
The Dynamic Exascale Global Address Space (DEGAS) Project

Progress Report
March 2013

1. Introduction

Exascale computing will pose new challenges for software in the areas of concurrency,
energy efficiency and resiliency. These challenges will be exacerbated by performance
and programmability obstacles arising from deep memory hierarchies, heterogeneity,
specialized processors, hardware adaptations, non-uniform data access latencies, variable
network loads, and the challenges of fault tolerance. The challenge of supporting billion-
way parallelism will be most disruptive within compute node, where parallelism is
expected to increase by 2--3 orders of magnitude and may take different forms compared
with today's systems; inter-node parallelism will increase by less than an order of
magnitude and use an interconnect model that is functionally similar to existing
platforms. Other challenges within the node include adapting to different types of data
and task parallelism, hierarchical and possibly partitioned memory spaces, as well as
performance and functional heterogeneity across cores.

The Dynamic, Exascale Global Address Space (DEGAS) project is a comprehensive
effort to redesign programming models, and runtime systems for the radical machines
design changes in the exascale era. It provides a tightly integrated view of the system
across the intra-node and inter-node levels and thereby avoids unnecessary
synchronization between levels. The approach focuses on a vertically integrated
programming and execution environment that incorporates the latest algorithmic
approaches and application structures to effectively service ultra-scale science and energy
applications. The primary focus areas of DEGAS and the proposed integrated software
stack are shown in Figure 1.

Figure 1: The primary research areas (left) and software stack (right) for DEGAS

DEGAS is multi-institutional center involving Lawrence Berkeley National Laboratory,
Rice University, the University of Texas at Austin, the University of California at
Berkeley, and Lawrence Livermore National Laboratory.

2. Recent Developments

Several developments in the overall DOE computing environment have taken place since
the project started. New systems have been installed at Argonne (ALCF), and are in the
process of installation and acceptance at Oak Ridge (OLCF) and Berkeley Lab (NERSC)
that represent some of the challenges that will arise at the exascale. The OLCF Titan
machine is a Cray XK6 with heterogeneous processing nodes containing an AMD X86
processor and an NVIDIA GPU; the ALCF Mira machine is an IBM BG/Q requiring
fine-grained threading on a node and a unique form of SIMD parallelism; the NERSC
Edison machine has more conventional Intel X86 processing nodes, but still has their
own form of SIMD parallelism. Both the ALCF and NERSC systems involve new
interconnection networks, and issues of congestion management at the node and global
level and topology optimizations appear to be important across all three platforms.

These machines all support the message-passing model specified by the MPI standard but
also have multiple cores per node, complex NUMA effects within nodes, and, at least the
Titan and Mira systems cannot be programmed with solely with MPI concurrency. The
DEGAS work is focused on future generations of exasacle applications and systems,
which will look quite different than any of these existing architectures, but will
nevertheless use these platforms and simulators to help validate the research ideas.
Here are some of the highlights of the recent DEGAS work, with more detailed
descriptions in each of the following sections.

• Habanero/UPC
• CA-Compilers
• Resilience

Details of two of these accomplishments are described below. In addition to these
research activities, the project teams are planning software releases, which involved bug
fixes, performance improvements, and extensive porting and testing across systems.

3. Hierarchical Partitioned Global Address Space (HPGAS) Programming Models

The challenges of extending PGAS to HPGAS can be divided into control (parallelism
and synchronization) issues, and data (layout and communication) issues. We are
looking at these in both a C/C++ context and in a FORTRAN context, with some
exploratory work in Python.

3.1 C++ library for H-PGAS (LBNL)

To facilitate the transition from existing MPI+X applications to the PGAS model, and as
a possible long-term implementation strategy for a C++ HPGAS language, we are

working on a C++ library approach for implementing the hierarchical PGAS
programming model. We have designed the first version of the library API, which
contains global address space pointers, dynamic global memory management, one-sided
communication, synchronization primitives, and remote function calls.

In our current design, global address space pointers are represented by a <node_id,
local_address> tuple and the referenced type information is statically included as a
template parameter, for example, “global_ptr_t<int> p”. Dynamic memory management
functions are similar to the C “malloc” and “free” functions except that an extra argument
about the desired memory location is added when allocating space. One-sided
communication interface includes Put and Get operations as in UPC and GASNet.
Synchronization primitives include barriers and locks. Remote functions calls mimic
active messages but with the flexibility of calling arbitrary functions.

Most of the features are currently defined as C++ templates and we plan to provide a C
interface in the future. In ongoing work, we are developing the programming constructs
for hierarchical and heterogeneous systems.

3.2 Habanero with a Global Object Space (Rice)

As complement to the work on merging UPC and Habanero-C, the Rice team also
recently developed the Habanero Asynchronous Partitioned Global Name Space
(APGNS) programming model. This uses global naming of objects rather than global
addressing. In this model, distributed tasks form the basic building blocks for parallel
computations. The tasks communicate via single-assignment distributed data
items. Each item has a unique global name, and a user-provided or system-generated
distribution function specifies the home location for a given data item. The name of a
data item can be viewed as a globally unique id (guid) that enables accesses to the same
data item to be performed from any node in the system (by using the mapping provided in
the distribution function).

The APGNS model can be implemented atop a wide range of communication runtimes
that includes GASNet and MPI, and it also supports tight integration of intra-node task
parallelism with inter-node communication. We have obtained preliminary results based
on the use of MPI as the communication runtime for Habanero-APGNS. (MPI is not
visible to users of the APGNS model, however.) Our implementation designates one
core per node to serve as the "communication worker" whereas other cores serve as
"computation workers". Early scalability results for benchmarks such as Smith-
Waterman and Unbalanced Tree Search (UTS) show that the APGNS model can deliver
significant improvements for both, relative to baseline MPI versions. These results are
included in part of our IPDPS 2013 paper. We plan to extend these results in the future
to use GASNet instead of MPI as the communication runtime.

3.3 PyGAS (LBNL)

PyGAS is a PGAS extension to Python. The goal of PyGAS is to support rapid
development and evaluation of new parallel algorithms at large scale by providing an
interactive and dynamic high-level programming system. The PGAS model is a powerful
extension for parallel programming with Python in that the global address space makes it
easy to build distributed data structures and express different types of parallelism.
PyGAS is also a tool for the DEGAS team to research and experiment hierarchical PGAS
programming features.

We implemented an initial PyGAS prototype and made it publicly available at
https://github.com/mbdriscoll/pygas. Our PyGAS prototype implements PGAS features
via a Python package extension and thus it requires no modification to the Python
interpreter. The prototype implementation leverages one-sided communication, active
messages and collective communication functions from the GASNet communication
library. PyGAS uses the single program multiple data (SPMD) execution model and
executes one Python interpreter per process. Data structures and programming constructs
for data parallelism are being developed.

In addition, we have been studying different implementation approaches for dynamic
PGAS languages in general and comparing their trade-offs. In particular, we analyzed
the design space of:

• Representation of global shared objects
• Semantics of function calls for remote objects
• Efficient support for both data parallelism and task parallelism

4. Communication-Avoiding Compilers

The DEGAS project has three existing compilers, the CAF compiler based on Rose, the
Habanero compiler also based on Rose, and the UPC compiler based on Open64.

4.1 Habanero-UPC Compiler (LBNL and Rice)

We have designed a compilation framework for Habanero-UPC programs, which extends
our existing Habanero-C and Berkeley UPC software infrastructures.

Habanero(to(C++
Translator+

Pure+Habanero(C+
Code+

Habanero(UPC,Executable,

UPC+
Libraries+

Mixed+Habanero(
UPC+Code+

Pure+UPC+
Code+

Habanero(C+code+w.+
UPC+Run;me+Calls+

Manual Translation

Linker+

UPC(to(C++
Translator+

C+Compiler+

*.o

*.c *.c

Habanero(C+
Libraries+

Figure 2: Compilation framework for Habanero-UPC programs

In this initial compilation framework design, UPC programs and Habanero-C programs
are parsed separately by the existing Berkeley UPC compiler and Rice Habanero-C
compiler, respectively. For mixed Habanero-UPC codes, we first manually translate the
UPC usage in the program to the equivalent UPC runtime function calls, and then pass
the resulting Habanero-C code with UPC runtime calls to the Habanero-C compiler to
generate C code. The bulk of the translation from a Habanero-UPC program to a
Habanero-C program with UPC runtime calls is straightforward because many UPC
features are directly provided through a library interface in Berkeley UPC. This agile
prototyping strategy will enable us to start application study for the new Habanero-UPC
programming model in parallel to the development of more comprehensive compiler and
runtime support.

In the next step, we plan to automate the translation from Habanero-UPC code to C code
by two possible approaches: (1) add a source-to-source compiler front-end to parse
Habanero-UPC programs and generate C code with runtime function calls; (2) leverage
standard C++ compiler support for generic programming (templates) and operator
overloading to do the translation.

4.2 Co-Array Fortran (CAF 2.0) Compiler (Rice)

Many scientific applications perform stencil computations on a multi-dimensional
Cartesian domain decomposed among a set of processors and employ a communication
pattern known as a “halo exchange,” in which processors exchange data along the
boundary of blocks that they own. To investigate issues related to this important
application pattern, we adapted the CAF version of the CGPOP mini-application derived
from LANL’s parallel ocean program into Rice’s CAF 2.0. The original CAF version of
CGPOP relied on MPI to provide collective communication. The CAF 2.0 version uses
CAF 2.0 primitives for collectives instead. Also, we have begun adapting Sandia’s
MiniGhost mini-application into CAF 2.0 and will shortly begin experimentation with
this code as well.

Initial small-scale experiments with CGPOP on a Cray XE6 (Hopper) show that our CAF
2.0 version, implemented with a source-to-source translator based on ROSE, has
communication performance comparable to both the CAF and MPI versions of the
benchmark. However, overall the CAF 2.0 was slower than the Cray CAF version. An
investigation with Rice’s HPCToolkit performance tools showed that the node
performance of CAF 2.0 generated code for computation-intensive loop nests was twice
as slow because it uses Fortran 90 pointers to manipulate data for Coarrays. Experiments
in which the two most costly loops in CGPOP were outlined to avoid use of pointers in
the loops confirmed this as the root of the problem. With Fortran 2008 contiguous
attributes for pointers, we expect comparable performance for CAF 2.0 generated code
without outlining. Larger-scale experiments with CGPOP revealed intermittent delays
using netcdf for parallel I/O from CAF 2.0 problems and intermittent failures with

GASNet initialization. We are investigating causes of this interference and initialization
failures.

Ultimately, our aim with codes such as CGPOP and MiniGhost is to exploit one-sided
communication in CAF to move away from bulk synchronous communication and make
better use of communication networks on parallel systems by spreading communication
traffic out over time.

To address the needs of applications that manipulate data structures with irregular access
patterns, e.g., particles or graphs, we have begun exploring the design space of language,
compiler, and runtime features to support these computations. HPF 2.0 provided
language support for managing schedules and compiled global view irregular
computations to leverage library primitives based on two-sided communication. With
partitioned global address space languages, one-sided communication and runtime
caching of remote data is an alternative to communication libraries based on two-sided
primitives. In an SC12 paper, Checconi et al. describe the fastest implementation of the
Graph 500 breadth-first search algorithm on Blue Gene systems which uses one-sided
RDMA. By considering these different approaches to performing irregular computation,
we aim to gain insight into the right balance between language, compiler, and runtime
systems, along with a better understanding of the important idioms for mapping irregular
computations efficiently into PGAS languages.

In the area of communication-avoiding compilers, we have begun to explore how to map
these algorithms efficiently onto multi-level memory hierarchies. To motivate work on
communication-avoiding algorithms, we have begun to experiment with several DOE
applications and benchmarks to identify an appropriate kernel that we can use to help
guide our work in this area.

Finally, we have been exploring the design and implementation of the phaser
synchronization construct for distributed memory machines. Our design for a distributed
phaser implementation uses a data structure based on distributed skip lists. When each
member of a team of processors indicates that they want to participate using signal, wait,
or signal/wait, we synthesize the distributed phaser data structure using an efficient
algorithm based on scan operations. Currently, we are exploring how to accommodate
dynamic additions and deletions to the phaser representation.

4.3 Generalizing Communication Avoiding Algorithms to Compilers (UCB)

Prior work showed a class of “2.5D” algorithms that are communication optimal in dense
linear algebra. We are pursing the use of these ideas in other domains, for general loop
nests containing array expressions. The specifics will appear in paper in the next few
months, but we have developed a theory (in collaboration with others) that works for an
arbitrary number of loops and for arrays containing linear index expressions.

Over the past few months, we have also applied these ideas outside the linear algebra
domain to consider a direct method for calculating particle forces as in n-body

calculations. The starting point is an O(n2) computation for an all-pairs approach,
although cut-off distances are also considered in the framework. The basic idea is that,
going beyond domain decomposition of the particles, each particle is replicated over a
subset of the processor and the updates to that particle done independently by the copies,
which are combined together with a reduction operation at the end. This “replicate-and-
reduce” strategy goes

Figure 3: Replicate and reduce idea and summary of performance speedups on a
Cray XE6 (6K and 24K cores) and BG/P (8K and 32K cores)

In addition, the LBNL team has looked at the problem of combining communication-
avoiding algorithms and communication-overlap. On the surface, these are orthogonal
ideas, as avoidance reduces the number and size of messages (sometimes trading the two
off against each other) while overlap reduces the latency cost by overlapping with
computation or other communication events. While communication avoidance is
important in 3 of the 4 examples shown in Figure 4, there is an additional benefit in 2 of
the codes from adding overlap. The Cholesky example is currently limited by
dependences in the code, and is being rewritten to expose more parallelism over the next
year.

Figure 4: Combination of communication avoiding algorithms (2.5D) and
communication overlap

5. Adaptive, Interoperable Runtimes

3.7x	

1.7x	

1.8x	

2.0x	

6K	

24K	

8K	

32K	

#	

of
	
 c
or
es
	

0	

10000	

20000	

30000	

40000	

50000	

60000	

SUMMA	
 	
 Cannon	
 TRSM	
 Cholesky	

G*
lo
ps
	

Performance	
 results	
 on	
 Cray	
 XE6	
 	

(24K	
 cores,	
 32k	
 ×	
 32k	
 matrices)	

2.5D	
 +	
 Overlap	

2.5D	
 (Avoiding)	

2D	
 +	
 Overlap	

2D	
 (Original)	

During the review period we have started the integration of the multiple software
infrastructures from DEGAS participants, as well as researching the support and
interfaces between modules in the DEGAS ARTS. We have worked in the following
areas: 1) UPC-Habanero runtime integration; 2) resource management in ARTS; and 3)
integration of communication and task scheduling. We also released the Berkeley UPC
infrastructure at SC 2012 and plan another release around May 2013.

5.1 Habanero Runtime and Merge with UPC Runtime (Rice and LBNL)

The Rice team made the following progress on adaptive inter-operable runtimes:

1) We have implemented a node-level runtime system for Habanero-C with a
"communication worker" model that can support tight integration of intra-node
parallelism with inter-node communication. This implementation is described in our
IPDPS 2013 paper, and is now part of the Habanero-C trunk.

2) We have also updated the compiler support for Habanero-C to the latest version of
Rose, in preparation for integrated compiler support for Habanero-C and UPC.

3) Finally, to demonstrate a connection between Habanero-C and the recent Open
Community Runtime (OCR) project, we have built a library for Habanero-C constructs
(HClib) that can be implemented on OCR with support for constructs like "finish"
available in HClib but not directly available in OCR i.e., we had to implement "finish" on
OCR to enable this support.

The LBNL team has demonstrated the interoperability of the UPC and Habanero
languages using simple benchmarks. In the current design, UPC acts as an SPMD driver,
which launches per-node instances of the Habanero runtime. Inter-node communication
is performed through the UPC runtime. Both UPC and Habanero can be used for intra-
node programming. As an initial driver for UPC and Habanero evaluations, we have
ported an MPI+OpenMP multigrid benchmark (also used by XTune) that represents some
of the challenges associated with combustion codes like LMC. As ROSE compilation
errors are currently impeding the Habanero evaluation aspect, we are also creating a
UPC+OpenMP version that will allow us to evaluate the performance and productivity
trade-offs of one-sided communication on the current inventory of DOE platforms.

5.2 Resource Management in ARTS (UCB and LBNL)

In the area of resource management we have extended Lithe and Juggle with dynamic
capabilities. Lithe provides allocation of cores to applications, while Juggle provides
scheduling and load balancing over a set of cores.

5.2.1 Lithe

For this initial period, our primary activity has been a substantial rewrite of the base Lithe
functionality, which is due for release next month. The Lithe rewrite incorporates the
following major changes:

1) Clean separation of Lithe's API from the underlying operating system functionality.
In the new version, any schedulers developed on top of Lithe should beportable to any
operating system that implements the Lithe layer. The new version runs successfully on
top of Linux/x86, Linux/x86_64,Akaros/x86, Akaros/RISC-V, and is currently being
ported to Tessellation/x86 and Tessellation/RISC-V (Akaros and Tessellation are
Berkeley research operating systems, while RISC-V is a Berkeley research ISA).

2) Restructuring to support future preemption work.
Although the new release is supports only co-operative sharing of hardware threads, the
internal structure of Lithe has been altered in preparation for the addition of user-level
preemption support. In particular, the tracking of which hardware threads are under
control of each scheduler has been modified to make it easier to locate the appropriate
hardware thread to reallocate in the case of preemption.

3) Updated OpenMP and TBB ports.
The GNU OpenMP (gomp) and Intel TBB runtime libraries have been ported to the new
Lithe layer and a number of outstanding bugs were fixed in the port. With this update,
OpenMP and TBB runtimes should be immediately portable to any operating system to
which Lithe has been ported, with OpenMP and TBB able to cooperatively share
hardware threads within the same application.

4) Extensive documentation and website.
A new website (lithe.eecs.berkeley.edu) has been established and now contains extensive
documentation of the Lithe API to support development of new schedulers. The source
code repository is now publicly available on github.

5.2.2 Juggle

We have extended the Juggle scheduling framework to include support for dynamic
thread counts, i.e. Juggle can now adapt to an increased or decreased number of threads
on a node. This improves our ability to support SPMD models in dynamic settings, for
example, if checkpointed threads on a failed node are migrated to running nodes, Juggle
can incorporate the new threads and balance the load accordingly, allowing the job to
keep running.

5.3 Integration of Communication and Task Scheduling (LBNL)

We have performed work in the areas of integration of tasking and communication with
respect to memory consistency models and message ordering.

Recently, Cray introduced interconnects, Gemini/Aries, supporting multiple ordering
relaxation of RDMA memory operations. While the use of strictly-ordered operations
provides the easiest path to correct execution, it can penalize the performance
significantly for RDMA operations, leading to up to 4x slowdown compared with the best
sustained bandwidth, see Error! Reference source not found.. On the other hand,

relaxed ordering of memory transfers improves the performance significantly, see Error!
Reference source not found., but is more difficult to use for correct execution.

During this research period, we implemented a mechanism that does support relaxed
ordering of RDMA, while correctly meeting the memory consistency models supported
by the runtime. When needed, we ensured the atomicity of remote updates, thus allowing
to establish a global order of interconnect transactions and local memory transactions.
This implementation is incorporated into GASNet communication library, which is used
by Berkeley UPC and other global partitioned address space languages.

We also conducted a performance study of multiple sets of low-level APIs provided by
Cray for runtime and compiler development, GNI and DMAPP.

Showing that both APIs can provide the same sustained performance with appropriate
tuning, we focused our efforts on GNI because it provides a mechanism for both
messaging and remote direct memory access. Additionally, GNI provides two
mechanisms for communication messages, FMA and BTE. The first is optimized for
small messages while the latter is optimized for large memory transfer (higher setup cost
and less later involvement of the software layer). For optimal performance, switching
between these two communication modes is dependant on runtime information such as
message size and the concurrency in injecting messages. We studied heuristics to
optimally switch between these modes.

Figure 5 Impact of concurrency on the BTE Get operation bandwidth with strict
ordering on Cray XE6. Having more than 4 injecting processes can degrade
performance by up to 4x for large messages

8 16 32 64 128 256 512 1K 2K 4K 8K 16K
10

100

1000

10000

2K 4K 8K 16
K
32
K
64
K
12
8K
25
6K
51
2K 1M 2M 4M

4000

8000

12000

B
an

dw
id

th
 (M

B
/s

)

Msg Size

Concurrency (proc/node): 1 2 4 8 16 24

B
an

dw
id

th
 (M

B
/s

)

Figure 6 Impact of concurrency on the BTE Get operation bandwidth with relaxed
ordering on Cray XE6. Increased concurrency always improves performance.

We have also started the interface design for the integration of THOR (Throughout
Oriented Runtime) with the Berkeley UPC and Habanero runtimes. THOR is a message
scheduling layer able to provide on the fly message coalescing, re-ordering and end-point
flow control mechanisms. THOR can perform communication through “servers” which
are tasks dedicated to performing communication operations. This strategy is also
employed by HC-MPI (Habanero-MPI) which spawns communication dedicated
workers. We are extending THOR to be a plug-and-play replacement.

6. Lightweight One-Sided Communication (LBNL)

The focus of the Lightweight One-Sided Communications area is to specify and develop
GASNet-EX, the successor to GASNet. GASNet has been an on-going joint project of
LBNL and UC Berkeley since 1999, under funding from the DOE Office of Science, and
the DoD. GASNet’s main features are a rich set of one-sided Put and Get interfaces for
implementation of remote memory access (RMA) primitives in PGAS programming
models, and Active Messages (AM) for efficient remote execution. GASNet has been
widely adopted by implementers of PGAS languages and libraries, making it the de facto
standard.

The GASNet-EX effort within the DEGAS project is a major revision of the GASNet
specification and implementation. Within this project we are revising the specification to
better support modern PGAS models and current and future system architectures – both
areas of significant growth and change since GASNet began. These revisions will make
GASNet-EX better suited for implementation of the DEGAS software stack than its
predecessor. With the new specification will come a new implementation, rather than
incremental changes, enabling some major new features such as support for the
checkpoint/restart and migration capabilities of DEGAS’s Resilience area.

8 16 32 64 128 256 512 1K 2K 4K 8K 16K
10

100

1000

10000

2K 4K 8K 16
K
32
K
64
K
12
8K
25
6K
51
2K 1M 2M 4M

4000

8000

12000

B
an

dw
id

th
 (M

B
/s

)

Msg Size

Concurrency (proc/node): 1 2 4 8 16 24

The goals for year 1 of the project are
• A draft API specification for GASNet-EX
• Prototype implementation of forward-compatible features

While an important long-term (year 3) goal is
• Complete implementation for DOE supercomputers of 2015

Progress toward each of these three goals is described in the following paragraphs.

6.1 GASNet-EX Draft Specification

The revised GASNet-EX specification is not targeted at only the DEGAS software stack.
For that reason, we conducted face-to-face meetings (2 to 4 hours each) with several
PGAS implementers while at SuperComputing in November 2012. These included three
current users of GASNet: the CAF and OpenSHMEM implementers from University of
Houston, and Cray’s Chapel team. Additionally we met with the IBM X10 team, who are
not currently users of GASNet, but instead maintain their own Open Source runtime to
support the X10 language. These meetings were extremely valuable to collect feedback
on ideas that we had already been considering, and to collect new ideas. Those meetings
resulted in several pages of notes, some of which have been converted to electronic form
at https://sites.google.com/a/lbl.gov/gasnet-ex-collaboration/. Over time the remainder of
the notes will be entered there, and the site will become a focal point for open discussion
as the GASNet-EX spec develops.

Following SC12, we were contacted by the Cray Chapel team to follow-up with
discussion of the GASNet-EX plans for resilience. The summary of that dialogue is
available from the GASNet-EX collaboration website (URL above).

In addition to the face-to-face meetings with other PGAS implementers, we are in
electronic contact with our user community. Two discussion threads on the Berkeley
UPC user’s and developer’s mailing lists (which also serve as the GASNet support lists)
have lead to promising ideas for improving the usability and expressiveness of GASNet-
EX.

6.2 Prototyping Forward-Compatible Features

As a side-effect of the work (see 6.3) on Cray Aries and Gemini, a top-to-bottom survey
of the current GASNet software architecture is underway. The goal is to develop a
clearer understanding of which new features planned for GASNet-EX are candidates for
prototype implementation in the GASNet code base. Specifically we are studying which
features can be added to GASNet without breaking current semantics, and without
excessive rewriting of the code. To put that another way: we are sorting out which
additions can be incremental and which cannot.

Features already in the “pencil and paper” stage of prototyping include: exposing local
completion of RMA operations, fenced RMA operations, callbacks for client progress,
expanding the AM interfaces, and relaxation of the thread-safety rules for non-blocking

operations. These particular planned enhancements are all of significant potential benefit
to the sort of asynchronous runtime that DEGAS is developing.

As we identify planned features that cannot be implemented as incremental changes to
the current GASNet code, we are taking careful note of what architectural changes will
be required. For example support for multiple clients (necessary to support multi-
language or multi-model applications) and for multiple endpoints (to allow threads to
have a “first class” status) will require changes to how peers are named and a
corresponding move away from dense one-dimensional arrays to represent peers. Such a
change is also highly desirable for scalability reasons.

6.3 Support for Current and Future Systems

As was mentioned in Recent Developments, Mira is now online at ALCF and Titan and
Edison are each in some stage of availability at OLCF and NERSC, respectively. Given
the lifespan of system at all three centers, we can reasonably expect that GASNet-EX will
need to support all three.

Mira, the BlueGene/Q at ALCF, uses IBM’s PAMI network API. IBM has positioned
PAMI as their single network API for HPC, merging the LAPI (from the IBM SP line)
and DCMF (from the BG/P) efforts. As such, IBM also offers PAMI on the P775 (aka
IBM PERCS) system and on InfiniBand clusters. As of our October 2012 release
GASNet fully supports PAMI and has been tested on both BG/Q and P775 systems.

The design of PAMI appears to have drawn on several ideas from the Berkeley AM2
work, which is also the origin of many of GASNet’s key features. As a result, GASNet’s
PAMI support is currently the “thinnest” of the GASNet conduits (our term for the
network-specific portion of GASNet). Some of the biggest additions to GASNet-EX will
be the multi-client and multi-endpoint support, both of which map to corresponding
features in PAMI. We anticipate IBM’s PAMI-based systems will be the easiest to
support in GASNet-EX.

Titan, the XK7 at OLCF, uses the same Gemini interconnect hardware and uGNI network
API as Hopper, the XE6 at NERSC. GASNet’s gemini-conduit for Cray’s XE and XK
series has been available since October 2011, and is used in production on Hopper.
However, gemini-conduit has remained in “Beta” status since its original release because
it was known to have some serious performance problems. The most significant
performance defect was due to the reliance on “strict ordering” for correctness, while
“relaxed ordering” is necessary to achieve acceptable performance when utilizing more
than four cores. This problem has been overcome and a mechanism has been developed
(with the crucial assistance of Cray) to allow use of relaxed ordering without sacrificing
correctness. That effort was described in more detailed in Section 5, which includes
micro-benchmark results showing the benefit.

In addition to the switch from strict to relaxed ordering, GASNet’s gemini-conduit has
been extensively rewritten over the past two months to improve performance and

scalability. At the time this report is being written the rewrite is nearly complete and
approximately half of the code in gemini-conduit is new since the October 2012 release.
As a result, the Spring 2013 release (expected late April or early May) of GASNet will no
longer label support for the Cray XE and XK series as “Beta”.

Two UPC benchmarks run at small scale on Hopper illustrate the magnitude of the
improvement in performance for the rewritten gemini-conduit. The first is
“cg.D.O3.256”, the CG benchmark from GWU’s UPC version of the NAS Parallel
Benchmarks with the Class D problem size and 256 UPC threads. The problem was run
on 16 nodes, using 16 (out of 24) cores on each. The times for three different UPC
compilers are reported in Table 1 which reports the mean and standard deviation of 15
runs (three for each compiler from each of five batch jobs). By running the application as
built by all three compilers in the same batch job we ensure that effects of job layout on
Hopper will impact the results fairly.

 BUPC 2.16.0 BUPC Current Cray CCE 8.1.3
cg.D.O3.256 20799 ± 946 Mop/s 25536 ± 805 Mop/s 21917 ± 1121 Mop/s

Table 1. CG benchmark on Hopper using Berkeley UPC and Cray CCE
The first two results are from the Berkeley UPC compiler, where “BUPC 2.16.0” is the
October 2012 release as installed for production use on Hopper and “BUPC Current” is
the Berkeley UPC compiler rebuilt with the current version of GASNet’s gemini-conduit.
The result is a 23% performance improvement. Additionally, the performance goes from
trailing Cray’s result by 5% to leading by 17%.

The second UPC benchmark illustrating the improved performance of the rewritten
gemini-conduit is the “guppie” benchmark which is a variation of on the same theme as
the well-known RandomAccess benchmark from the HPC Challenge suite. By its nature,
this problem is latency bound, and therefore the results (expressed in “up/s”) is very
sensitive to how the job gets placed on Hopper’s torus network (unfortunately, placement
on a contiguous portion of the torus is rare). The problem size tested was 230 updates
with a table size of 226, using all 384 cores of 16 compute nodes. All runs were “paired”
with both the 2.16.0 and “current” BUPC compiler’s versions of the code run five times
in each batch job. For the least contiguous job placements, both versions of the code
faired equally poorly with results below 35Mup/s. The lack of statistically significant
performance differentiation in these runs is not surprising because the network latency is
the dominant factor and we’ve not changed the network traffic patterns. For the few jobs
that received “favorable” job placements the new code showed measurably improved
results, as the latencies we can address in software became more significant. Results of
six representative1 runs are shown in Table 2, in which the runs have been ordered by the
performance of the code as compiled by BUPC 2.16.0. It is worth noting that we could
not get this benchmark problem size to run reliably when compiled with Cray’s compiler.

Job No. BUPC 2.16.0 BUPC Current Change

1 From ten batch jobs we present the 2 slowest, the 2 fastest and the 2 median (middle-most).
2 We have been working actively with Cray to get the documentation updated to match the implementation,

2876148 32.19 ± 6.04 Mup/s 36.13 ± 1.40 Mup/s *
2876158 32.89 ± 2.32 Mup/s 33.43 ± 1.88 Mup/s *
2876154 40.44 ± 0.23 Mup/s 41.07 ± 0.53 Mup/s *
2876157 41.55 ± 0.48 Mup/s 42.84 ± 0.40 Mup/s 3.1%
2876149 47.07 ± 0.27 Mup/s 51.72 ± 0.62 Mup/s 9.9%
2876154 52.28 ± 0.86 Mup/s 73.45 ± 0.98 Mup/s 40%

Table 2. Guppie benchmark results on Hopper for two versions of BUPC.
A ‘*’ appears in the Change column when the difference is less than 2σ.

The newest machine on the floor of a DOE center is NERSC’s Edison, a Cray XC30
(a.k.a. “Cascade) system. Relative to the XE and XK series both the CPU vendor and
network hardware have changed. While the switch from AMD to Intel CPUs has little
impact on GASNet or GASNet-EX, the change of network from Gemini (a 3D torus) to
Aries (a dragonfly) is a significant change. Fortunately, Cray has kept the uGNI API, but
unfortunately there were non-trivial changes in uGNI. These changes include dropping
support for one feature and changing the semantics for others2. The dropped feature was
one we relied heavily on in gemini-conduit, and so from the start it was clear that non-
trivial work was required to support Aries. Since Gemini and Aries share the uGNI API,
the decision was made to support them from a common code base, with appropriate
conditional compilation (#ifdef) to deal with the differences. The development of a new
aries-conduit was done over the past two months, together with the rewrite of gemini-
conduit and their code is currently 98% common. We anticipate that the choice to
support them from a common code base will prove to be the best option for
maintainability.

At the time of this writing aries-conduit is complete, stable, and at least moderately
tuned. It has been released to a limited set of partners for initial testing. We fully expect
to include aries-conduit in our Spring 2013 release of GASNet and Berkeley UPC.

In addition to the PAMI and uGNI APIs from IBM and Cray, GASNet also has support
for three InfiniBand APIs, of which we expect at least the most widely used one will
carry forward into GASNet-EX. Of additional interest for the future is Portals4 from
Sandia, UNM and Intel. Though Sandia is not a partner in DEGAS, we have a verbal
commitment from Sandia to produce a portals4-conduit for GASNet in time for our SC13
release of GASNet, and hope to see an initial version ready for Beta in the Spring 2013
release. We expect to share with Sandia the support of portals4-conduit, and it is likely to
be carried forward into GASNet-EX.

7. Resilience

For the first year of this project, the resilience team has two overall tasks. The first task is
to define a useful and implementable fault and recovery model for PGAS languages. The

2 We have been working actively with Cray to get the documentation updated to match the implementation,
but it seems that not even Cray was fully aware of everything that they had changed.

second task is to develop the infrastructure required to support a working implementation
of this model.

In the past few months we focused our efforts on two main tasks. The first task focuses
on our first-year deliverable of a generic and complete PGAS resilience consistency
model, which includes partial and uncoordinated preservation and recovery. The second
focuses on ground work necessary for our long-term project deliverable of demonstrating
a containment domains model and runtime for hierarchical PGAS.

There are several significant challenges to defining consistency in the context of a
generic resilient PGAS application. Unlike models with explicit two-sided
communication, any parallel task can potentially access any global memory address
across the system at any time. As a result, uncoordinated recovery is problematic
because: (1) tasks that are recovering by re-execution observe memory state that is
inconsistent with their original execution; (2) tasks making forward progress and re-
executing tasks may interfere with one another; and (3) tasks that are re-executing may
generally end up with a state that is inconsistent with the rest of the application.
Achieving a consistent state requires careful design of the execution model and
potentially restrictions on the types of algorithms that can be guaranteed consistency.

7.1 Containment Domains (UT Austin)

We carefully reviewed prior material and a partial prototype implementation of a CD
runtime (by Cray) and developed a plan for a lowest-common-denominator
implementation of CDs targeting GNU libc. Our main accomplishments are itemized
below and described with greater detail in the subsections below:

1. Developed an initial version of a containment domains-based generic resilience
model for PGAS applications.

2. Identified required system support for implementing the initial CD-based PGAS
resilience model.

3. Conducted a detailed and critical review of available prototype code that was
developed by Cray and which implements a subset of CD runtime functionality.

4. Developed detailed plans for an initial “least common denominator” CD runtime
implementation.

7.1.1 Containment Domains for PGAS Resilience

We started by extending the containment domains resilience model to a generic PGAS
context. With containment domains, the application is logically partitioned into a tree of
nested CDs. Each CD provides means to (potentially partially) preserve data necessary
for its execution and a mechanism for recovery. Recovery is typically achieved by re-
executing a CD (and all its children) or escalating the failure to its parent for handling.
By carefully balancing the overheads of recovery and re-execution using knowledge of
system parameters and failure models, a CD-enabled application can achieve maximal
resilience with minimal overhead and express a rich set of resilience mechanism. The CD

model, originally developed in the context of an explicit communication, defines two CD
flavors: strict and relaxed. With strict CDs, parallel tasks may y only communicate when
they are all within the same CD context. Two (or more) relaxed CDs, however, can
exchange data directly. Strict CDs are simpler to reason about and implement, while
relaxed CDs offer increased flexibility of trading off preservation and recovery
overheads.

The strict flavor of containment domains, achieves the goals of the generic resilience
PGAS model stated in the beginning of this section. However, based on initial
experimentation we believe that the strict CD model is too restrictive and cannot be used
to express efficient resilience for a large class of applications. Our main effort was thus
targeted at developing the model semantics and specifying system support for relaxed
CDs in a PGAS context. As mentioned earlier, the challenge lies in the fact that CD
recovery, by nature, is hierarchical and uncoordinated, which leads to a globally
inconsistent view of globally shared memory. Our initial model, which we are currently
verifying for completeness of correctness is summarized in the minimal list of
requirements below:

1. The application is deterministic, in that all re-executions of any CD results in the
same values stored to globally shared memory as in the original execution of that
CD (to within acceptable precision).

2. All read operations from data that is shared between relaxed CDs are logged for

re-execution; or alternatively a versioned memory system can provide originally
read values.

3. Write operations to potentially-shared data from any re-executing CD that has

previously committed are squashed (they already were potentially observed and
consistency demands that they not be re-executed).

4. Write operations to globally-visible addresses that are temporarily private to the

re-executing CD may re-execute to a shadow memory space to avoid corrupting
previously communicated global state.

5. All synchronization operations between relaxed CDs are logged and squashed

during re-execution.

The implications of this model are that logging and replay mechanisms are required for
shared data, whether global or local, and that system calls must be logged to ensure
deterministic re-execution. In addition, and related to deterministic re-execution, memory
management operations also require special handling to ensure consistent use of pointers
(or data identifiers) throughout the application and to prevent memory allocation leaks.
An important aspect of such logging is the need to define semantically consistent and safe
points in the execution were logged information can be discarded. Our conservative
approach is to define the release point as the least-common-ancestor strict CD for all

relaxed CDs that share particular data or that encompass a allocate/potential-use/free
sequence.

7.1.2 PGAS Containment Domains Prototype

One of our long-term goals for the DEGAS project is to demonstrate a hierarchical PGAS
system with support for containment domains. Achieving this goal requires careful
planning and a multi-year implementation effort. Because the CD runtime must rely on
some aspects of the underlying DEGAS runtime support for task control, communication,
synchronization, and memory management, we decided to focus our initial effort on
support for CDs within the GNU libc context and on detailed reviews of existing
codebases and mechanisms for containment domains specifically and state preservation
in general. GNU libc (or equivalent) is the most common base system used to implement
parallel runtime systems. Thus, this initial work sets the groundwork for the full
implementation. Also, despite this restrictive first target, many of the features and
challenges of the full CD system are apparent within libc.

7.1.3 Containment Domains within GNU libc

We reviewed the majority of libc methods that are stateful and thus require special
handling, including methods for memory management, file I/O, random number
generation, and interactions with the hardware system (e.g., the gettimeofday() method).
Based on this review our current primary focus is memory management methods (i.e.
malloc, calloc, realloc, and free), which we believe are the most critical for the success of
the runtime. While not yet implemented, we are confident that this design ensures correct
and consistent execution and re-execution, while adding negligible runtime overhead;
only memory management method calls are augmented whereas memory accesses are
unmodified. The downside is that free operations are deferred, potentially increasing the
memory footprint of applications that heavily utilize dynamic memory management.
While we do not expect this to be a problem with any of our current target applications,
we are also considering alternative designs that reduce the potential impact on memory
footprint.

7.1.4 Analysis of the Cray Research Prototype Implementation of CDs

We conducted a detailed and critical review of all prior CD literature and the GPU/CPU-
targeted CD preservation prototype developed by Cray. It is important to understand that
the Cray prototype was developed with the very specific goals of demonstrating that CDs
can be implemented, that they provide a benefit for heterogeneous architectures, and that
the execution overheads added by CDs are small. The Cray code achieved these specific
goals and provides an important and useful first-cut design for a CD runtime. However,
we concluded that significant additional implementation and design work is necessary.

Specifically:

1. The Cray design should be augmented to be more general and support greater
diversity in infrastructures and programming models.

2. Many of the API methods currently implementation require renaming,
refactoring, and extensions to simplify their use.

3. Additional functionality is required to correctly handle memory management and
other low-level system functionality.

4. Support is required for PGAS, as the Cray runtime focused on MPI and
GPU/CPU hybrid nodes.

5. The CD model implemented by Cray is not sufficiently flexible and does not
efficiently support all CD hierarchy manipulation required in the general case.

6. Only a single preservation method was implemented.
7. The prototype is purposefully limited to only recover from GPU failures and

assumes that the system, node, process, memory, and libc threads are perfectly
reliable.

Despite its incomplete and initial state, the Cray code base and design documents provide
an excellent starting point and will save significant effort in our implementation.

7.2 BLCD (LBNL)

We are using BLCR as part of our development platform for DEGAS. BLCR is a
system-level implementation of checkpoint/restart. It is designed so that applications can
be checkpointed or restarted

• *without modifications* to the application code,
• at *arbitrary times* during their execution, and
• by confining changes required for recovery to the parallel runtime.

BLCR may be used to implement rollback-recovery from node crashes or other errors.
Although BLCR is supported by all MPI implentations of interest to the DEGAS project,
BLCR is not yet supported by any PGAS languages. As part of our early work on this
project, we updated BLCR to run on newer Linux kernels and modern Linux
distributions. These changes were released as BLCR 0.8.5. BLCR 0.8.5 fixes the
following user-visible bugs and issues:

• Support for "vanilla" Linux kernels up to 3.7.x
• Fixes "vdso remap failed" errors on x86 platforms.
• Fixes support for Xeon Phi
• Fixes support for ARMv7 CPUs and for ARM THUMB2 kernels
• Fixes to work with more recent autotools, glibc, and rpmbuild.
• Fixes for memory regions larger than 4G
• Now supports "rpmbuild --define 'with_multilib 0' ..." to disable building of

32-bit libs on 64-bit targets.
• "make rpms" now works correctly when run in non-English locales
• Numerous other minor bugs

7.2.1 Analytic Models of Availability and Efficiency

As part of the design of the resilience infrastructure, and in the analysis of possible fault
tolerance models, we have explored the use of probabilistic models, adopted from
reliability engineering, to estimate availability and efficiency for different resilience
schemes. With these models, we have been able to explore questions such as:

• How reliable does the resilience framework itself need to be?
• How many faults do applications need to handle to achieve a specific level of

reliability?
• What is the cost of dropping support for forward recovery? Backwards recovery?
• How effective must predictive resilience schemes be in order to match the

periodic (preventive) schemes used today?
• Is there an optimal interval for containment domains?

We have explored these questions with the use of continuous Markov chains and
validated the results with discrete event simulation. Although approximate, we believe
the analytic models provide valuable insight into the behavior of these resilience
schemes, and intend to publish our results in an appropriate forum.

7.2.2 Resilience and Persistence

The DEGAS runtime requires two distinct forms of resilient storage, optimized for two
different cases. Case 1 is a logging service designed for small, high-frequency, and low
latency updates. Case 2 is a bulk service designed for large, low-frequency, high
bandwidth storage. The logging service is designed to be used during normal forward
execution of the program, to store information required to recover the resilience runtime
itself, whereas the bulk service is designed to be used mainly during checkpoint and
restart operations. A development plan for the bulk data service is in preparation. We
have started implementing log-based recovery through the logging service.

7.2.3 Fault and Recovery Scenarios

We've identified what we believe will be an effective scheme to relate system-level
checkpoint/restart to the application-level resilience provided by Containment Domains.
Containment Domains provide *backwards recovery* by allowing applicaions to rollback
to a past state and reexecute to avoid an error, but loss of the volatile program state
requires either reexecution of either the outermost domain or the entire program. In
contrast, Checkpoint/Restart provides *forwards recovery* from a loss of volatile state
(i.e. a processor, memory, or node failure). We expect to use this model "CD moves
backwards, CR moves forwards" to become the baseline for later research.

7.2.4 GASNET-EX and Resilience

As described in Section 6, work has begun to gather requirements for the resilience
support that is to be added to the GASNet-EX communications library. Since GASNet-
EX is required to implement our consistency model, the GASNet-EX work is a key part
of our resilience strategy.

8. References

[1] Sanjay Chatterjee, Zoran Budimli, Vincent Cavé, Milind Chabbi, Max Grossman,

Sarnak Tarlar, Yonghong Yan, Vivek Sarkar, “Integrating Asynchronous Task
Parallelism with MPI,” International Parallel and Distributed Processing
Symposium (IPDPS), May 2013. To appear.

[2] James Demmel, David Eliahu, Armando Fox, Shoaib Kamil, Benjamin Lipshitz,
Oded Schwartz, Omer Spillinger, “Communication-Optimal Parallel Recursive
Rectangular Matrix Multiplication,” International Parallel and Distributed
Processing Symposium (IPDPS), May 2013. To appear.

[3] A Communication-Optimal N-Body Algorithm for Direct Interactions Michael
Driscoll (UC Berkeley, USA); Evangelos Georganas (University of California,
Berkeley, USA); Penporn Koanantakool (UC Berkeley, USA); Edgar Solomonik
(University of California at Berkeley, USA); Katherine Yelick (University of
California at Berkeley, USA), International Parallel and Distributed Processing
Symposium (IPDPS), May 2013. To appear.

[4] Evangelos Georganas, Jorge González-Domínguez, Edgar Solomonik, Yili Zheng,
Juan Touriño, Katherine A. Yelick, “Communication Avoiding and Overlapping for
Numerical Linear Algebra,” Proceedings of the ACM/IEEE Conference on
Supercomputing (SC12), Salt Lake City, UT, November 2012.

[5] Hongzhang Shan, Brian Austin, Nicholas J. Wright, Erich Strohmaier, John Shalf
and Katherine Yelick, “Accelerating Massively Parallel Applications Using One-
Sided Communication,” Proceedings of the Partitioned Global Address Space
Conference, Santa Barbara, CA, October 2012.

[6] Kamesh Madduri, Jimmy Su, Samuel Williams, Leonid Oliker, Stephane Ethier,
Katherine Yelick, “Optimization of Particle-to-Grid Interpolation on Leading
Multicore Platforms,” IEEE Transactions on Parallel and Distributed Systems, Vol.
99, ISSN 1045-9219, 2012.

[7] Michael Driscoll, Amir Kamil, Shoaib Kamil, Yili Zheng and Kathy
Yelick; PyGAS: A Partitioned Global Address Space Extension for Python; Poster
in the PGAS Conference, August 2012.

