Exploiting Global View for Resilience
(GVR) — Progress Report (March 2013)

Andrew A. Chien, University of Chicago and Argonne National Laboratories
Pavan Balaji, Argonne National Laboratory

Staffing

We have made rapid progress in staffing, and building a coherent team across the
project sites. As planned we have held monthly “All-Hands” meetings, alternative
between the University of Chicago and Argonne (our 6t is April 3,2013). In
September 2012, the University of Chicago team included Dr. Hajime Fujita
(postdoc), Zachary Rubenstein (graduate students), Professor Guoming Lu (visitor),
and is led by Prof. Andrew A. Chien. Since January 2013, we have added Dr. Ziming
Zheng (postdoc), and Aiman Fang (graduate student). At Argonne, since October
2012, the team included Dr. Kamil Iskra, as well as a small fraction of time of Pete
Beckman, Jim Dinan, and is led by Pavan Balaji. In April, a new postdoctoral
researcher, Wesley Bland, will join the team and work full-time on GVR.

Technical Progress
1. Design and Evaluation of Three Generations of GVR APIs

Working closely across the UChicago and Argonne teams we tapped collective
creativity and deep experience to develop a set of use cases then design and
evaluate, and rapidly improve 3 generations of GVR API's. These design iterations
focused on three major design elements - globally-visible distributed structures,
efficient versioning, and error signaling/recovery.

Creating Globally-Visible Distributed Structures Critical choices include
whether distributed structures are composed bottom up, based on node-local
allocation, enabling local control of data layout and addressing structure or
allocated globally with the global data structure runtime managing distribution and
node-local layout. The federation approach has significant advantages for efficiency
and library interoperation; the latter for resilience and flexibility of decoupling
memory servers from clients. After careful evaluation of interface options, we
decided both modes of use are essential, settling on a hybrid interface that allows
globally-visible distributed structures to be created in both fashions. In the
federated case, we provide GDS_access to allow a process direct access to its portion
of the global array. We also discussed whether GVR’s distributed structures would
be accessed exclusively as binary data, or support a typed interface and higher
dimensional arrays. To enable the library to optimize multi-dimensional structures,
Efficient Versioning GVR’s approach to resilience depends on application
annotations for consistent snapshots, so versions can be created cheaply. However,

to manage the cost of versions, that application annotation should reflect the option
for the runtime to create a version, not a requirement. After several iterations
ranging from random-access versions to prev-next, our final design defines, access
operations (put, get) w.r.t. the current version, and a version_inc() call demarcates
logical version boundaries. This careful choice ensures that version_inc() can be
implemented without creation of a version. Our design also enables application
programmers to use nearly identical code idioms (particularly for synchronization)
to traditional global view models such as Global Arrays, enabling easy migration to
resilient execution.

Error Signalling/Recovery Perhaps the most difficult issue in the GVR interface
(and system) is the application-system interaction for error signaling and recovery.
Critical challenges include how to seamlessly incorporate hardware and OS signaled
errors (asynchronous), runtime and application signaled errors (synchronous), as
well as how to flexibly manage node local recovery, regional recovery, and global
recovery. . In general, it appears that the most viable solution is to signal errors
asynchronously, but resolve them at specific points in code. In addition, we
currently leave the level of coordination up to the programmer to specify, since it
appears that both coordinated and uncoordinated strategies are appropriate for
different real-world use cases. The latest GVR API (v 0.71) addresses these issues
consistently, but has yet to be implemented, much less be used in application
experiments - both subjects of future work. Furthermore, the current APl is a
rather low-level functionality, and to enable most applications, we expect that a
collection of “common case libraries” are both needed, and will be widely useful.

2. Design of the GVR Software Architecture To be used in HPC applications, the
GVR system must not only deliver a successful resilience partnership but it must
also achieve efficient and scalable performance. Our basic design reflects an
architecture that can exploit traditional message-passing hardware, advanced
features such as RDMA, and both flexible, efficient versioning. Of course, significant
research and implementation efforts are needed before this promise can be realized.
The GVR runtime system software includes a client side and target side. The client
side provides global, consistent, and multi-version view of an array. It presents the
API, and manages data distribution, consistency, and versioning across multiple
targets. The target side preserves multi-version efficiently, maintains metadata for
versions, and restores them on demand.

A critical element of the target side is the local reliable data store (LRDS) which
provides node-local management of data, including support for multiple versions, in
support of target-side distributed version management. It provides an efficient
interface to target-side global data, particularly for data movement, differencing,
compression, etc. The current implementation provides two prototype backends for
tracking changes to limit storage requirements across multiple versions: one based
fully on user-provided hints, the other--currently being integrated—taking
advantage of page-based memory protection for a more transparent tracking. We
plan to investigate a kernel-based implementation for lower overhead and
maximum transparency, and to utilize hardware dirty bit tracking when such

becomes available. Multiple versions of the data are currently maintained in main
memory. Preliminary implementation of storage API built on top of a POSIX file
system just became available and should be used as the data store for older versions
soon; in the future we plan to extend this to utilize NVRAM.

3. Development of Limited, Basic GVR Prototype

We have developed an initial research prototype of GVR runtime system. While still
incomplete in several areas, current functionality enables experiments with mini-
apps. The current GVR prototype is implemented as a library built on top of MPI-3,
and integrates LRDS and a simple memory-based multi-version checkpoint is
supported. We have created two GVR-enabled Mantevo mini-apps (miniFE

and miniMD), demonstrating modest source code changes can be used to
incorporate resilience, application error checking, and application recovery.
Limitations of the system are too long to enumerate, including OS error integration,
performance, etc.

4. Multi-version Checkpoint Modeling A novel GVR feature is low-cost,
application-controlled versioning of data structures. We built a formal model based
on Markov chains, and analyzed a range of realistic current and future HPC systems
to explore the question - when do latent (or silent) errors require multi-version
checkpoints to support robust execution (the ability to run large jobs to
completion), and to support high system efficiency (less than 10% loss due to
restarts and lost computation). The results show that between 2 to 10 checkpoints
are required for realistic exascale system configurations and error rates, and that
reductions in checkpoint cost (such as proposed in SCR), are productive but do not
obviate this need.

5. Ongoing and Future Efforts
In the next six months, focused GVR project efforts will include:

* Continued GVR implementation efforts, progressing towards a full API
implementation, and robust functionality to enable co-design application
experiments

* Exploration of efficient implementation of redundant, distributed global-
view data structures, including challenges of

* Exploration of efficient multi-version snapshot capture and storage
techniques, including consistency, synchronization, compression, and
restoration

* Experiments with co-design applications (OpenMC(, MD, others) to
explore the match of GVR capabilities with common application
structures - refine API and demonstrate potential

* Working with OS/runtime community on cross-layer error handling
classification and naming

Publications and Key Documents

* tbd, Creating Robust Iterative Solvers Using Global View Resilience, in
preparation, expected April 2013.

* Guoming Lu, Ziming Zheng, and Andrew A. Chien, When are Multiple
Checkpoints Needed?, to appear in Fault Tolerance at Extreme Scale, (FTXS),
June 2013.

* Hajime Fujita, Robert Schreiber, Andrew A. Chien, It's Time for New
Programming Models for Unreliable Hardware, in ACM Conference on
Architectural Support for Programming Languages and Operating Systems,
March 18-20, 2013. (Provocative Ideas session).

* The Global View Resilience Application Programming Interface, Version 0.71,
February 2013, contact GVR team at UChicago/Argonne for copies.

Prior relevant work

* Sean Hogan, Jeff Hammond, and Andrew A. Chien, An Evaluation of Difference
and Threshold Techniques for Efficient Checkpointing, 2nd workshop on fault-
tolerance for HPC at extreme scale FTXS 2012 at DSN 2012

