
ORNL is managed by UT-Battelle

for the US Department of Energy

Abstract
Representations for the
Extreme-Scale Stack
(ARES)
Jeffrey S. Vetter, ORNL, Co-PI

Pat McCormick, LANL, Co-PI

Seyong Lee, ORNL

Jungwon Kim, ORNL

Joel Denny, ORNL

Kei Davis, LANL

Nicholas Moss, LANL

http://ft.ornl.gov vetter@computer.org

http://ft.ornl.gov/research/ares
http://github.com/losalamos/ares

http://ft.ornl.gov/
mailto:vetter@computer.org
http://ft.ornl.gov/research/ares
http://github.com/losalamos/ares

2

Challenges with Current Programming
Toolchains

• Programming toolchains have very complex design,

and are siloed

• Many levels of abstraction, representation,

optimization

• Language/programming model toolchains should

use much of the same infrastructure

– Rapid design

– Interoperability

– Portability

– Emerging architectural features

– Share ecosystem tools

• Example

– OpenACC – heterogeneous computing

– C - serial

– LLVM – serial (parallel WIP)

3

ARES attempts to
generalize IR

• Define an open-source,
extensible, universal High-Level
Intermediate Representation
(HLIR) leveraging the widely
adopted LLVM infrastructure

• Progress

– Multiple frontends on ARES

– New concepts added to IR

– Concrete representation as C++
class library

• Strong interest from NVIDIA,
Intel, AMD, Cray, IBM, etc.

• ARES is not trying to build a
complete toolchain, but rather
leverage other software

ARES Focus

OpenARC w/
OpenACC, OpenMP

LLVM

5

Why HLIR `superset’ of LLVM IR?

• LLVM too low-level to reason about concepts as
concurrency, communication, and synchronization

– Nested loops

– Multidimensional arrays

– Polly archetypical example—can’t even easily reason about high-
level serial loop structure because it’s lost

• But by using LLVM as a basis we can leverage the entire
LLVM infrastructure downstream

5

6

OpenARC: Open Accelerator Research Compiler

• Problem
– Directive-based accelerator programming models provide abstraction over architectural details

and low-level programming complexities. However, too much abstraction puts significant burdens
on performance tuning, debugging, and scaling.

• Solution
– OpenARC is an open-sourced, very High-level Intermediate Representation (HIR)-based,

extensible compiler framework, where various performance optimizations, traceability
mechanisms, fault tolerance techniques, etc., can be built for better
debuggability/performance/resilience on the complex accelerator computing.

6

Seyong Lee and Jeffrey S. Vetter, Early Evaluation of Directive-Based GPU Programming

Models for Productive Exascale Computing, ACM/IEEE International Conference for High

Performance Computing, Networking, Storage, and Analysis(SC), 2012.

http://ft.ornl.gov/research/openarc

http://ft.ornl.gov/research/openarc

7

Recent Highlights

• HLIR toolkit

– Defined C++ HLIR which interfaces with LLVM and has a textual output
representation.

– HLIR supports three main types of parallel constructs: tasks, parallel
for/reduce, and communication

– A LLVM-based front-end can readily create each of these constructs in
very few lines of code – then the HLIR module pass takes care of the
lowering these to ordinary IR + calls to our runtime

– Transition to a Flang+Clang-based front-end for testing HLIR

• ARES Examples

– NVL-C: New programming interface (extended C) for NVM main memory

– IMPACC: A framework for adaptive integration of message passing and
accelerator programming models

– Program verification and optimization via HLIR-based, directive-agnostic

– FITL: Directive-based fault-injection toolkit for LLVM

Example:
Programming NVM Main
Memory

11

NVRAM Technology Continues to Improve
– Driven by Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES

/201212/EEOL_2012DEC28_STOR_MFG_NT_01.j

pg

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

13

Opportunities for NVM in Emerging Systems

• Burst Buffers

• In-mem
tables

• In situ visualization

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-

Performance Computing,” Computing in Science & Engineering, 17(2):73-82, 2015,

10.1109/MCSE.2015.4.

http://ft.ornl.gov/eavl

[Liu, et al., MSST 2012]

http://ft.ornl.gov/eavl

14

• Problem
– DRAM is fast and byte-addressable but

power-hungry, expensive, and volatile.

– HDD is cheap and persistent but slow.

– HPC trends: DRAM-flop ratio shrinking, no

node-local HDD.

– Flash and future NVM tech will fill gaps but

require new programming systems.

• Solution
– NVL-C is a novel NVM programming system

that extends C.

– Currently uses Intel's pmemobj library for

allocations and transactions.

– Critical compiler components are implemented

as reusable LLVM extensions.

– Future work:

– NVL-Fortran, NVL-C++, etc.

– Target other persistent memory libraries.

– Contribute components to LLVM project.

Target Executable

NVL-C: Programming Features for NVM

1
Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. NVL-C: Static Analysis and Transformations for Efficient and Correct Programming of

Persistent Memory Hierarchies. ACM HPDC, 2016. http://ft.ornl.gov/research/openarc

Target Objects

...

ARES HLIR

LLVM IR +
Metadata, Intrinsics,

Run-time calls

OpenARC Other Compiler

Front Ends

ARES LLVM

Passes

LLVM

NVL-C
Other NVL

Languages

libnvlrt-pmemobj

libpmemobj

NVL Runtime

system

linker

http://ft.ornl.gov/research/openarc

15

NVL-C: Programming Features for NVM

1

• Impact
– Minimal, familiar, programming interface:

– Minimal C language extensions.

– App can still use DRAM.

– Pointer safety:

– Persistence creates new categories of

pointer bugs.

– Best to enforce pointer safety constraints

at compile time rather than run time.

– Transactions:

– Prevent corruption of persistent memory

in case of application or system failure.

– Language extensions enable:

– Compile-time safety constraints.

– NVM-related compiler analyses and

optimizations.

– Automatic reference counting

– LLVM-based:

– Core of compiler can be reused for other

front ends and languages.

– Can take advantage of LLVM ecosystem.

Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. NVL-C: Static Analysis and Transformations for Efficient and Correct Programming of Persistent

Memory Hierarchies. ACM HPDC, 2016. http://ft.ornl.gov/research/openarc

#include <nvl.h>

struct list {

int value;

nvl struct list *next;

};

void remove(int k) {

nvl_heap_t *heap

= nvl_open("foo.nvl");

nvl struct list *a

= nvl_get_root(heap, struct list);

#pragma nvl atomic

while (a->next != NULL) {

if (a->next->value == k)

a->next = a->next->next;

else

a = a->next;

}

nvl_close(heap);

}

http://ft.ornl.gov/research/openarc

16

• Applications extended with NVL-C

• Compiled with NVL-C

• Executed on Fusion ioScale

• Compared to DRAM

• Various levels of optimization

Preliminary Results

LULESH XSBENCH

Example:
Optimizing and Debugging
OpenACC Code

21

2

Seyong Lee, Dong Li, and Jeffrey S. Vetter, Interactive Program Debugging and Optimization

for Directive-Based GPU Computing, the IEEE International Parallel & Distributed Processing

Symposium (IPDPS), 2014

• HLIR-based Interactive Debugging and Optimizations

• Results

– Evaluation using twelve OpenACC

applications could detect all active

errors affecting program outputs and

optimize memory transfers comparable

to a fully manual memory management

scheme.

HLIR-based, Directive-agnostic Program
Verification and Optimization (cont.)

Kernel Verification Communication Verification and Optimization

1

10

100

1000

10000

100000

N
o

rm
a

li
z
e

d
 V

a
lu

e
s Normalized total execution time

The execution time and transferred data size with OpenACC default memory management

scheme normalized to those for fully optimized OpenACC version

Example:
IMPACC: A Framework for
Adaptive Integration of MPI
and OpenACC

24

IMPACC: A Framework for Adaptive
Integration of MPI and OpenACC
• Problem

– Hybrid MPI+OpenACC
programming model for
heterogeneous clusters causes
some inefficiencies and
complexities, such as redundant
data movement and excessive
synchronization.

• Approach

– The code written with MPI +
OpenACC/OpenMP 4.0 +
IMPACC directives is translated
into ARES HLIR.

– IMPACC compiler translates
ARES HLIR into the target
accelerator IR + metadata,
intrinsic and run-time calls and
finally generates the executable
binary for the target accelerator-
based systems such as CPU,
GPU, Xeon Phi, (FPGA,) and
heterogeneous clusters.

5

MPI
OpenACC

OpenMP 4.0
IMPACC

Directives

ARES HLIR

Target accelerator IR +
Metadata, Intrinsics,

Run-time calls

CPU
clusters

GPU
clusters

FPGA
clusters

Heterogeneous
clusters

25

Task%

VA%

CPU%

ACC%

GDDR%

Task%

VA%

CPU%

ACC%

GDDR%

HtoD% Task%

VA%

CPU%

ACC%

GDDR%

Task%

CPU%

ACC%

GDDR%

HtoD%

IMPACC%MPI+OpenACC%

(a) Host-to-device communication

Task%

VA%

CPU%

ACC%

GDDR%

Task%

VA%

CPU%

ACC%

GDDR%

DtoH% Task%

VA%

CPU%

ACC%

GDDR%

Task%

CPU%

ACC%

GDDR%

DtoH%

IMPACC%MPI+OpenACC%

(b) Device-to-host communication

Task%

VA%

CPU%

ACC%

GDDR%

Task%

VA%

CPU%

ACC%

GDDR%

DtoD%

IMPACC%MPI+OpenACC%

Task%

VA%

CPU%

ACC%

GDDR%

Task%

CPU%

ACC%

GDDR%

DtoD%

(c) Device-to-device communication

Time

(a) MPI+OpenACC Synchronous

(b) MPI+OpenACC Asynchronous

ACC kernel copyout

HOST 2

MPI send recv

copyin kernel

4 6 8

ACC kernel copyout

HOST 2

MPI send recv

4 5 6

copyin kernel

waiting w w waiting

(c) IMPACC Unified Activity Queue

ACC kernel copyout

HOST 2

MPI send recv

6 9 10

copyin kernel

5 waiting w7

• Adaptive Optimization
- The programmers can use

IMPACC by just adding an
IMPACC’s new openacc
directive (#pragma acc
mpi)to the original
MPI+OpenACC code

IMPACC: A Framework for Adaptive
Integration of MPI and OpenACC

#pragma acc mpi sendbuf(device) async

MPI_Isend(buf, count, MPI_BYTE, dst,

tag, comm, &req0)

#pragma acc mpi recvbuf(device) async

MPI_Irecv(buf, count, MPI_BYTE, src,

tag, comm, &req1)

Integrating non-blocking MPI communication and
OpenACC asynchronous queue lower CPU

utilization, less synchronizations, more scalable.

Integrating MPI communication and OpenACC
memory copy eliminates duplicated memory copy,
more efficient, less overall communication overhead.

26

IMPACC: A Framework for Adaptive
Integration of MPI and OpenACC
• Recent Results

– IMPACC prototype integrates MPI and OpenACC
memory semantics to provide 66%, 50%, 35%,
and 11% performance improvement than
standard MPI+OpenACC in DGEMM using 1024,
2048, 4096, and 8192 NVIDIA GPUs in ORNL
TITAN, respectively.

– IMPACC shows 46% performance improvement
than standard MPI+OpenACC in Jacobi using 64
Intel Xeon Phis in UTK Beacon cluster.

– IMPACC achieves the performance portability of
LULESH across various hardware accelerators
such as NVIDIA GPUs and Intel Xeon Phis.

– In ORNL Titan, LULESH with 8000 NVIDIA GPUs
in IMPACC shows 64 times higher performance
than that with 125 NVIDIA GPUs.

0

1

2

3

4

1 2 4 8
S

p
e

e
d
u

p

(a) 1K x 1K in PSG

IMPACC MPI+OpenACC

0

2

4

6

1 2 4 8

(b) 2K x 2K in PSG

0

2

4

6

8

1 2 4 8

(c) 4K x 4K in PSG

0

2

4

6

8

1 2 4 8

(d) 8K x 8K in PSG

0
8

16
24
32
40
48
56

1 2 4 8 16 32 64 128

S
p
e

e
d

u
p

Number of tasks (devices)

(e) 8K x 8K in Beacon

0

1

2

3

4

5

128 256 512 1024 2048 4096 8192

Number of tasks (devices)

(f) 24K x 24K in Titan

Speedup of DGEMM, normalized to MPI+OpenACC 1-task in PSG and

Beacon, 128-tasks in Titan

• Impact
– IMPACC shows higher performance

and better scalability than current

MPI+OpenACC model.

– IMPACC enhances the MPI

communication in heterogeneous

accelerator programming systems

while minimizing code changes.

27

• Tech transfer
– OpenARC and related tools are

open-source

– Formalizing and publishing (via
open-source) the ARES HLIR
definition

• Currently exists as C++ class
definitions

– Providing the tools for manipulating
ARES HLIR and lowering to LLVM
IR/meta-data/intrinsics and runtime
system calls

– Providing examples of source
language to ARES HLIR front-
ends, HLIR to LLVM/runtime
middle-stages

– Working to enable LLVM with
compiler community

– Because of the tight coupling with
LLVM, a front-end implementation
may adopt the ARES HLIR
incrementally.

• Futures

– Develop interfaces to HLIR

– Complete C/Flang front ends

– Motivate higher level parallel
abstractions in LLVM IR

– Resource directives for
managing resources at
runtime

– Additional architectural
features

Summary

27

28

Acknowledgements

• Contributors and Sponsors

– Future Technologies Group: http://ft.ornl.gov

– US Department of Energy Office of Science

• DOE Vancouver Project:
https://ft.ornl.gov/trac/vancouver

• DOE Blackcomb Project:
https://ft.ornl.gov/trac/blackcomb

• DOE ExMatEx Codesign Center:
http://codesign.lanl.gov

• DOE Cesar Codesign Center:
http://cesar.mcs.anl.gov/

• DOE Exascale Efforts:
http://science.energy.gov/ascr/research/compute
r-science/

– Scalable Heterogeneous Computing
Benchmark team: http://bit.ly/shocmarx

– US National Science Foundation Keeneland
Project: http://keeneland.gatech.edu

– US DARPA

– NVIDIA CUDA Center of Excellence

http://ft.ornl.gov/
https://ft.ornl.gov/trac/vancouver
https://ft.ornl.gov/trac/blackcomb
http://codesign.lanl.gov/
http://cesar.mcs.anl.gov/
http://science.energy.gov/ascr/research/computer-science/
http://bit.ly/shocmarx
http://keeneland.gatech.edu/

