
1

Traleika Glacier X-Stack
Status Review

March 25, 2014
Acknowledgment: This material is based upon work supported by the Department of Energy [Office of Science] under Award Number DE-
SC0008717.
Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government
or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or any agency thereof.

2

Agenda
• Traleika Glacier X-Stack Overview – Shekhar Borkar, Intel – 5 min

• Applications in OCR on FSim – Roger Golliver, UIUC – 5 min

• Applications – LULESH & miniGMG – John Feo/Ellen Porter, PNNL – 5 min

• Evaluate TG architecture with Co-Design center’s applications (ExMatEx – CoMD proxy app) – Laura Carrington, Pietro
Cicotti, UCSD – 5 min

• Hierarchically Tiled Arrays – David Padua/Adam Smith, UIUC – 5 min

• High-level Compiler (R-Stream) – Rich Lethin/Muthu Baskaran, Reservoir Labs – 5 min

• Programming Model & Runtime – Romain Cledat, Intel – 5 min

• OCR and Extreme Scale Systems – Vivek Sarkar/Zoran Budimlic, Rice – 5 min

• Low-level Tools (LLVM & Binutils) – Rich Lethin/Muthu Baskaran, Reservoir Labs – 5 min

• Exascale Simulation – Kelly Livingston, ETI – 5 min

• Architecture Overview – Josep Torrellas, UIUC – 5 min

• Self-Awareness – Guang Gao, Stephane Zuckerman, U Del – 5 min

• Summary – Shekhar Borkar, Intel – 5 min

• Q&A – 25 min

3

Traleika Glacier X-Stack Overview
Intel Goal:

Research and mature software technologies addressing major
Exascale challenges and get ready to intercept by 2020

Challenges
Extreme parallelism O(Billion)

Programming model
Data locality
Legacy compatibility

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1986 1996 2006 2016

G

Tera

Peta

36X

Exa

4,000X
Concurrency

2.5M X

Transistor Performance

Introspective execution model—Self-aware
Event driven tasks
Synchronization
Dynamic scheduling
Runtime system A

codelet

Running
Q

Ready
Q

Waiting
Deps

Data Locality

Bus

C C

C C

Bus to connect over short
distances

Bus

C C

C C

Bus

C C

C C

Bus

C C

C C

Bus

C C

C C
2nd Level Bus

Hierarchy of BussesOr hierarchical circuit and packet
switched networks

R R

R R

Data movement
energy dominates
Code to data vs
data to code

Refactoring algorithms & applications
Port the science
behind the
applications
Co-design

Several technologies identified, need to mature them

4

Results:
Architecture in place

Traleika Glacier X-Stack Overview
Intel Research & Development Flow

Straw-man
Architecture

Infrastructure
Infrastructure

Programming
System

Execution model

Science & Apps

Results:
OCR Released

Results:
LULESH refactored

Impact
• 2 Application WS with co-

design center participation
• Science behind apps
 LULESH,
 Combustion,
 AMR,
 mini GMG
• Ported on OCR x-86
 CG-kernel, CoMD
• Will be targeted to TG arch

(Fsim)

Results:
Infrastructure
in place

Results:
Infrastructure
in place

Results:
Kernels coded

5

Traleika Glacier X-Stack Overview
Intel

Desired outcome by Sep’14
• Adaptive-mesh, AMR, refactored as an mini-app
• Mini-GMG, internal to AMR, to be worked by John Bell and Rice
• Show substantial improvement on entire tool chain and FSim
• Ready for May ESR meeting and App Workshop 3 in August

Desired outcome by Sep’15
• Individual SW components matured
• Key applications refactored with science
• Complete SW stack evaluated on the simulator
• System architecture in place

6

Applications in OCR on FSim
 Overview

• Problem
• Need for OCR on FSim implementations of applications of interest for development

and evaluation of HW/SW proposals
• FSim is parallel, there is a need for applications that run on more than a single

block
• No semi-automatic path for proxy level complexity applications to run on FSim

efficiently
• Initial ports to OCR that run well on x86_64 Linux, require additional effort to run

effectively on FSim
• Parallelization via EDTs/DBs is the necessary first step
• Managing DBs in the memory hierarchy is the more interesting problem
• No POSIX I/O in OCR on FSim

7

Applications in OCR on FSim
 Overview

• Solution
• Using Humans as compilers working on benchmarks and proxy applications
• Initially tried to construct source to source mapping from original MPI/OpenMP

proxy application to OCR implementation
• Recent experience suggests starting with a clean OCR implementation of

kernel algorithms, informed by how the proxy uses them, will produce a better
implementation

• Range of sophistication of the solutions for evaluation experiments
• Simple use of data blocks (to allow OCR to manage)
• More explicit use of data block management within the memory hierarchy as

target

8

Applications in OCR on FSim
 Overview

• Recent Results
• SCF (Self Consistent Field from NW-Chem)
• HPCC Stream and FFT

• FFT single large DB
• HPCC matrix multiply

• Traditionally: explicitly blocked to core’s last level cach (LLC) with compiler managing
register file size sub-blocks

• OCR/FSim: HTA style management of data necessary at each level of the memory
hierarchy.

• HPCG
• Text book implementation of CG

• LULESH 1.0 (Serial Single Domain on FSIM)

9

Applications in OCR on FSim
 Overview

• Impact
• FSim environment and existing tool chain is robust

• Able to run week long simulation runs without problems

• SCF identified need for improved transcendental functions,
so CRLIBM ported to FSim

• Changing view on importance of software managed cache

• Investigating additional common operations needed to help manage DBs

• Desired outcomes by Sep’14
• miniGMG and the soon to be released LULESH 2+ new physics

• high level CnC

• low level OCR on FSim

• Expand implementations of HPCC and HPCG

• Eg. Single node FFT to parallel distributed 1D-FFT

• Desired outcomes by Sep’15
• Expect productivity to be expanded with the availability of more programming tools

(Without some HHL support for programming model progress will continue be slower than desired)

10

Applications – LULESH & miniGMG
 PNNL

• Problem
• Application development costs
• Good performance requires expertise

• Programming models
• Underlying architecture

• Solution
• Develop programming models

• Reduce complexities
• Easy to use

• Recent results
• Translated LULESH to CnC

• From informal whiteboard sketch
• To a formal specification
• To application

11

Applications – LULESH & miniGMG
 PNNL

• Desired outcome by September 2014
• Execute LULESH on FSim
• Evaluate and improve code
• Provide feedback for FSim
• Transform miniGMG to CnC

• Desired outcome by September 2015
• Execute miniGMG on Fsim
• Evaluate and improve code
• Profide feedback for Fsim
• Test CnC tuning models for both applications

12

Evaluate TG architecture with Co-Design
center’s applications (ExMatEx – CoMD proxy app)

UCSD

Problem: How to redesign key applications of the Co-
Design centers and evaluate the TG architecture

• Example CoMD algorithm: classical short-range molecular dynamics

Solution: Implement proxy apps in OCR
• Work with ExMatEx scientist to understand algorithmic options
• Characterize & redesign CoMD for OCR programming model
• Explore design space and characterize tradeoffs in performance, data

movement, and energy consumption using TG FSIM simulator

13

Evaluate TG architecture with Co-Design
center’s applications

UCSD

Desired Impact and Current Status
Impact:
• Test the software stack with scalable benchmarks
• Provide a methodology to characterize algorithms and understand design

tradeoffs at Exascale
• Provide guidelines and support to the Co-Design centers in designing

applications for Exascale

Recent Results:
• Implemented CoMD Lennard-Jones potential on OCR/x86
• Testing scalability on multi-core systems

14

Evaluate TG architecture with Co-Design
center’s applications

UCSD
Desired outcome by Sep’14

• Complete second algorithm implementation of CoMD (Embedded Atom
Method) and use for investigation of TG architecture on FSIM

• Compare sensitivity to variations in core speed with the bulk-synchronous
implementation

• Characterize data-movement and energy consumption of the different
implementations

• Example: atomic floating point operations vs. OCR exclusive writes
Desired outcome by Sep’15

• Target other MD variants (e.g. fewer atoms/core)
• Target other proxy applications from the Co-Design centers

15

• Overall Goals
o Provide a convenient and efficient notation to use OCR.
o Based on abstractions typically representing data parallel

operations

• Accomplishments of last two quarters:
o Refactored implementation to target new OCR v0.8

interface.
o Implemented NAS benchmarks in HTA (EP, CG, FT, IS,

MG, LU).
 Obtained performance numbers.
 Generated some of the most complex OCR codes

available for testing purposes.
o Worked on integration with R-Stream.
o Designed transformation to generate OCR code in SPMD

form for efficiency.

Hierarchically Tiled Arrays
UIUC

16

• NAS benchmarks Class C

• Shared memory OCR v0.8

• Numbers collected on four
socket, 10 core Intel Xeon
E7-4860 machine with 128
GB of RAM

• Results are preliminary

• Overheads introduced by
HTA and OCR will be
reduced

• CG results are only
meaningful to 8 PEs
because of configuration file
issue

HTA Performance Numbers
UIUC

17

• Goals for September ‘14
o Complete SPMD implementation. Evaluate the overhead resulting

from HTA to OCR translation.
o Complete R-Stream integration

• Goals for September ‘15
o Extend HTA design and implementation to include multiple levels of

parallelism, irregular parallelism, and irregular partitions.
o Implement a variety of other benchmarks.

 Mini GMG, AMR, etc.
o Evaluate and tune for performance.
o Evaluate programmability using objective metrics (e.g. number of

operations).

Hierarchically Tiled Arrays
UIUC

18

Problem
• Need an efficient programming system for addressing Exascale

challenges, namely, programmability, energy efficiency, and scalability

Solution
• High-level compiler optimizations that address the Exascale challenges
• Automatic generation of efficient parallel code leveraging runtimes (CnC,

OCR)
o Improve data locality and reduce communication ⇒ energy efficiency
o Expose high concurrency ⇒ scalability
o Enable automatic code generation and data management ⇒

productivity

High-level Compiler (R-Stream)
Reservoir Labs

19

Recent Results and Impact
• Support for automatic generation

of code for CnC and OCR
★ Auto-parallelized C benchmarks

(stencils, solves, etc.) to
to CnC and OCR quickly

★ Showed R-Stream’s ability to
achieve data locality and
expose task parallelism

★ Validated scaling capabilities of
EDT runtimes

• Parallelism and data locality optimizations for stencil kernels - prevalent in
DoE apps (e.g. stencils from BoxLib and UQ kernels)

High-level Compiler (R-Stream)
Reservoir Labs

20

Desired Outcomes
• Sep’14

o Support for OCR optimizations - data blocks, hierarchical EDTs, and
locality-aware scheduling

o Auto-generate OCR code for miniGMG benchmark through R-Stream
• Sep’15

o R-Stream optimizations for deep hierarchy of processors and
memories exhibiting scalability

o Support for efficient parallel code generation for OCR with positive
interference of R-Stream and OCR optimizations

High-level Compiler (R-Stream)
Reservoir Labs

21

Programming Model & Runtime
 Intel

• Problem
o Explore event-driven programming model & Runtime

• Solution
o Design and expose a low-level API for hero programmers and higher-level

tools
o Provide an extensible framework to explore runtime components that supports

multiple targets

• Recent accomplishments
o OCR-x86 released with stable user-level API
o Scalability using workstation clusters for speedy explorations
o Work continues to port on Fsim to evaluate TG architecture

22

Dynamic System Optimization—Introspection
 Intel

0
2
4
6
8

10
12
14
16

W
ei

gh
te

d
R

M
S

Pr

oj
ec

tio
n

Er
ro

r (
%

)
Sm

al
le

r i
s

be
tte

r
Instr Count
FP Ops
Reads
Writes

OCR Applications

Introspection and our approach looks promising

23

• Desired outcome by September 2014
o Stable and scalable OCR on FSim and x-86 clusters
o Comparison with current programming models
o Validation on several applications/kernels (LULESH, CoMD,

miniGMG, AMR, etc.)

• Desired outcome by September 2015
o Release reference implementation for OCR
o Demonstrate benefits of co-designed framework
o Implement advanced introspection in system SW

Programming Model & Runtime
 Intel

24

• Massively multi-core (~ 100’s of cores/chip)
• Performance driven by parallelism, constrained by energy
• Subject to frequent faults and failures
• Key challenges: Energy Efficiency, Concurrency, Resiliency
• Open Community Runtime (OCR) is a framework that:

o is representative of execution models expected in future extreme scale systems
o can be targeted by multiple high-level programming systems
o can be effectively mapped on to multiple extreme scale platforms
o can be extended and customized for specific programming and platform needs
o can be used to obtain early results to validate new ideas
o is available as an open-source testbed

OCR and Extreme Scale Systems
Rice

25

• A fine-grained, asynchronous, event-
driven runtime framework
o Event-driven tasks (EDT’s)
o Events
o Data blocks
o C library implementation
o Designed to be a target for higher-level

compilers and libraries

• Release 0.8
o Works on shared-memory multiprocessors
o Works on FSim
o Performance comparable to OpenMP
o Targeted by RStream, CnC, HTA, HCLib
o Sparks a lot of interest far beyond the TG

project

OCR
Rice

OCR vs OpenMP

26

• Distributed OCR: Seamless integration of the OCR model with the cluster
architecture

• Accelerated OCR: Integration of the OCR model with GPU’s
• Tuning extensions: affinities between EDT’s and data blocks
• Distributed CnC on distributed OCR: support for distributed, concurrent

maps of GUID’s
• Introspection and adaptation
• Porting OCR to other interesting platforms

o Texas Instruments’ Keystone platform with ARM and DSP cores

OCR Current and Future Work
Rice

27

Problem
• Need a low-level compiler, assembler, disassembler, and linker for the TG

architecture
• Update these low-level components to the evolving TG architecture

o for e.g. moving the XEs in TG architecture from a 32-bit ISA to a 64-bit ISA

Solution
• LLVM - open source low-level compiler - retargeted for the XE in TG architecture
• Binutils - open source collection of tools including an assembler, disassembler,

linker, and debugger - retargeted for TG
• New versions of LLVM and binutils supporting different versions of TG architecture

Low-level Tools (LLVM & Binutils)
Reservoir Labs

28

Recent Results
• Support for 32-bit ISA

o Bug fixes (correctness and performance) in LLVM backend for the 32-bit ISA
o Updated binutils to add support for new queue-management (QMA)

instructions
• Supporting Intel’s exploration on the development of 64-bit ISA

o Reviewed proposed instructions, addressing modes, and encodings, in light of
the compiler’s needs

o Suggested new instructions
• Ongoing development of new versions of binutils and LLVM for 64-bit ISA

o Moved to latest open source version of LLVM and binutils
o Moving to Elf 64 executable format for new version of binutils

Low-level Tools (LLVM & Binutils)
Reservoir Labs

29

Impact
• Basic part of the software stack

o Up-to-date LLVM and binutils is critical for the stack

Desired Outcomes
• Sep’14 objective

o Complete new versions LLVM and binutils for 64-bit ISA
o Continue support for 32-bit ISA

• Sep’15 objective
o Whatever ISA is eventually chosen, the objective is to have excellent

implementations of binutils and LLVM available promptly

Low-level Tools (LLVM & Binutils)
Reservoir Labs

30

Exascale Simulation
ETI • Problem

– X-Stack needs actionable information about future chip capabilities and
behaviors

• Solution
– Maintain and update the TG ISA using FSim, Intel’s functionally accurate high

performance simulator
– Simulate chip performance using Lamport clocks (maintain causal relations of

program and provide a basis for static energy)
– Calculate basic Architecture Level Power Simulations (ALPS) for dynamic energy

consumption
• Recent Accomplishments

– Provided energy accounting framework for processor and data movement across
chip

– Upgrading ISA to 64-bit encoding
• Impact

– Simulation of dynamic hardware properties, critical to reaching Exascale,
provides realistic view of a future chip and promotes the benefits of dynamic
runtime stacks

31

• Problem
– Tracking and understanding energy

consumption in a large asynchronous
program can be unwieldy

• Solution
– Construct an energy and data movement

visualizer based on the physical layout of
the chip and the logical layout of the
program

• Recent Accomplishments
– Performed initial study of localized

energy usage due to data movement and
memory leakage. Determined the impact
of both due to memory size

– Extended study to include memory
hierarchy and integrated into the OCR
x86 framework to produce a data
movement visualizer

Energy Consumption
ETI

Data Movement Study Results

32

• 2014
– Finish 64bit ISA implementation
– Implement resource hazards in pipeline for timing purposes
– Refine energy framework to include more detailed accounting of energy
– Improve simulation speed

• 2015
– Provide runtime scheduling and memory allocation strategies based on

data movement studies
– Provide support for introspection and power management in FSim

Simulation Goals for ‘14 and ‘15
ETI

33

Architecture Overview
UIUC

Recent Accomplishments
• API for Software-Managed On-Chip Memory Hierarchy

o Have developed an API based on Writeback and Invalidate
o Have a compiler pass [together with Prof. Saddayappan] to automatically use it in codes
o Working on implementing the API in FSIM

34

Architecture Overview
UIUC

• API for Energy Management
o Have developed an API
o Have integrated the API with the Rose compiler [Quinlan]. Can call it from Rose
o Working with Reservoir/ETI on implementing a subset in FSIM

Features:

1. Select the Voltage, f level of a compute or memory resource
2. Set a compute or memory resource into one of three states

o Power Off, Clock Off
o Power On, Clock Off
o Power On, Clock On

List of compute and memory resources can be blocks, processors, memories, caches, func. units

35

Architecture Overview
UIUC

Future Plans
• Work with team to decide what exact APIs to implement in FSIM
• Implement the APIs in FSIM (functionality and energy)
• Take small codes and insert by hand calls to the APIs

o Evaluate them for performance and energy saved
• Longer term: have the compiler automatically insert calls to the APIs for

applications

36

Self-Awareness
U Del

Problem
• Extreme-scale systems must act and react to numerous events to meet user

goals

Solution
• Design a distributed and hierarchical self-aware system which leverages

introspection and adaptation mechanisms to help with resource management

Recent results
• Specified a self-aware API

• Observation: leverage HW introspection mechanisms

• Heat model to evaluate the impact of temperatures on execution

• Decision: prioritization to activate mechanisms as a function of observed events

• Actions currently implemented at the block level:

o Clock-gating (CG), to avoid catastrophic failure

o DVFS, as a function of temperature thresholds

Impact: See the real “heat map” on the right-hand side

Non-adaptive

Self-adaptive

37

Self-Awareness – High-Level Concepts
U Del

Local Observe-Decide-Act Loop Distributed and Hierarchical
Observe-Decide-Act Loop

38

Self-Awareness – Desired Outcomes
U Del

Goal for Sep'14: A functioning prototype for a
hierarchical and distributed self-aware system
on the Traleika Glacier’s simulator.
• Leverage experience with our self-aware

prototype and integrate it into FSim
• Evaluate our framework on Fsim using

existing program
• Propose various resource management

policies to achieve self-awareness

Goal for Sep'15: A fully specified fine-grain
event-driven execution model which integrates
self-aware aspects at its core.
• Augment OCR with our self-aware API
• Run DOE mini-apps already ported to

OCR and running on FSim using our self-
aware system software

• Evaluate and improve the behavior of the
system software using different objective
functions for various workloads

39

TG Summary
2012

Q4'12 Q1'13 Q2'13 Q3'13 Q4'13 Q1'14 Q2'14 Q3'14 Q4'14 Q1'15 Q2'15 Q3'15
Algorithms and applications
Proxy app evalution for O(compute) <----------- ------------ ----------->
Proxy app evalution for O(comm) <----------- ------------ ----------->
Evaluation of system architecture -----V2.0 ------------ ------------ ------V2.5 ------------ ------------ -----V3.0>
Programming system
Select apps coded, for runtime system <----------- ------------ ------------ -----V2.0- ------------ ------------ ------------ ------------ ------V2.5 ------------ ------------ -----V3.0>
Tools <C+binuti ls-V2.0--> <-------De bugger--> ------------ ------------ ------V2.5 ------------ ------------ ------V3.0 ------------ ------------
Resiliency <---Frame work-----><-----Reac tive------> <----Reco very-----> <----Proac tive------> <----------- Evaluate Validate ---------->
Execution Model, Sys SW, Runtime <--Mod fo r IRR -----><-Intelligent Sched-><-Eval----- -----V2.0 ------------ ------------ ------V2.5 ------------ ------OCR -----V3.0>
Architecture, simulators <A V2.0> <Sim2.0 > <Fault M> <Timing > <--Eval--> <A V2.5> <Sim 2.5> <--Eval--> <A V3.0> <Sim 3.0> <------Eval uate----->
System Evaluation <----------- ------------ ------------ ------------ For 2.5--->------------ ------------ For 3.0--->------------ ------------ ------------ ---------->

2013 2014 2015
Half-way through the program

• Straw-man architecture is in place
• Programming system components identified, and being matured
• Infrastructure (simulators, tools) developed
• Open community runtime system released
• Applications refactored with understanding of science
• Introspective system SW research gaining traction

40

Back-up

41

Self-aware Feedback Mechanisms for Adaptation

• Observe-Decide-Act (ODA) mechanisms built into the system runtime.
o User provided power/energy and performance goals.
o Hardware supported observations and metric gathering mechanisms.
o Fine-grained control over the system resources.

42

Heat Modeling

Duality of Conduction

Electrical Thermal

Voltage (V) Temperature (T)

Current (A) Heat Flow (W)

Resistance (Ω) Thermal Resistance
(W*K-1)

Capacitance (F) Thermal Mass (J*K-1)

43

44

	Traleika Glacier X-StackStatus Review
	Agenda
	Traleika Glacier X-Stack OverviewIntel
	Traleika Glacier X-Stack OverviewIntel
	Traleika Glacier X-Stack OverviewIntel
	Applications in OCR on FSim�	Overview
	Applications in OCR on FSim�	Overview
	Applications in OCR on FSim�	Overview
	Applications in OCR on FSim�	Overview
	Applications – LULESH & miniGMG�	PNNL
	Applications – LULESH & miniGMG�	PNNL
	Evaluate TG architecture with Co-Design center’s applications (ExMatEx – CoMD proxy app)UCSD
	Evaluate TG architecture with Co-Design center’s applicationsUCSD
	Evaluate TG architecture with Co-Design center’s applicationsUCSD
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Programming Model & Runtime�	Intel
	Dynamic System Optimization—Introspection�	Intel
	Programming Model & Runtime�	Intel
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Exascale SimulationETI
	Slide Number 31
	Slide Number 32
	Architecture OverviewUIUC
	Architecture OverviewUIUC
	Architecture OverviewUIUC
	Self-AwarenessU Del
	Self-Awareness – High-Level ConceptsU Del
	Self-Awareness – Desired OutcomesU Del
	TG Summary
	Slide Number 40
	Self-aware Feedback Mechanisms for Adaptation
	Heat Modeling
	Slide Number 43
	Slide Number 44

