


WHAT IS DEEP LEARNING?

"Non-deep" feedforward
Model-based machine learning neural network

Ornginal unclustered data

Clustered data hidden laver

Fit model to training data Output is combination of
Test real data against model linear operations & filters on input



DEEP NEURAL NETWORKS

"Non-deep" feedforward
neural network

hidden layer

input layer

i output layer

——

Output is combination of
linear operations & filters on input

Deep neural network

hidden layer 1 hidden layer 2 hidden layer 3

input layver

Multiple layers each extract different
characteristics from input




FORWARD NEURAL NETWORKS
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Data flow is uni-directional: work graph is acyclic



HOW A DEEP NEURAL NETWORK SEES
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RECURRENT NEURAL NETWORKS

input ... cool because
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Feedback is fundamental to training: work graph is cyclic



TRAINING DEEP NEURAL NETWORKS

hidden layer 1 hidden laver 2 hidden laver 3

input layer
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Back-propagate result to adjust layers,
then repeat forward process
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EXAMPLE DNN TRAINING WORK GRAPH
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Iterate millions of times of very large input data




USING DNNs: INFERENCE

N 3x3 .
convolution

L, 5x5 .
convolution

N 7x7 .
convolution

Inference network is weighted, acyclic version of training network sub-graph.
Network is optimized for size and performance.
Hardware is highly heterogeneous.



INFERENCE BATCHING

Each inference step is small and fast

3x3
convolution

.‘ . — B EN- o~ Aim to process as many inputs as possible to

A\ _’n» MmaXimize resource use

% Issue work rapidly to minimize idle time
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Requires high degrees of concurrency
— Cat

3x3
convolution

Not cat
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convolutlon

7x7
convolution

Fine-grained scheduling decisions are critical

Extremely latency-sensitive



HETEROGENEOUS INFERENCE SYSTEMS

GPS 8021 1o | Multiple co-operating hardware
T T— ¥ types (CPUs, FPGAs, GPUs)
— Tight integration between units

NN Execution control switches
)| between hardware at fine
/"\“’ granularity
wheel encoder
) Input signals arrivinig at widely
On-Board Unit, emaps | \ varying rates

s e e - PJE'*DAR
ulitrasonic sensors . .
L :" Real-time system constraints



RECURRENT NETWORKS

Feedback

between
stages \\\\\\\\‘

Time

. Data-d dent
Complex cycles of execution and data movement teration count

Resource management is critical



DNN REQUESTS FROM HiHAT

Highly asymmetric workloads present very different requirements:

Training
* Large amounts of data require sophisticated communication & memory management
* Large compute loads span multi-node clusters
* Load balancing and resource management important

Inference
= Small, fast kernels are extremely latency-sensitive
= Seeking high degree of concurrency from fine-grained scheduling
= Extremely heterogeneous platforms
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