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Challenges with Current Programming 
Toolchains

• Programming toolchains have very complex design, 

and are siloed

• Many levels of abstraction, representation, 

optimization

• Language/programming model toolchains should 

use much of the same infrastructure

– Rapid design

– Interoperability

– Portability

– Emerging architectural features

– Share ecosystem tools

• Example

– OpenACC – heterogeneous computing

– C - serial

– LLVM – serial (parallel WIP)
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ARES attempts to 
generalize IR

• Define an open-source, 
extensible, universal High-Level 
Intermediate Representation 
(HLIR) leveraging the widely 
adopted LLVM infrastructure

• Progress

– Multiple frontends on ARES

– New concepts added to IR

– Concrete representation as C++ 
class library

• Strong interest from NVIDIA, 
Intel, AMD, Cray, IBM, etc.

• ARES is not trying to build a 
complete toolchain, but rather 
leverage other software

ARES Focus

OpenARC w/ 
OpenACC, OpenMP

LLVM
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Why HLIR `superset’ of LLVM IR?

• LLVM too low-level to reason about concepts as 
concurrency, communication, and synchronization

– Nested loops

– Multidimensional arrays

– Polly archetypical example—can’t even easily reason about high-
level serial loop structure because it’s lost

• But by using LLVM as a basis we can leverage the entire 
LLVM infrastructure downstream

5
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OpenARC: Open Accelerator Research Compiler

• Problem
– Directive-based accelerator programming models provide abstraction over architectural details 

and low-level programming complexities. However, too much abstraction puts significant burdens 
on performance tuning, debugging, and scaling.

• Solution
– OpenARC is an open-sourced, very High-level Intermediate Representation (HIR)-based, 

extensible compiler framework, where various performance optimizations, traceability 
mechanisms, fault tolerance techniques, etc., can be built for better 
debuggability/performance/resilience on the complex accelerator computing.

6

Seyong Lee and Jeffrey S. Vetter, Early Evaluation of Directive-Based GPU Programming 

Models for Productive Exascale Computing, ACM/IEEE International Conference for High 

Performance Computing, Networking, Storage, and Analysis(SC), 2012.

http://ft.ornl.gov/research/openarc

http://ft.ornl.gov/research/openarc
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Recent Highlights

• HLIR toolkit

– Defined C++ HLIR which interfaces with LLVM and has a textual output 
representation.

– HLIR supports three main types of parallel constructs: tasks, parallel 
for/reduce, and communication

– A LLVM-based front-end can readily create each of these constructs in 
very few lines of code – then the HLIR module pass takes care of the 
lowering these to ordinary IR + calls to our runtime

– Transition to a Flang+Clang-based front-end for testing HLIR

• ARES Examples

– NVL-C: New programming interface (extended C) for NVM main memory

– IMPACC: A framework for adaptive integration of message passing and 
accelerator programming models

– Program verification and optimization via HLIR-based, directive-agnostic 

– FITL: Directive-based fault-injection toolkit for LLVM



Example:
Programming NVM Main 
Memory
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NVRAM Technology Continues to Improve 
– Driven by Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES

/201212/EEOL_2012DEC28_STOR_MFG_NT_01.j

pg

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg
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Opportunities for NVM in Emerging Systems

• Burst Buffers

• In-mem
tables

• In situ visualization

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-

Performance Computing,” Computing in Science & Engineering, 17(2):73-82, 2015, 

10.1109/MCSE.2015.4.

http://ft.ornl.gov/eavl

[Liu, et al., MSST 2012]

http://ft.ornl.gov/eavl
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• Problem
– DRAM is fast and byte-addressable but 

power-hungry, expensive, and volatile.

– HDD is cheap and persistent but slow.

– HPC trends: DRAM-flop ratio shrinking, no 

node-local HDD.

– Flash and future NVM tech will fill gaps but 

require new programming systems.

• Solution
– NVL-C is a novel NVM programming system 

that extends C. 

– Currently uses Intel's pmemobj library for 

allocations and transactions.

– Critical compiler components are implemented 

as reusable LLVM extensions.

– Future work:

– NVL-Fortran, NVL-C++, etc.

– Target other persistent memory libraries.

– Contribute components to LLVM project.

Target Executable

NVL-C: Programming Features for NVM

1
Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. NVL-C: Static Analysis and Transformations for Efficient and Correct Programming of 

Persistent Memory Hierarchies. ACM HPDC, 2016.  http://ft.ornl.gov/research/openarc

Target Objects

...

ARES HLIR

LLVM IR +
Metadata, Intrinsics,

Run-time calls

OpenARC Other Compiler

Front Ends

ARES LLVM 

Passes

LLVM

NVL-C
Other NVL 

Languages

libnvlrt-pmemobj

libpmemobj

NVL Runtime

system 

linker

http://ft.ornl.gov/research/openarc
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NVL-C: Programming Features for NVM

1

• Impact
– Minimal, familiar, programming interface:

– Minimal C language extensions.

– App can still use DRAM.

– Pointer safety:

– Persistence creates new categories of 

pointer bugs.

– Best to enforce pointer safety constraints 

at compile time rather than run time.

– Transactions:

– Prevent corruption of persistent memory 

in case of application or system failure.

– Language extensions enable:

– Compile-time safety constraints.

– NVM-related compiler analyses and 

optimizations.

– Automatic reference counting

– LLVM-based:

– Core of compiler can be reused for other 

front ends and languages.

– Can take advantage of LLVM ecosystem.

Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. NVL-C: Static Analysis and Transformations for Efficient and Correct Programming of Persistent 

Memory Hierarchies. ACM HPDC, 2016.  http://ft.ornl.gov/research/openarc

#include <nvl.h>

struct list {

int value;

nvl struct list *next;

};

void remove(int k) {

nvl_heap_t *heap

= nvl_open("foo.nvl");

nvl struct list *a

= nvl_get_root(heap, struct list);

#pragma nvl atomic

while (a->next != NULL) {

if (a->next->value == k)

a->next = a->next->next;

else

a = a->next;

}

nvl_close(heap);

}

http://ft.ornl.gov/research/openarc
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• Applications extended with NVL-C

• Compiled with NVL-C

• Executed on Fusion ioScale

• Compared to DRAM

• Various levels of optimization

Preliminary Results

LULESH XSBENCH



Example:
Optimizing and Debugging 
OpenACC Code
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2

Seyong Lee, Dong Li, and Jeffrey S. Vetter, Interactive Program Debugging and Optimization 

for Directive-Based GPU Computing, the IEEE International Parallel & Distributed Processing 

Symposium (IPDPS), 2014

• HLIR-based Interactive Debugging and Optimizations

• Results

– Evaluation using twelve OpenACC

applications could detect all active 

errors affecting program outputs and 

optimize memory transfers comparable 

to a fully manual memory management 

scheme.

HLIR-based, Directive-agnostic Program 
Verification and Optimization (cont.)

Kernel Verification Communication Verification and Optimization

1
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Example:
IMPACC: A Framework for 
Adaptive Integration of MPI 
and OpenACC
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IMPACC: A Framework for Adaptive 
Integration of MPI and OpenACC
• Problem

– Hybrid MPI+OpenACC
programming model for 
heterogeneous clusters causes 
some inefficiencies and 
complexities, such as redundant 
data movement and excessive 
synchronization.

• Approach

– The code written with MPI + 
OpenACC/OpenMP 4.0 + 
IMPACC directives is translated 
into ARES HLIR.

– IMPACC compiler translates 
ARES HLIR into the target 
accelerator IR + metadata, 
intrinsic and run-time calls and 
finally generates the executable 
binary for the target accelerator-
based systems such as CPU, 
GPU, Xeon Phi, (FPGA,) and 
heterogeneous clusters.

5

MPI
OpenACC

OpenMP 4.0
IMPACC

Directives

ARES HLIR

Target accelerator IR + 
Metadata, Intrinsics,

Run-time calls

CPU
clusters

GPU
clusters

FPGA 
clusters

Heterogeneous
clusters
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• Adaptive Optimization
- The programmers can use 

IMPACC by just adding an 
IMPACC’s new openacc
directive (#pragma acc
mpi)to the original 
MPI+OpenACC code

IMPACC: A Framework for Adaptive 
Integration of MPI and OpenACC

#pragma acc mpi sendbuf(device) async

MPI_Isend(buf, count, MPI_BYTE, dst, 

tag, comm, &req0)

#pragma acc mpi recvbuf(device) async

MPI_Irecv(buf, count, MPI_BYTE, src, 

tag, comm, &req1)

Integrating non-blocking MPI communication and 
OpenACC asynchronous queue  lower CPU 

utilization, less synchronizations, more scalable.

Integrating MPI communication and OpenACC 
memory copy  eliminates duplicated memory copy, 
more efficient, less overall communication overhead.
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IMPACC: A Framework for Adaptive 
Integration of MPI and OpenACC
• Recent Results

– IMPACC prototype integrates MPI and OpenACC
memory semantics to provide 66%, 50%, 35%, 
and 11% performance improvement than 
standard MPI+OpenACC in DGEMM using 1024, 
2048, 4096, and 8192 NVIDIA GPUs in ORNL 
TITAN, respectively.

– IMPACC shows 46% performance improvement 
than standard MPI+OpenACC in Jacobi using 64 
Intel Xeon Phis in UTK Beacon cluster.

– IMPACC achieves the performance portability of 
LULESH across various hardware accelerators 
such as NVIDIA GPUs and Intel Xeon Phis.

– In ORNL Titan, LULESH with 8000 NVIDIA GPUs 
in IMPACC shows 64 times higher performance 
than that with 125 NVIDIA GPUs.

0

1

2

3

4

1 2 4 8
S

p
e

e
d
u

p

(a) 1K x 1K in PSG

IMPACC MPI+OpenACC

0

2

4

6

1 2 4 8

(b) 2K x 2K in PSG

0

2

4

6

8

1 2 4 8

(c) 4K x 4K in PSG

0

2

4

6

8

1 2 4 8

(d) 8K x 8K in PSG

0
8

16
24
32
40
48
56

1 2 4 8 16 32 64 128

S
p
e

e
d

u
p

Number of tasks (devices)

(e) 8K x 8K in Beacon

0

1

2

3

4

5

128 256 512 1024 2048 4096 8192

Number of tasks (devices)

(f) 24K x 24K in Titan

Speedup of DGEMM, normalized to MPI+OpenACC 1-task in PSG and 

Beacon, 128-tasks in Titan

• Impact
– IMPACC shows higher performance 

and better scalability than current 

MPI+OpenACC model.

– IMPACC enhances the MPI 

communication in heterogeneous 

accelerator programming systems 

while minimizing code changes.
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• Tech transfer
– OpenARC and related tools are 

open-source

– Formalizing and publishing (via 
open-source) the ARES HLIR 
definition

• Currently exists as C++ class 
definitions

– Providing the tools for manipulating 
ARES HLIR and lowering to LLVM 
IR/meta-data/intrinsics and runtime 
system calls

– Providing examples of source 
language to ARES HLIR front-
ends, HLIR to LLVM/runtime 
middle-stages

– Working to enable LLVM with 
compiler community

– Because of the tight coupling with 
LLVM, a front-end implementation 
may adopt the ARES HLIR 
incrementally. 

• Futures

– Develop interfaces to HLIR

– Complete C/Flang front ends

– Motivate higher level parallel 
abstractions in LLVM IR

– Resource directives for 
managing resources at 
runtime

– Additional architectural 
features

Summary

27
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