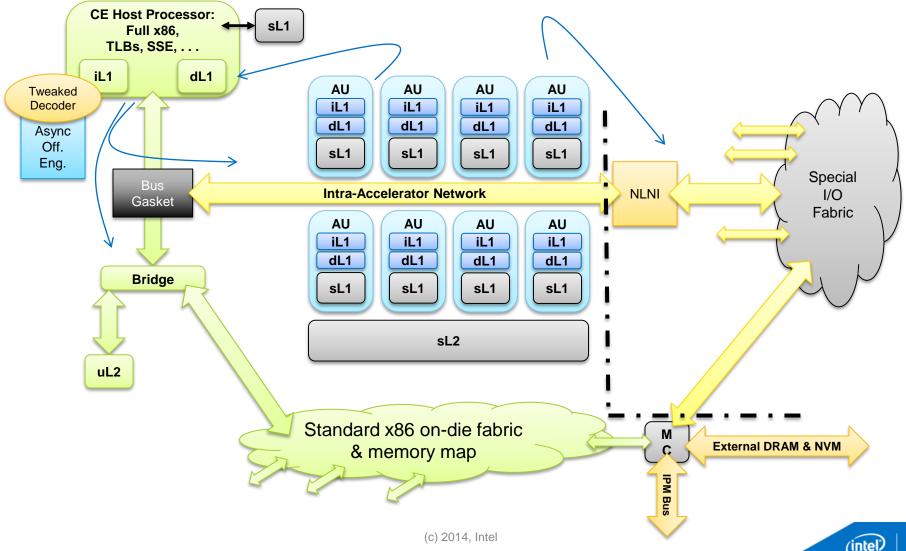
Agenda

- 1. Motivation and Introduction
 - William Gropp, UIUC
 - Vivek Sarkar, Rice
- 2. OCR specification
 - Tim Mattson, Intel
- 3. Use of OCR in Applications
 - David Richards, LLNL
 - Laura Carrington, SDSC
- 4. Demos of Distributed OCR and CnC-on-OCR on today's systems
 - Vincent Cave, Rice
 - Zoran Budimlic, Rice
- 5. OCR on future systems
 - Josh Fryman, Intel
- 6. Closing, Q&A/discussion, live poll
 - Vivek Sarkar, Rice

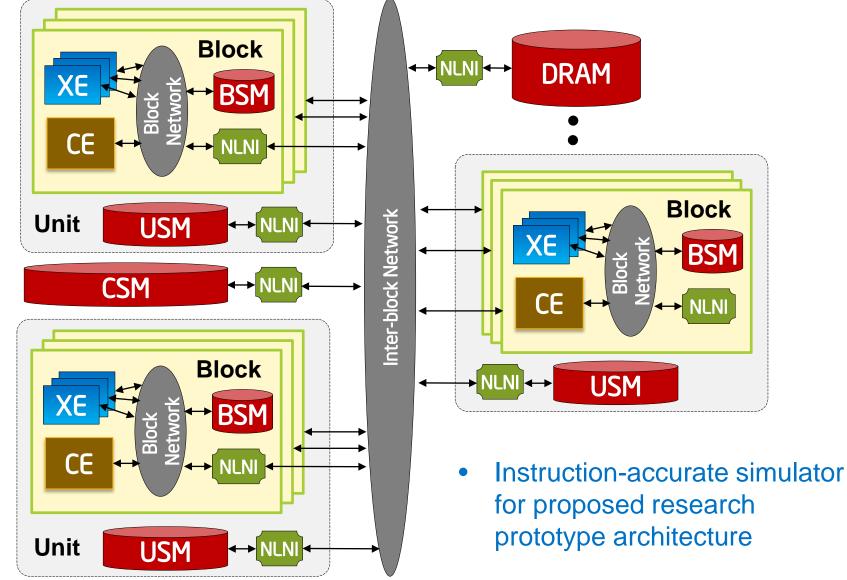
OCR and the "TG" Architecture: FSim and Future Architectures

Josh Fryman, System Architect

Extreme Scale Architecture Pathfinding


Datacenter and Communications Group

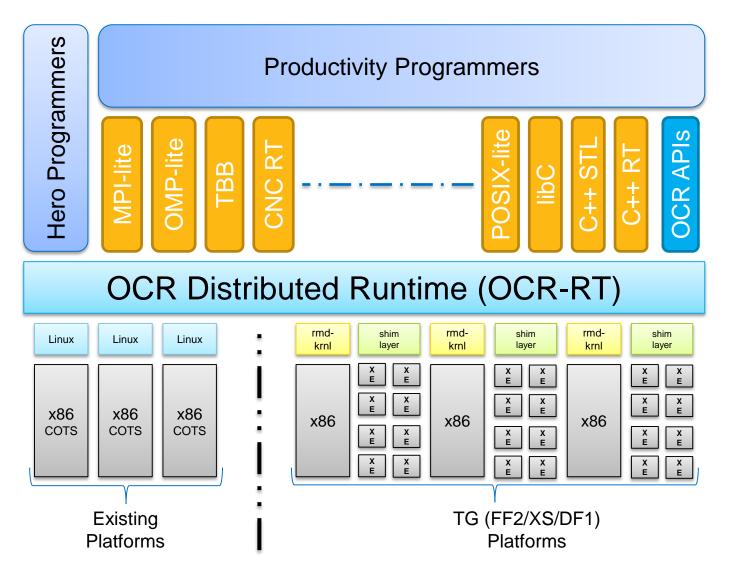
Disk Pool NVM DDR Chassis w/ large DDR+NVM per NVM Machines + Disk arrays DDR Boards w/ limited DDR+NVM per Chassis O(1) **IPM** O(1,000) Dies w/ shared LL\$/SPAD per socket Sockets w/ IPM per Board 11\$ LLS O(10) Blocks w/ shared L2 per die $_{2S}$ Exa-machine _2\$ 0(1) L1\$ L1S 0(1) Cores per block O(100) O(10) RF ALU (c) 2014, Intel


10+ Levels of Memory, O(100M) Cores

inte

"Sea of Blocks" Compute Model

Functional Simulator (FSIM)



FSim and OCR

- OCR is ported to and runs inside FSim, along with ELF apps
- Used in various forms for internal research efforts
- Limited in simulation scale by cluster to run against
- Some clocking, power models in design & automated tools
- Will be open-source released by Aug 2015
 - Will not include active end-user support
 - Multiple academic and industry partners are familiar with internals
- FSim has no x86 IP issues
- Can be used according to OSS license for other projects
 - Specific license TBD

SW Ecosystem Vision for OCR Systems

Agenda

- 1. Motivation and Introduction
 - William Gropp, UIUC
 - Vivek Sarkar, Rice
- 2. OCR specification
 - Tim Mattson, Intel
- 3. Use of OCR in Applications
 - David Richards, LLNL
 - Laura Carrington, SDSC
- 4. Demos of Distributed OCR and CnC-on-OCR on today's systems
 - Vincent Cave, Rice
 - Zoran Budimlic, Rice
- 5. OCR on future systems
 - Josh Fryman, Intel
- 6. <u>Closing, Q&A/discussion, live poll</u>
 - Vivek Sarkar, Rice

Who Should Look Into OCR

Application researchers

- Those who would like to explore new ways of expressing intrinsic parallelism in exascale applications
- Early adopters who would like to provide feedback on our execution model and API

Programming model researchers

 Higher-level language/model/DSL implementers who are interested in determining if their abstractions can be mapped onto OCR

System-software researchers

- Compilers: how to decompose, offer hints
- Runtimes: scalable dynamic scheduling, optimizations, ...
- Operating systems: interaction with runtime + storage, memory, ...
- Hardware researchers
 - Those who would like to experiment with OCR as a proxy for an open exascale runtime

BACKUP SLIDES START HERE

OCR Building Blocks

- Event-driven tasks (EDTs)
 - fine-grained uninterruptible unit of computation with well-defined inputs (events) and bounded memory accesses
 - pointers cannot be reused across task boundaries
 - support for dynamic mapping --- no hard assumptions can be made about where task will be executed (though tuning hints can be provided)
- Events (Dependences)
 - specified explicitly as preconditions on which EDTs are initiated
 - several types of dependences
- Memory datablocks
 - explicit datablock allocation is a replacement for malloc()
 - relocatable by runtime for power, resilience, ...
 - allows exploitation (or modeling) of NUMA, scratchpad memories, etc.
- Implemented as C APIs e.g.,
 - u8 ocrEdtCreate(ocrGuid_t * guid, ocrGuid_t templateGuid, u32 paramc, u64* paramv, u32 depc, ocrGuid_t *depv, u16 properties, ocrGuid_t affinity, ocrGuid_t *outputEvent);

