&

Lawrence Livermore
National Laboratory

‘ ’ '!I BOSTON |5
UNIVERSITY ([

Pacific Northwest

%' l%an_diaI ﬂ .
o WM FOX gl Aot @

Operating Systems

A Fault-Oblivious Extreme-Scale Execution Environment

Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional
increase in failure rate relative to today’s machines. Systems software for exascale machines must provide
the infrastructure to support existing applications while simultaneously enabling efficient execution of new
programming models that naturally express dynamic, adaptive, irregular computation; coupled
simulations; and massive data analysis in an unreliable hardware environment with billions of threads of
execution. The FOX project is developing systems software and runtime support for a new approach to the
data and work distribution for fault oblivious application execution. Our OS work includes adaptive,
application tailored OS services optimized for multi — many core processors.

Bell Labs and Sandia National Labs, in collaboration with Google and University of Rey Juan Carlos, created
a new role-based many-core OS called NxM, which derives from Plan 9. NxM designates some cores to run
full OS services while others run dedicated application processes, passing control to the OS core(s) to
service system calls. NxM also provides convenient access to large pages. NxM researchers continue to
explore the design space in more detail, examining alternatives for 1/0, scheduling, hybrid system APIs and
efficient inter-core communication choices.

FOX members from IBM Research have made improvements to the FusedOS version of Linux on BG/P to
improve compatibility with mainline Linux. FusedOS combines Linux on a distinguished core with CNK-
managed applications on the remaining cores of a Blue Gene node.

The Boston University team has developed a generalized model
for developing future HPC applications that are hybrids of
customized runtimes and general-purpose commodity operating
systems. The model targets the development of libraries and
applications that exploit distributed data structures and
associated communication optimizations in the face of dynamic
changes to the set of nodes. We have actively been defining this
-- - -- - model and developing it in the context of constructing a

fNode fode prototype runtime for supporting hash-table software. We have

“ developed a “bare metal” prototype of a key-value store that uses
Exascale Machine the hash-table. An outgrowth of this work has been a runtime

model that uses HPC systems approaches along with distributed
systems research techniques to yield an environment that combines commodity software stacks with
reusable high performance software that reacts to dynamic changes. This runtime model was presented at
the Exascale OS/Runtime Workshop.

Task Manager
Distributed Data Model

Hybrid Runtime

Linux

Hybrid Runtime




Fault Tolerance

Tuple Space

Load Balancing

lications

A

Dynamic load balancing is a promising technique to adapt to variations in the execution environment such
as irregular computation, faults, system noise, and energy constraints. We have developed distributed
memory load balancing algorithms based on work stealing and demonstrated scalability to hundreds of
thousands of processor cores. Our techniques are shown to incur low overheads (space and time) to ensure
fault tolerance, with the overheads decreasing with per-process work at scale. We demonstrated
consistently high efficiencies on ALCF Intrepid, NERSC Hopper, and OLCF Titan for the Hartree-Fock and
Tensor Contraction benchmarks on up to 140K processor cores.

Characterizing the behavior of work stealing schedulers and tracking task execution is complicated by the
dynamic nature of mapping tasks to processors. We have developed an approach to efficiently trace async-
finish parallel programs scheduled using work stealing with low time and space overheads. We
demonstrated the broader applicability of this work, in addition to replay-based performance analysis,
through two very different use cases: the optimization of correctness tools that detect data races in async-
finish programs; the design of load balancing algorithms that exploit past load balance information to
incremental adapt to changes.

Checkpoint-restart approaches to fault tolerance typically roll back all the processes to the previous
checkpoint in the event of a failure, a heavyweight solution that will not scale to exascale. We developed
novel data-driven resilience algorithms for work stealing schedulers that minimize both the overhead in
the absence of faults and the performance penalty incurred by a fault. We presented three recovery
schemes that present distinct trade-offs — lazy recovery with potentially increased re-execution cost,
immediate collective recovery with associated synchronization overheads, and non-collective recovery
enabled by additional communication. We demonstrated that the overheads (space and time) of the fault
tolerance mechanism are low, the costs incurred due to failures are small, and the overheads decrease with
per-process work at scale

Over the last few months, we have been developing a derivative of the Linda programming model which
generalizes the key/value store to arbitrarily-type tuples and even wildcard matching. A flexible C++
template library allows dependencies between tuples and tasks to be easily expressed. Arbitrary event
listeners can be attached to tuple operations, allowing tasks to immediately respond as new data becomes
available. Although the framework most naturally suggests a Task-DAG model, the tuple space framework
is designed to be as “expressive” as possible, allowing multiple parallel models to be expressed.

A major reason for choosing a Linda-like approach is a large body of work on fault-tolerant Linda from the
1990s. In particular, Linda can be extended naturally with a a set of fault-tolerant transactions for resilient
computation. In the shorter-term, our resilience experiments are focusing on “slow nodes” rather than
totally failed nodes. This should demonstrate clearly the flexibility of the Linda runtime that derives from
processes being decoupled in space and time.

Computing elementary reaction rates for macroscopic flame models requires a detailed description of the
reactant molecule's electronic structure. For the required accuracy, an extensive mathematical treatment
must be given via the coupled-cluster formalism (most commonly denoted CCSD). The electronic structure
is expressed as set of equations can be largely reduced to block-sparse matrix multiplications. The
involved matrices, however, are both large and irregular, demanding tools for load balancing, fault
tolerance, and data-driven task flow. Despite the CCSD model's complexity and steep scaling [O(N¢) work
with O(N4) storage in the number of electrons], our current implementations can routinely model
molecules containing 100 electrons or more.



