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Challenges with Current Programming

Toolchains

* Programming toolchains have very complex design,
and are siloed

* Many levels of abstraction, representation,
optimization
« Language/programming model toolchains should
use much of the same infrastructure
— Rapid design
— Interoperability
— Portability
— Emerging architectural features
— Share ecosystem tools
+ Example
— OpenACC — heterogeneous computing
— C - serial
— LLVM — serial (parallel WIP)
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ARES attempts to

generalize IR OpenARC w/ g

Language Dependent Front-End Stages

OpenACC, OpenMP

- Define an open-source,
extensible, universal High-Level
Intermediate Representation
(HLIR) leveraging the widely
adopted LLVM infrastructure

* Progress
— Multiple frontends on ARES
— New concepts added to IR
— Concrete representation as C++
class library

 Strong interest from NVIDIA,
Intel, AMD, Cray, IBM, etc.

* ARES is not trying to build a
complete toolchain, but rather
leverage other software
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Why HLIR "superset’ of LLVM IR?

* LLVM too low-level to reason about concepts as
concurrency, communication, and synchronization

— Nested loops

— Multidimensional arrays

— Polly archetypical example—can'’t even easily reason about high-
level serial loop structure because it's lost

» But by using LLVM as a basis we can leverage the entire
LLVM infrastructure downstream

¥ OAK RIDGE
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http://ft.ornl.gov/research/openarc

OpenARC: Open Accelerator Research Compiler

*  Problem

— Directive-based accelerator programming models provide abstraction over architectural details
and low-level programming complexities. However, too much abstraction puts significant burdens
on performance tuning, debugging, and scaling.

e Solution

— OpenARC is an open-sourced, very High-level Intermediate Representation (HIR)-based,
extensible compiler framework, where various performance optimizations, traceability
mechanisms, fault tolerance techniques, etc., can be built for better
debuggability/performance/resilience on the complex accelerator computing.
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Seyong Lee and Jeffrey S. Vetter, Early Evaluation of Directive-Based GPU Programming %()AK RIDGE
Models for Productive Exascale Computing, ACM/IEEE International Conference for High National Laboratory
Performance Computing, Networking, Storage, and Analysis(SC), 2012. QA
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Recent Highlights

 HLIR toolkit

— Defined C++ HLIR which interfaces with LLVM and has a textual output
representation.

— HLIR supports three main types of parallel constructs: tasks, parallel
for/reduce, and communication

— A LLVM-based front-end can readily create each of these constructs in
very few lines of code — then the HLIR module pass takes care of the
lowering these to ordinary IR + calls to our runtime

— Transition to a Flang+Clang-based front-end for testing HLIR

 ARES Examples
— NVL-C: New programming interface (extended C) for NVM main memory

— IMPACC: A framework for adaptive integration of message passing and
accelerator programming models

— Program verification and optimization via HLIR-based, directive-agnostic

— FITL: Directive-based fault-injection toolkit for LLVM
¥ OAK RIDGE

. National Laboratory



Example:
Programming NVM Main
Memory
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NVRAM Technology Continues to Improve
— Driven by Market Forces

MEMORY
- News & Analysis
3D NAND Transition: 15nm Process
News & Analysis Technology Takes Shape Original URL: hitp:/wtheregister.co.uki2013/11/0/hp_memistor 2018/
3D NAND Production Starts at Gary Hilson . HP 100TB Memristor drives by 2018 — if you're lucky, admits tech titan
LOGIN TO RATE
Samsung Universal memory slow in coming
*=Flash DRAM By Chris Mellor

Peter Clarke 845 - s o .
81312013 08:05 AW EDT 412 84 1
16 comments | o  after the tech titan's CTO

— $40 1 istor drives come 2018.

Ty 17| W Tweet /7
'—| v 4 §35 finer Toshib juL2s 2015@246PM 7,301 VIEWS iting the maximum capacity
¢=‘ | s to produce e memories' reliability drops

Intel And Micron Jointly Announce *

technology that is supposed
on 20t (Game-Changing 3D XPoint Memory Ji ey =

fures with by the end of the decade.

LONDON — Samsung El 8 $30
production of a 128 Ghit g °
mulfiple layers, and claim & §25

llions

The memory is based on = $20 1
conventional floating gati @

In the vertical arrangeme $15 |
reliability between a factc
conventional floating-gat
in a press release.

510

The technology is capabw s
did not disclose how many layers it had used in its 128 Gbit
vertical NAND, nor whether the memory cells are multilevel cell or
whether it had relaxed the design geometry from the leacing edge
in 2D memory, which stands at about 19 or 16 nm.

<o plans $23B bid for Micron

memory business unit Toshiba's 15nm process works i _|_ h |
conjunction with improved peripheral circuitry technolog

chips that achieve the same write speed as chips forme ec no Ogy
second generation 19nm process technology, but boos cNBC.com staff | @CNBC
fransfer rate to 333 megabits a second - 1.3 times fas! Monday, 13 Jul 2015 | &:41 PMET
employing a high-speed interface. JhCNBC

Nelson said there is room to advance floating gates before moving

The company did say that the memory would provide
improvements in performance and area rafio, and a V-NAND chip
is suitable for a wide range of consumer and commercial
applications including embedded NAND storage and solid-state
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Opportunities for NVM in Emerging Systems
 Burst Buffers * In situ visualization

[Liu, et al., MSST 2012]

http://ft.ornl.gov/eavl
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Figure 3: Read/write ratios, memory reference rates and memory object sizes for memory objects in Nek5000

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High- %OAK RIDGE
Performance Computing,” Computing in Science & Engineering, 17(2):73-82, 2015, National Laboratory
10.1109/MCSE.2015.4.
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NVL-C: Programming Features for NVM

* Problem

— DRAM is fast and byte-addressable but
power-hungry, expensive, and volatile.

— HDD is cheap and persistent but slow.

— HPC trends: DRAM-flop ratio shrinking, "o OpenARC T " Other Compiler
node-local HDD. Front Ends

— Flash and future NVM tech will fill gaps but ARES HLIR
require new programming systems.

Other NVL

Languages

ARES LLVM

« Solution Passes
— NVL-C is a novel NVM programming system LLVM IR + .
that extends C. Metadata, Intrinsics, NVL Runtime

1 . g R _t' ”
— Currently uses Intel's pmemobj library for HRANE el

allocations and transactions.

— Critical compiler components are implemented
as reusable LLVM extensions.

— Future work:
— NVL-Fortran, NVL-C++, etc.
— Target other persistent memory libraries.
— Contribute components to LLVM project.

libnvirt-pmemobj

libpmemobj
Target Objects

system
linker

Target Executable

OAK RIDGE

Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. NVL-C: Static Analysis and Transformations for Efficient and Correct Programming of %National Laboratory
Persistent Memory Hierarchies. ACM HPDC, 2016. http:/ft.ornl.gov/research/openarc

1


http://ft.ornl.gov/research/openarc

NVL-C: Programming Features for NVM

 Impact
— Minimal, familiar, programming interface: #include <nvl.h>
— Minimal C language extensions. struct list {
. int value;
— App can still use DRAM. \ Lo
) PP nvl struct list *next;
— Pointer safety: )
— Persistence creates new categories of  void remove (int k) {
pointer bugs. nvl heap t *heap
— Best to enforce pointer safety constraints = nvl_open("foo.nvl");
at compile time rather than run time. nvl struct list *a
_  Transactions: = nvl get root (heap, struct list);
. . #pragma nvl atomic
— Prevent corruption of persistent memor .
| btion ot p SMOTY  while (a->next != NULL) {
in case of application or system failure. .
) if (a->next->value == k)
— Language extensions enable: SeSTmETE = E—STEstE S e .
— Compile-time safety constraints. else
— NVMe-related compiler analyses and a = a->next;
optimizations. }
— Automatic reference counting nvl_close (heap);
— LLVM-based: }
— Core of compiler can be reused for other
front ends and languages. Dointer Class Permitted
NV-to-V no
— Can take advantage of LLVM ecosystem. V-to-NV yes
intra-heap NV-to-NV yes
inter-heap NV-to-NV no
¥ OAK RIDGE
Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. NVL-C: Static Analysis and Transformations for Efficient and Correct Programming of Persistent ‘. National Laboratory

Memory Hierarchies. ACM HPDC, 2016. http://ft.ornl.gov/research/openarc
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Preliminary Results

Table 3: Symbols Used in the Result Figures

Symbol

Description

ExtMem or ExM

No Durability or ND

DRAM

Use persistent storage as if extended

Skip runtime operations for durability

+ Applications extended with NVL-C Base or B e a e
. . Safety or S Automatic pointer-saf,ety ch’ecking
¢ Compiled with NVL-C oo BIS IR Buforee only duability of cach
NVM write
H H TX1 B+S+R Enf ACID i f
- Executed on Fusion ioScale e
TX2 TX1 + aggregated transaction using
back !
® CO m p a.r ed tO D RA M TX3 Ta)l(c2 —}—Jgkipa;ii:' unnecessary backup using
clobber clauses
. . . . TX4 TX3 at the granularity of each loop
« Various levels of optimization CLFlush Flush cache line to memory
MSyne Synchronize memory map with persistent
storage
59626
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— 10000 002 bt 11
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E ln - E
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E
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&
ND [Block-addressible NVM| Byte-addressible NVM

w

ND |Block-addressible NVM| Byte-addressible N'VM
MNVM pointer hoisting
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Example:
Optimizing and Debugging
OpenACC Code
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HLIR-based, Directive-agnostic Program
Verification and Optimization (cont.)

 HLIR-based Interactive Debugging and Optimizations

Source Memory transfer | Destination
Serial code
2) Copy all data
O coessed by Incorrect transfers Stale data — Stale data
the GPU kernel
3) Kernel is
4) Execute executed
Compute region asynchronously Missing transfers * stale data
s - 5) Copy all data
) Compare dified by th Notstal Notstale/
ouputwit GPU | [T Redundant transfers —
the buffers
Kernel Verification Communication Verification and Optimization
 Results 12%0000 = Normalized total execution time
: : $0000
— Evaluation using twelve OpenACC g
. . 1000 -
applications could detect all active 5
errors affecting program outputs and 5 A%
optimize memory transfers comparable £ '°°
to a fully manual memory management 2 '

RPNV OR KDY O QYL
scheme. & SIS RS S ®>%Qy
The execution tin@,&and transferred data s@e With¥ ACC defau%emory management

scheme norma®d to those for fully optiiized OpenACC version

Seyong Lee, Dong Li, and Jeffrey S. Vetter, Interactive Program Debugging and Optimization %OAK RIDGE
for Directive-Based GPU Computing, the IEEE International Parallel & Distributed Processing National Laboratory
Symposium (IPDPS), 2014 9



Example:

IMPACC: A Framework for
Adaptive Integration of MPI
and OpenACC
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IMPACC: A Framework for Adaptive
Integration of MPIl and OpenACC

*  Problem

— Hybrid MP1+OpenACC
programming model for
heterogeneous clusters causes
some inefficiencies and

complexities, such as redundant IMPACC OpenACC
data movement and excessive \ ke OpenMP 4.0
synchronization. |

« Approach

— The code written with MPI +
OpenACC/OpenMP 4.0 +
IMPACC directives is translated Tafggfagg;?'ggggggj o
into ARES HLIR. Run-time calls

— IMPACC compiler translates

ARES HLIR into the target -I U ! U 'I A He eroeneous
accelerator IR + metadata, clusters
intrinsic and run-time calls and

finally generates the executable

binary for the target accelerator-

based systems such as CPU,

GPU, Xeon Phi, (FPGA,) and

heterogeneous clusters.

%OAK RIDGE

National Laboratory



IMPACC: A Framework for Adaptive
Integration of MPl and OpenACC

« Adaptive Optimization

- The programmers can use rime >

(a) MPI+0OpenACC Synchronous

IMPACC by just adding an
IMPACC’s new openacc
directive (#pragma acc
mpi) to the original
MPI+OpenACC code

waiting

kernel

#pragma acc mpi sendbuf (device) async Q
MPI Isend(buf, count, MPI BYTE, dst, kernel Y copyout ™ Emrw—

ta comm, &reqgO
g, ’ q0) () IMPACC Unified Activity Queue

0 . d
#pragma acc mpi recvbuf (device) async P /@_@\
MPI Irecv(buf, count, MPI BYTE, src, 2100098
tag ¢ CcoImm, & reql ) ACC kernel copyout
Integrating MPI communication and OpenACC Integrating non-blocking MPI communication and
memory copy - eliminates duplicated memory copy, OpenACC asynchronous queue - lower CPU
more efficient, less overall communication overhead. utilization, less synchronizations, more scalable.
MPI+OpenACC% IMPACC% MPI+OpenACC% IMPACC% MPI+OpenACC% IMPACC%
22 ) B

[ vay] r | va% VA% | | VA% VA% | | vax] | vau| | VA% |
[ cPus | cPuy | cpuy] | cruy | cpuy | cpuy | cpuy | cPuy | crud | cruy
[accd | accd | accy] | accd | Accy | accy] | accy] | accd | accy]

|GDDRY%: | GDDRYs |GDDRY | GDDRYs |GDDR$ | GDDR$ |GDDRY% | GDDRY:

(a) Host-to-device communication (b) Device-to-host communication (c) Device-to-device communication




IMPACC: A Framework for Adaptive
Integration of MPl and OnenArCC

Recent Results

IMPACC prototype integrates MPI and OpenACC
memory semantics to provide 66%, 50%, 35%,
and 11% performance improvement than
standard MPI+OpenACC in DGEMM using 1024,
2048, 4096, and 8192 NVIDIA GPUs in ORNL
TITAN, respectively.

IMPACC shows 46% performance improvement
than standard MPI+OpenACC in Jacobi using 64
Intel Xeon Phis in UTK Beacon cluster.

IMPACC achieves the performance portability of
LULESH across various hardware accelerators
such as NVIDIA GPUs and Intel Xeon Phis.

In ORNL Titan, LULESH with 8000 NVIDIA GPUs
in IMPACC shows 64 times higher performance
than that with 125 NVIDIA GPUs.

Impact

IMPACC shows higher performance
and better scalability than current
MPI1+OpenACC model.

IMPACC enhances the MPI
communication in heterogeneous

accelerator programming systems
while minimizing code changes.

—©— IMPACC —%— MPI+OpenACC
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Figure 15: Performance Scaling of LULESH, normalized to
MPI+OpenACC 1-task in PSG and Beacon, 125-tasks in Titan.
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Summary

 Tech transfer

OpenARC and related tools are
open-source

Formalizing and publishing?_ via

open-source) the ARES HLI

definition

« Currently exists as C++ class
definitions

Providing the tools for manipulating
ARES HLIR and lowering to LLVM
IR/meta-data/intrinsics and runtime
system calls

Providing examples of source
language to ARES HLIR front-
ends, HLIR to LLVM/runtime
middie-stages

Working to enable LLVM with
compiler community

Because of the tlght coupling with
LLVM, a front-end implementation
may adopt the ARES HLIR
incrementally.

 Futures

Develop interfaces to HLIR
Complete C/Flang front ends

Motivate higher level parallel
abstractions in LLVM IR

Resource directives for
managing resources at
runtime

Additional architectural
features

;g,OAK RIDGE
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