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Challenges with Current Programming 
Toolchains

• Programming toolchains have very complex design, 

and are siloed

• Many levels of abstraction, representation, 

optimization

• Language/programming model toolchains should 

use much of the same infrastructure

– Rapid design

– Interoperability

– Portability

– Emerging architectural features

– Share ecosystem tools

• Example

– OpenACC – heterogeneous computing

– C - serial

– LLVM – serial (parallel WIP)
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ARES attempts to 
generalize IR

• Define an open-source, 
extensible, universal High-Level 
Intermediate Representation 
(HLIR) leveraging the widely 
adopted LLVM infrastructure

• Progress

– Multiple frontends on ARES

– New concepts added to IR

– Concrete representation as C++ 
class library

• Strong interest from NVIDIA, 
Intel, AMD, Cray, IBM, etc.

• ARES is not trying to build a 
complete toolchain, but rather 
leverage other software

ARES Focus

OpenARC w/ 
OpenACC, OpenMP

LLVM
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Why HLIR `superset’ of LLVM IR?

• LLVM too low-level to reason about concepts as 
concurrency, communication, and synchronization

– Nested loops

– Multidimensional arrays

– Polly archetypical example—can’t even easily reason about high-
level serial loop structure because it’s lost

• But by using LLVM as a basis we can leverage the entire 
LLVM infrastructure downstream

5
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OpenARC: Open Accelerator Research Compiler

• Problem
– Directive-based accelerator programming models provide abstraction over architectural details 

and low-level programming complexities. However, too much abstraction puts significant burdens 
on performance tuning, debugging, and scaling.

• Solution
– OpenARC is an open-sourced, very High-level Intermediate Representation (HIR)-based, 

extensible compiler framework, where various performance optimizations, traceability 
mechanisms, fault tolerance techniques, etc., can be built for better 
debuggability/performance/resilience on the complex accelerator computing.

6

Seyong Lee and Jeffrey S. Vetter, Early Evaluation of Directive-Based GPU Programming 

Models for Productive Exascale Computing, ACM/IEEE International Conference for High 

Performance Computing, Networking, Storage, and Analysis(SC), 2012.

http://ft.ornl.gov/research/openarc

http://ft.ornl.gov/research/openarc
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Recent Highlights

• HLIR toolkit

– Defined C++ HLIR which interfaces with LLVM and has a textual output 
representation.

– HLIR supports three main types of parallel constructs: tasks, parallel 
for/reduce, and communication

– A LLVM-based front-end can readily create each of these constructs in 
very few lines of code – then the HLIR module pass takes care of the 
lowering these to ordinary IR + calls to our runtime

– Transition to a Flang+Clang-based front-end for testing HLIR

• ARES Examples

– NVL-C: New programming interface (extended C) for NVM main memory

– IMPACC: A framework for adaptive integration of message passing and 
accelerator programming models

– Program verification and optimization via HLIR-based, directive-agnostic 

– FITL: Directive-based fault-injection toolkit for LLVM



Example:
Programming NVM Main 
Memory
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NVRAM Technology Continues to Improve 
– Driven by Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES

/201212/EEOL_2012DEC28_STOR_MFG_NT_01.j

pg

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg
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Opportunities for NVM in Emerging Systems

• Burst Buffers

• In-mem
tables

• In situ visualization

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-

Performance Computing,” Computing in Science & Engineering, 17(2):73-82, 2015, 

10.1109/MCSE.2015.4.

http://ft.ornl.gov/eavl

[Liu, et al., MSST 2012]

http://ft.ornl.gov/eavl
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• Problem
– DRAM is fast and byte-addressable but 

power-hungry, expensive, and volatile.

– HDD is cheap and persistent but slow.

– HPC trends: DRAM-flop ratio shrinking, no 

node-local HDD.

– Flash and future NVM tech will fill gaps but 

require new programming systems.

• Solution
– NVL-C is a novel NVM programming system 

that extends C. 

– Currently uses Intel's pmemobj library for 

allocations and transactions.

– Critical compiler components are implemented 

as reusable LLVM extensions.

– Future work:

– NVL-Fortran, NVL-C++, etc.

– Target other persistent memory libraries.

– Contribute components to LLVM project.

Target Executable

NVL-C: Programming Features for NVM

1
Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. NVL-C: Static Analysis and Transformations for Efficient and Correct Programming of 

Persistent Memory Hierarchies. ACM HPDC, 2016.  http://ft.ornl.gov/research/openarc

Target Objects

...

ARES HLIR

LLVM IR +
Metadata, Intrinsics,

Run-time calls

OpenARC Other Compiler

Front Ends

ARES LLVM 

Passes

LLVM

NVL-C
Other NVL 

Languages

libnvlrt-pmemobj

libpmemobj

NVL Runtime

system 

linker

http://ft.ornl.gov/research/openarc
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NVL-C: Programming Features for NVM

1

• Impact
– Minimal, familiar, programming interface:

– Minimal C language extensions.

– App can still use DRAM.

– Pointer safety:

– Persistence creates new categories of 

pointer bugs.

– Best to enforce pointer safety constraints 

at compile time rather than run time.

– Transactions:

– Prevent corruption of persistent memory 

in case of application or system failure.

– Language extensions enable:

– Compile-time safety constraints.

– NVM-related compiler analyses and 

optimizations.

– Automatic reference counting

– LLVM-based:

– Core of compiler can be reused for other 

front ends and languages.

– Can take advantage of LLVM ecosystem.

Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. NVL-C: Static Analysis and Transformations for Efficient and Correct Programming of Persistent 

Memory Hierarchies. ACM HPDC, 2016.  http://ft.ornl.gov/research/openarc

#include <nvl.h>

struct list {

int value;

nvl struct list *next;

};

void remove(int k) {

nvl_heap_t *heap

= nvl_open("foo.nvl");

nvl struct list *a

= nvl_get_root(heap, struct list);

#pragma nvl atomic

while (a->next != NULL) {

if (a->next->value == k)

a->next = a->next->next;

else

a = a->next;

}

nvl_close(heap);

}

http://ft.ornl.gov/research/openarc
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• Applications extended with NVL-C

• Compiled with NVL-C

• Executed on Fusion ioScale

• Compared to DRAM

• Various levels of optimization

Preliminary Results

LULESH XSBENCH



Example:
Optimizing and Debugging 
OpenACC Code
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2

Seyong Lee, Dong Li, and Jeffrey S. Vetter, Interactive Program Debugging and Optimization 

for Directive-Based GPU Computing, the IEEE International Parallel & Distributed Processing 

Symposium (IPDPS), 2014

• HLIR-based Interactive Debugging and Optimizations

• Results

– Evaluation using twelve OpenACC

applications could detect all active 

errors affecting program outputs and 

optimize memory transfers comparable 

to a fully manual memory management 

scheme.

HLIR-based, Directive-agnostic Program 
Verification and Optimization (cont.)

Kernel Verification Communication Verification and Optimization

1
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Example:
IMPACC: A Framework for 
Adaptive Integration of MPI 
and OpenACC
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IMPACC: A Framework for Adaptive 
Integration of MPI and OpenACC
• Problem

– Hybrid MPI+OpenACC
programming model for 
heterogeneous clusters causes 
some inefficiencies and 
complexities, such as redundant 
data movement and excessive 
synchronization.

• Approach

– The code written with MPI + 
OpenACC/OpenMP 4.0 + 
IMPACC directives is translated 
into ARES HLIR.

– IMPACC compiler translates 
ARES HLIR into the target 
accelerator IR + metadata, 
intrinsic and run-time calls and 
finally generates the executable 
binary for the target accelerator-
based systems such as CPU, 
GPU, Xeon Phi, (FPGA,) and 
heterogeneous clusters.

5

MPI
OpenACC

OpenMP 4.0
IMPACC

Directives

ARES HLIR

Target accelerator IR + 
Metadata, Intrinsics,

Run-time calls

CPU
clusters

GPU
clusters

FPGA 
clusters

Heterogeneous
clusters
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• Adaptive Optimization
- The programmers can use 

IMPACC by just adding an 
IMPACC’s new openacc
directive (#pragma acc
mpi)to the original 
MPI+OpenACC code

IMPACC: A Framework for Adaptive 
Integration of MPI and OpenACC

#pragma acc mpi sendbuf(device) async

MPI_Isend(buf, count, MPI_BYTE, dst, 

tag, comm, &req0)

#pragma acc mpi recvbuf(device) async

MPI_Irecv(buf, count, MPI_BYTE, src, 

tag, comm, &req1)

Integrating non-blocking MPI communication and 
OpenACC asynchronous queue  lower CPU 

utilization, less synchronizations, more scalable.

Integrating MPI communication and OpenACC 
memory copy  eliminates duplicated memory copy, 
more efficient, less overall communication overhead.
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IMPACC: A Framework for Adaptive 
Integration of MPI and OpenACC
• Recent Results

– IMPACC prototype integrates MPI and OpenACC
memory semantics to provide 66%, 50%, 35%, 
and 11% performance improvement than 
standard MPI+OpenACC in DGEMM using 1024, 
2048, 4096, and 8192 NVIDIA GPUs in ORNL 
TITAN, respectively.

– IMPACC shows 46% performance improvement 
than standard MPI+OpenACC in Jacobi using 64 
Intel Xeon Phis in UTK Beacon cluster.

– IMPACC achieves the performance portability of 
LULESH across various hardware accelerators 
such as NVIDIA GPUs and Intel Xeon Phis.

– In ORNL Titan, LULESH with 8000 NVIDIA GPUs 
in IMPACC shows 64 times higher performance 
than that with 125 NVIDIA GPUs.
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• Impact
– IMPACC shows higher performance 

and better scalability than current 

MPI+OpenACC model.

– IMPACC enhances the MPI 

communication in heterogeneous 

accelerator programming systems 

while minimizing code changes.



27

• Tech transfer
– OpenARC and related tools are 

open-source

– Formalizing and publishing (via 
open-source) the ARES HLIR 
definition

• Currently exists as C++ class 
definitions

– Providing the tools for manipulating 
ARES HLIR and lowering to LLVM 
IR/meta-data/intrinsics and runtime 
system calls

– Providing examples of source 
language to ARES HLIR front-
ends, HLIR to LLVM/runtime 
middle-stages

– Working to enable LLVM with 
compiler community

– Because of the tight coupling with 
LLVM, a front-end implementation 
may adopt the ARES HLIR 
incrementally. 

• Futures

– Develop interfaces to HLIR

– Complete C/Flang front ends

– Motivate higher level parallel 
abstractions in LLVM IR

– Resource directives for 
managing resources at 
runtime

– Additional architectural 
features

Summary

27
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