
ORNL is managed by UT-Battelle

for the US Department of Energy

Abstract
Representations for the
Extreme-Scale Stack
(ARES)
Jeffrey S. Vetter, ORNL, Co-PI

Pat McCormick, LANL, Co-PI

Seyong Lee, ORNL

Jungwon Kim, ORNL

Joel Denny, ORNL

Kei Davis, LANL

Nicholas Moss, LANL

http://ft.ornl.gov vetter@computer.org

http://ft.ornl.gov/research/ares
http://github.com/losalamos/ares

http://ft.ornl.gov/
mailto:vetter@computer.org
http://ft.ornl.gov/research/ares
http://github.com/losalamos/ares

2

Challenges with Current Programming
Toolchains

• Programming toolchains have very complex design,

and are siloed

• Many levels of abstraction, representation,

optimization

• Language/programming model toolchains should

use much of the same infrastructure

– Rapid design

– Interoperability

– Portability

– Emerging architectural features

– Share ecosystem tools

• Example

– OpenACC – heterogeneous computing

– C - serial

– LLVM – serial (parallel WIP)

3

ARES attempts to
generalize IR

• Define an open-source,
extensible, universal High-Level
Intermediate Representation
(HLIR) leveraging the widely
adopted LLVM infrastructure

• Progress

– Multiple frontends on ARES

– New concepts added to IR

– Concrete representation as C++
class library

• Strong interest from NVIDIA,
Intel, AMD, Cray, IBM, etc.

• ARES is not trying to build a
complete toolchain, but rather
leverage other software

ARES Focus

OpenARC w/
OpenACC, OpenMP

LLVM

5

Why HLIR `superset’ of LLVM IR?

• LLVM too low-level to reason about concepts as
concurrency, communication, and synchronization

– Nested loops

– Multidimensional arrays

– Polly archetypical example—can’t even easily reason about high-
level serial loop structure because it’s lost

• But by using LLVM as a basis we can leverage the entire
LLVM infrastructure downstream

5

6

OpenARC: Open Accelerator Research Compiler

• Problem
– Directive-based accelerator programming models provide abstraction over architectural details

and low-level programming complexities. However, too much abstraction puts significant burdens
on performance tuning, debugging, and scaling.

• Solution
– OpenARC is an open-sourced, very High-level Intermediate Representation (HIR)-based,

extensible compiler framework, where various performance optimizations, traceability
mechanisms, fault tolerance techniques, etc., can be built for better
debuggability/performance/resilience on the complex accelerator computing.

6

Seyong Lee and Jeffrey S. Vetter, Early Evaluation of Directive-Based GPU Programming

Models for Productive Exascale Computing, ACM/IEEE International Conference for High

Performance Computing, Networking, Storage, and Analysis(SC), 2012.

http://ft.ornl.gov/research/openarc

http://ft.ornl.gov/research/openarc

7

Recent Highlights

• HLIR toolkit

– Defined C++ HLIR which interfaces with LLVM and has a textual output
representation.

– HLIR supports three main types of parallel constructs: tasks, parallel
for/reduce, and communication

– A LLVM-based front-end can readily create each of these constructs in
very few lines of code – then the HLIR module pass takes care of the
lowering these to ordinary IR + calls to our runtime

– Transition to a Flang+Clang-based front-end for testing HLIR

• ARES Examples

– NVL-C: New programming interface (extended C) for NVM main memory

– IMPACC: A framework for adaptive integration of message passing and
accelerator programming models

– Program verification and optimization via HLIR-based, directive-agnostic

– FITL: Directive-based fault-injection toolkit for LLVM

Example:
Programming NVM Main
Memory

11

NVRAM Technology Continues to Improve
– Driven by Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES

/201212/EEOL_2012DEC28_STOR_MFG_NT_01.j

pg

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

13

Opportunities for NVM in Emerging Systems

• Burst Buffers

• In-mem
tables

• In situ visualization

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-

Performance Computing,” Computing in Science & Engineering, 17(2):73-82, 2015,

10.1109/MCSE.2015.4.

http://ft.ornl.gov/eavl

[Liu, et al., MSST 2012]

http://ft.ornl.gov/eavl

14

• Problem
– DRAM is fast and byte-addressable but

power-hungry, expensive, and volatile.

– HDD is cheap and persistent but slow.

– HPC trends: DRAM-flop ratio shrinking, no

node-local HDD.

– Flash and future NVM tech will fill gaps but

require new programming systems.

• Solution
– NVL-C is a novel NVM programming system

that extends C.

– Currently uses Intel's pmemobj library for

allocations and transactions.

– Critical compiler components are implemented

as reusable LLVM extensions.

– Future work:

– NVL-Fortran, NVL-C++, etc.

– Target other persistent memory libraries.

– Contribute components to LLVM project.

Target Executable

NVL-C: Programming Features for NVM

1
Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. NVL-C: Static Analysis and Transformations for Efficient and Correct Programming of

Persistent Memory Hierarchies. ACM HPDC, 2016. http://ft.ornl.gov/research/openarc

Target Objects

...

ARES HLIR

LLVM IR +
Metadata, Intrinsics,

Run-time calls

OpenARC Other Compiler

Front Ends

ARES LLVM

Passes

LLVM

NVL-C
Other NVL

Languages

libnvlrt-pmemobj

libpmemobj

NVL Runtime

system

linker

http://ft.ornl.gov/research/openarc

15

NVL-C: Programming Features for NVM

1

• Impact
– Minimal, familiar, programming interface:

– Minimal C language extensions.

– App can still use DRAM.

– Pointer safety:

– Persistence creates new categories of

pointer bugs.

– Best to enforce pointer safety constraints

at compile time rather than run time.

– Transactions:

– Prevent corruption of persistent memory

in case of application or system failure.

– Language extensions enable:

– Compile-time safety constraints.

– NVM-related compiler analyses and

optimizations.

– Automatic reference counting

– LLVM-based:

– Core of compiler can be reused for other

front ends and languages.

– Can take advantage of LLVM ecosystem.

Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. NVL-C: Static Analysis and Transformations for Efficient and Correct Programming of Persistent

Memory Hierarchies. ACM HPDC, 2016. http://ft.ornl.gov/research/openarc

#include <nvl.h>

struct list {

int value;

nvl struct list *next;

};

void remove(int k) {

nvl_heap_t *heap

= nvl_open("foo.nvl");

nvl struct list *a

= nvl_get_root(heap, struct list);

#pragma nvl atomic

while (a->next != NULL) {

if (a->next->value == k)

a->next = a->next->next;

else

a = a->next;

}

nvl_close(heap);

}

http://ft.ornl.gov/research/openarc

16

• Applications extended with NVL-C

• Compiled with NVL-C

• Executed on Fusion ioScale

• Compared to DRAM

• Various levels of optimization

Preliminary Results

LULESH XSBENCH

Example:
Optimizing and Debugging
OpenACC Code

21

2

Seyong Lee, Dong Li, and Jeffrey S. Vetter, Interactive Program Debugging and Optimization

for Directive-Based GPU Computing, the IEEE International Parallel & Distributed Processing

Symposium (IPDPS), 2014

• HLIR-based Interactive Debugging and Optimizations

• Results

– Evaluation using twelve OpenACC

applications could detect all active

errors affecting program outputs and

optimize memory transfers comparable

to a fully manual memory management

scheme.

HLIR-based, Directive-agnostic Program
Verification and Optimization (cont.)

Kernel Verification Communication Verification and Optimization

1

10

100

1000

10000

100000

N
o

rm
a

li
z
e

d
 V

a
lu

e
s Normalized total execution time

The execution time and transferred data size with OpenACC default memory management

scheme normalized to those for fully optimized OpenACC version

Example:
IMPACC: A Framework for
Adaptive Integration of MPI
and OpenACC

24

IMPACC: A Framework for Adaptive
Integration of MPI and OpenACC
• Problem

– Hybrid MPI+OpenACC
programming model for
heterogeneous clusters causes
some inefficiencies and
complexities, such as redundant
data movement and excessive
synchronization.

• Approach

– The code written with MPI +
OpenACC/OpenMP 4.0 +
IMPACC directives is translated
into ARES HLIR.

– IMPACC compiler translates
ARES HLIR into the target
accelerator IR + metadata,
intrinsic and run-time calls and
finally generates the executable
binary for the target accelerator-
based systems such as CPU,
GPU, Xeon Phi, (FPGA,) and
heterogeneous clusters.

5

MPI
OpenACC

OpenMP 4.0
IMPACC

Directives

ARES HLIR

Target accelerator IR +
Metadata, Intrinsics,

Run-time calls

CPU
clusters

GPU
clusters

FPGA
clusters

Heterogeneous
clusters

25

Task%

VA%

CPU%

ACC%

GDDR%

Task%

VA%

CPU%

ACC%

GDDR%

HtoD% Task%

VA%

CPU%

ACC%

GDDR%

Task%

CPU%

ACC%

GDDR%

HtoD%

IMPACC%MPI+OpenACC%

(a) Host-to-device communication

Task%

VA%

CPU%

ACC%

GDDR%

Task%

VA%

CPU%

ACC%

GDDR%

DtoH% Task%

VA%

CPU%

ACC%

GDDR%

Task%

CPU%

ACC%

GDDR%

DtoH%

IMPACC%MPI+OpenACC%

(b) Device-to-host communication

Task%

VA%

CPU%

ACC%

GDDR%

Task%

VA%

CPU%

ACC%

GDDR%

DtoD%

IMPACC%MPI+OpenACC%

Task%

VA%

CPU%

ACC%

GDDR%

Task%

CPU%

ACC%

GDDR%

DtoD%

(c) Device-to-device communication

Time

(a) MPI+OpenACC Synchronous

(b) MPI+OpenACC Asynchronous

ACC kernel copyout

HOST 2

MPI send recv

copyin kernel

4 6 8

ACC kernel copyout

HOST 2

MPI send recv

4 5 6

copyin kernel

waiting w w waiting

(c) IMPACC Unified Activity Queue

ACC kernel copyout

HOST 2

MPI send recv

6 9 10

copyin kernel

5 waiting w7

• Adaptive Optimization
- The programmers can use

IMPACC by just adding an
IMPACC’s new openacc
directive (#pragma acc
mpi)to the original
MPI+OpenACC code

IMPACC: A Framework for Adaptive
Integration of MPI and OpenACC

#pragma acc mpi sendbuf(device) async

MPI_Isend(buf, count, MPI_BYTE, dst,

tag, comm, &req0)

#pragma acc mpi recvbuf(device) async

MPI_Irecv(buf, count, MPI_BYTE, src,

tag, comm, &req1)

Integrating non-blocking MPI communication and
OpenACC asynchronous queue  lower CPU

utilization, less synchronizations, more scalable.

Integrating MPI communication and OpenACC
memory copy  eliminates duplicated memory copy,
more efficient, less overall communication overhead.

26

IMPACC: A Framework for Adaptive
Integration of MPI and OpenACC
• Recent Results

– IMPACC prototype integrates MPI and OpenACC
memory semantics to provide 66%, 50%, 35%,
and 11% performance improvement than
standard MPI+OpenACC in DGEMM using 1024,
2048, 4096, and 8192 NVIDIA GPUs in ORNL
TITAN, respectively.

– IMPACC shows 46% performance improvement
than standard MPI+OpenACC in Jacobi using 64
Intel Xeon Phis in UTK Beacon cluster.

– IMPACC achieves the performance portability of
LULESH across various hardware accelerators
such as NVIDIA GPUs and Intel Xeon Phis.

– In ORNL Titan, LULESH with 8000 NVIDIA GPUs
in IMPACC shows 64 times higher performance
than that with 125 NVIDIA GPUs.

0

1

2

3

4

1 2 4 8
S

p
e

e
d
u

p

(a) 1K x 1K in PSG

IMPACC MPI+OpenACC

0

2

4

6

1 2 4 8

(b) 2K x 2K in PSG

0

2

4

6

8

1 2 4 8

(c) 4K x 4K in PSG

0

2

4

6

8

1 2 4 8

(d) 8K x 8K in PSG

0
8

16
24
32
40
48
56

1 2 4 8 16 32 64 128

S
p
e

e
d

u
p

Number of tasks (devices)

(e) 8K x 8K in Beacon

0

1

2

3

4

5

128 256 512 1024 2048 4096 8192

Number of tasks (devices)

(f) 24K x 24K in Titan

Speedup of DGEMM, normalized to MPI+OpenACC 1-task in PSG and

Beacon, 128-tasks in Titan

• Impact
– IMPACC shows higher performance

and better scalability than current

MPI+OpenACC model.

– IMPACC enhances the MPI

communication in heterogeneous

accelerator programming systems

while minimizing code changes.

27

• Tech transfer
– OpenARC and related tools are

open-source

– Formalizing and publishing (via
open-source) the ARES HLIR
definition

• Currently exists as C++ class
definitions

– Providing the tools for manipulating
ARES HLIR and lowering to LLVM
IR/meta-data/intrinsics and runtime
system calls

– Providing examples of source
language to ARES HLIR front-
ends, HLIR to LLVM/runtime
middle-stages

– Working to enable LLVM with
compiler community

– Because of the tight coupling with
LLVM, a front-end implementation
may adopt the ARES HLIR
incrementally.

• Futures

– Develop interfaces to HLIR

– Complete C/Flang front ends

– Motivate higher level parallel
abstractions in LLVM IR

– Resource directives for
managing resources at
runtime

– Additional architectural
features

Summary

27

28

Acknowledgements

• Contributors and Sponsors

– Future Technologies Group: http://ft.ornl.gov

– US Department of Energy Office of Science

• DOE Vancouver Project:
https://ft.ornl.gov/trac/vancouver

• DOE Blackcomb Project:
https://ft.ornl.gov/trac/blackcomb

• DOE ExMatEx Codesign Center:
http://codesign.lanl.gov

• DOE Cesar Codesign Center:
http://cesar.mcs.anl.gov/

• DOE Exascale Efforts:
http://science.energy.gov/ascr/research/compute
r-science/

– Scalable Heterogeneous Computing
Benchmark team: http://bit.ly/shocmarx

– US National Science Foundation Keeneland
Project: http://keeneland.gatech.edu

– US DARPA

– NVIDIA CUDA Center of Excellence

http://ft.ornl.gov/
https://ft.ornl.gov/trac/vancouver
https://ft.ornl.gov/trac/blackcomb
http://codesign.lanl.gov/
http://cesar.mcs.anl.gov/
http://science.energy.gov/ascr/research/computer-science/
http://bit.ly/shocmarx
http://keeneland.gatech.edu/

