
1 

Panelists 
Greg Bronevetsky 

Zoran Budimlic 
Paul Hargrove 
Hartmut Kaiser 

Rishi Khan 
Sriram Krishnamoorthy  

Olivier Tardieu 
Moderator: Vivek Sarkar 

March 21, 2013 

Parallel Session I: Runtime Systems 



2 

Context 
 Exascale systems will impose a fresh set of requirements 

on runtime systems including 
 targeting nodes with hundreds of homogeneous and 

heterogeneous cores 
 energy, data movement and resiliency constraints within 

and across nodes.   
 This session will focus on the fundamental research 

challenges that need to be addressed in the area of 
runtimes for exascale systems.  Both panelists and 
audience members are expected to play an active role in 
the discussion.  
 



3 

Agenda 
 1-slide presentations by panelists 
 Intra-node MPI: Greg Bronevetsky 
 Open Community Runtime: Zoran Budimlic 
 GASNet: Paul Hargrove 
 HPX: Hartmut Kaiser 
 SWARM: Rishi Khan 
 TASCEL: Sriram Krishnamoorthy  
 X10 Runtime: Olivier Tardieu 
 

 Discussion 



MPI for Shared Memory Systems 

MPI: valuable Exascale 
programming model 
 Legacy applications 
 Explicit parallelism enables 

fine-grained resource 
management 

Goal: high-performance 
MPI for all device types 
Traditional: inter-node 
Our work: shared memory 
hardware 
Others: GPU, Phi, … 

Approach: 
 Share address space of all 

processes on node 
 High performance: 

• Messages are direct copies 
• Synergistic transfer 

 API extensions: 
• Ownership passing 
• Message aggregation 

Approach: 
 Share address space of all 

processes on node 
 High performance 
 API extensions 

MiniMD 
Intel MiniMD 
BGQ Lulesh 
Intel 

Lulesh 
BGQ 

+ 
MPI 

+ 
MPI 

MPI 

Andrew Friedley, Greg Bronevetsky, Torsten Hoefler, Andrew Lumsdaine and Dan Quinlan 



Open Community Runtime 
• Fine-grained, asynchronous event-driven runtime 

framework with movable data and computation 
• Hosted on 01.org 
• Introduced at SC 2012 
• Goals 

– Modularity 
– Stable APIs 
– Flexible implementation 
– Transparency 

• Development process 
– Continuous integration 
– Quarterly milestones 
– Mailing lists for technical discussions, 

build status, etc 
• Organization 

– Steering Committee 
– Core Team 



GASNet 

GASNet: 1999 to present 
• “Global Address Space Networking” 
• API for implementing PGAS 

languages/libraries (UPC, CAF, Chapel, 
OpenSHMEM, Ti, and others) 

• for compilers and low-level code authors 
• widely portable 
• MPI-interoperable on most platforms 
• performs comparably to (and often better 

than) MPI send-recv 
• has influenced MPI-3 design for one-sided 

operations (a.k.a. RMA) 
• Key API Features include… 

– a rich set of one-sided Put/Get interfaces 
mapping well to modern RDMA-capable 
network h/w 

– Active Messages (a.k.a. “Function Shipping” 
or “Remote Procedure Call”) 
providing powerful mechanism for 
implementing language-specific features 

GASNet-EX: present and future 
• Part of the DEGAS project 
• A re-design & re-implementation for an 

EXascale PGAS environment: 
– Numerous complex nodes 
– Constrained by memory and power 
– Advanced asynchronous clients and multi-

client (e.g. UPC+CAF) 
– Resilient implementation with support for 

resilient clients 
• Will support current and future DoE 

supercomputers 
– Dropping legacy support to improve 

maintainability 
• Apply the lessons learned from GASNet 

work, including feedback from current 
and potential clients (Rice, UofH, Cray, 
IBM …) 

 



What’s HPX ? 
• Prefers: 

• Active global address space (AGAS) over PGAS 
• Message driven computation over message passing 
• Lightweight control objects over global barriers 
• Latency hiding over latency avoidance 
• Adaptive locality control over static data distribution 
• Moving work to data over moving data to work 
• Fine grained parallelism of lightweight threads instead of 

Communicating Sequential Processes 

• Open source (github, Boost License) 
 

 
7 



• Principles of Operation 
– Codelets 

• Basic unit of parallelism 
• Nonblocking tasks 
• Scheduled upon satisfaction of precedent constraints 

– Hierarchical Locale Tree: spatial position, data locality 
– Lightweight Synchronization 
– Active Global Address Space (planned) 

• Dynamics 
– Asynchronous Split-phase transactions: latency hiding 
– Message Driven Computation 
– Control and Dataflow futures 
– Error handling 
– Fault tolerance (planned) 

SWARM: (SWift Adaptive Runtime Machine) 

Node 

Socket Socket GPU 

Cor
e 

Cor
e 

Cor
e 

Cor
e 

Cor
e 

Cor
e 

Cor
e 

Cor
e 



TASCEL 

Runtime to study algorithms supporting finer-grained 
concurrency 

Scheduling and load balancing 
Resilience 
… 

 
Marketplace session: 

Using TASCEL 
Algorithms developed with TASCEL 

Retentive stealing, persistence-based load balancing 
Data-driven fault tolerance 
Tracing work stealing and its applications 

9 



 
 
 

Native Runtime 

XRX    

X10 Runtime 

 Open source 
 Scales [HPCC’12] 
 Implements APGAS 
 PGAS + async + finish + when 
 

 X10 runtime transport 
 X10 runtime in X10 
 compiles to C++ and Java 
 

Roadmap to Exascale 
 interop. (C, MPI, ROSE) & DSLs 
 >> parallelism (many-cores & accel.) 
 elasticity & resilience 

X10 app 

X10RT 

PAMI TCP/IP 

X10 Core  
Class Libraries 

MPI DCMF CUDA 

C/Java interop 



11 

Discussion topics (1/3) 
Questions posed to panelists include: 
1. How should a runtime system be designed to manage 

billions of threads? 
2. How should locality optimization on exascale 

machines be supported at the runtime level? 
3. How much of the burden of selecting the right 

granularity of parallelism for a given platform should 
be placed on the runtime?   

4. Can exascale binaries be "forward scalable" by default 
so that hardware changes in parallelism/locality can 
be exploited entirely in the runtime without requiring 
re-programming or re-compilation? 



12 

Discussion topics (2/3) 
5. How will runtime memory management support (e.g., 

malloc/free) be designed for exascale?  Will automatic 
techniques like concurrent garbage collection be more 
or less relevant at exascale? 

6. How can different runtime components cooperatively 
manage shared resources?  For example, cores can 
be used to support computation, communication and 
resilience.  

7. How can a runtime support both user directives and 
automated adaptations in an integrated manner? 

8. What role can "relaxed synchronization" play in 
exascale software e.g., allowing tasks to execute even 
in the presence of data races so long as the 
probability of wrong answers is shown to be (or made) 
low? 



13 

Discussion topics (3/3) 
9. What role can transactional memory and related ideas 

for optimistic concurrency play in exascale software?  
How about actors? 

10.What assumptions should exascale runtimes make 
about exascale operating systems? 

 
Suggestions for additional topics/questions are most 
welcome! 



14 

Summary of Discussion and Opinions (1/3) 
 Lot of deep technical work under way on runtime systems 
 How best to leverage this in the X-Stack program? 

 Application programmers will be interested in targeting 
runtimes so as to transition to new ideas 
 e.g., simpler to target runtime to get rid of bulk 

synchronization incrementally rather than learning a new 
(embedded) DSL  

 Vertical integration of multiple components in X-Stack is 
important but can be challenging  
 e.g., high-level scheduler atop low-level scheduler 
 effective integration of compiler and runtime will be very 

important for X-stack 



15 

Summary of Discussion and Opinions (2/3) 
 What is the role of introspection, runtime state, application-

dependent policies, and of cost models? 
 Related panel question: How can a runtime support both user 

directives and automated adaptations in an integrated manner? 
 Need more experience with application developer interacting with 

adaptive runtimes e.g., use of turbo mode in modern processors 

 Why are we putting all runtimes in one “bucket”? 
 We are discussing synergies among runtime efforts in the X-Stack 

program 

 MPI was not designed for use by programmers 
 Despite the original intent, many programmers use MPI 
 Many programmers also use libraries and frameworks, where MPI is 

hidden from them  
 
 
 

 



16 

Summary of Discussion and Opinions (3/3) 
 What is the ambition for each of the panelist’s projects? 

 Greg B: MPI+MPI is the answer to MPI+X, for many appropriate 
applications 

 Zoran B: OCR is a low-level runtime for all programming and 
execution models for exascale/extreme-scale systems 

 Paul H: GASNet covers all areas that are not handled by MPI 
 Hartmut K: HPX execution model and runtime enables efficient 

support for strong scaling 
 Rishi K: SWARM programming model and runtime helps 

average developers write applications for distributed heterogeneous
 systems 

 Sriram K: TASCEL incorporates abstractions from real applications 
into real programming models 

 Olivier T: X10’s primary goal is to increase programmer productivity 
at scale 
 
 
 
 
 
 

 



17 

Technology Marketplace Schedule 
 Part 1, 3:30pm – 5:00pm 

Table 1a: Intra-node MPI: Greg Bronevetsky 
Table 1b: Open Community Runtime: Zoran 
Budimlic 
Table 1c: GASNet: Paul Hargrove 

 Part 2, 5:00pm – 6:30pm 
Table 1a: HPX: Hartmut Kaiser 
Table 1a: SWARM: Rishi Khan 
Table 1b: TASCEL: Sriram Krishnamoorthy  
Table 1c: X10 Runtime: Olivier Tardieu 


	Parallel Session I: Runtime Systems
	Context
	Agenda
	MPI for Shared Memory Systems
	Open Community Runtime
	GASNet
	What’s HPX ?
	SWARM: (SWift Adaptive Runtime Machine)
	TASCEL
	X10 Runtime
	Discussion topics (1/3)
	Discussion topics (2/3)
	Discussion topics (3/3)
	Summary of Discussion and Opinions (1/3)
	Summary of Discussion and Opinions (2/3)
	Summary of Discussion and Opinions (3/3)
	Technology Marketplace Schedule

