BERKELEY LAB
Lawrence Berkeley National Laboratory BERKELEY P ARLAB

CORVETTE: Program Correctness,
Verification, and Testing for Exascale

Pl: Koushik Sen, UC Berkeley
co-Pl: James W. Demmel, UC Berkeley
co-PI: Costin lancu, LBNL

Post-doc and students:
Cindy Rubio Gonzalez, Chang-Seo Park, Ahn Cuong Nguyen

Correctness Tools in the DOE Ecosystem

* Endangered species that require Federal protection.

* Overall as a community, we are not very
sophisticated when using testing and correctness
tools.

— How many of you have a “Test Engineer” or a “QA
Engineer” position posted?

— How many of you know of Coverity or SilkTest?
* There are very good reasons for the status quo

— Sociological — we like hero programmers
— Practical — hero programmers can find bugs
 Serial code between two MPI_... calls

* Things are changing

Motivation

2 High performance scientific computing
0 Exascale: O(10%) nodes, O(103) cores per node
2 Requires asynchrony and “relaxed” memory consistency
0 Shared memory with dynamic task parallelism
0 Languages allow remote memory modification

0 Correctness challenges

2 Non-deterministic causes hard to diagnose correctness
and performance bugs
0 Data races, atomicity violations, deadlocks ...

0 Bugs in DSL

0 Scientific applications use floating-points: non-
determinism leads to non-reproducible results

2 Numerical exceptions can cause rare but critical bugs
that are hard for non-experts to detect and fix

Goals

Develop correctness tools for different programming
models: PGAS, MPI, dynamic parallelism

|. Testing and Verification
2 ldentify sources of non-determinism in executions
0 Data races, atomicity violations, non-reproducible floating
point results
0 Explore state-of-the-art techniques that use dynamic analysis
0 Develop precise and scalable tools: < 2X overhead

Il. Debugging
2 Use minimal amount of concurrency to reproduce bug
0 Support two-level debugging of high-level abstractions

0 Detect causes of floating-point anomalies and determine the
minimum precision needed to fix them

Detect bugs

l. Testing and Verification Tools

Scalable Testing of Parallel Programs

* Concurrent Programming is hard
— Bugs happen non-deterministically
— Data races, deadlocks, atomicity violations, etc.

* Goals: build a tool to test and debug concurrent
and parallel programs

— Efficient: reduce overhead from 10x-100x to 2x
— Precise
— Reproducible
— Scalable
* Active random testing

Active Testing

* Phase 1: Static or dynamic analysis to find
potential concurrency bug patterns

— such as data races, deadlocks, atomicity violations
* Phase 2: “Direct” testing (or model checking)

based on the bug patterns obtained from
phase 1

— Confirm bugs

Example Data Race in UPC

* Simple matrix vector multiply and apply F

I
*
o
o
>
X

=

Simple Example in UPC

1: void matvec(shared [N] int A[N][N],
shared int B[N],
shared int C[N]) {
upc_forall(int i =0; i < N; i++; &C[i]) {
int sum = O;
for(intj=0;j < N; j++)
sum += A[i][j] * B[Jj];
sum = foo(sum);
C[i] = sumn,

}

© 0T kAW

'}
assert(C == foo(A*B));

foo is an expensive function

Simple Example in UPC

1: void matvec(shared [N] int A[N][N],
shared int B[N],
shared int C[N]) {
. upe_forall(int i = 0; i < N; i++; &C[i]) { fOO(X) = X
int sum = O;
for(intj=0;j < N; j++) . ~ . ~
sum += A[i][j] * B[jJ; 4)
sum = foo(sum); ? 1 1 1
C[i] = sumn, 3 1 1 1

)
3 ./ _ JLJ

© 0T kAW

assert(C == foo(A*B)); C A B

foo is an expensive function

10

Simple Example in UPC

1: void matvec(shared [N] int A[N][N],
shared int B[N],
shared int C[N]) {
. upe_forall(int i = 0; i < N; i++; &C[i]) { fOO(X) = X
int sum = O;
for(intj=0;j < N; j++) . ~ . ~
sum += A[i][j] * B[jJ; 4)
sum = foo(sum); 2 1 1 1

}C[i] = suIm,;) 1 1 1
;} \. v \ _/ \. v

© 0T kAW

assert(C == foo(A*B)); C A B

foo is an expensive function

11

Simple Example in UPC: Problem?

1: void matvec(shared [N] int A[N][N],
shared int B[N],
shared int C[N]) {

2: upc_forall(inti=0;i<N;i++; &C[i]) {

3: int sum = 0;

4. for(intj=0;j<N;j++)

5: sum += A[1][j] * B[j];

O: sum = foo(sum);

Zi }0[1]=Sum; Do you see any problem
9:) is this code?

assert(C ==foo(A*B));

foo is an expensive function

12

Simple Example in UPC: Data Race

1: void matvec(shared [N] int A[N][N],
shared int B[N],
shared int C[N]) {
: upc_forall(inti=0;i< N;i++; &C[1]) {
int sum = O;
for(intj=0;j < N; j++)
sum += A[i][j] * B[Jj];

: sum = foo(sum);
i }C,WQ“/ Do you see any problem
3 is this code?

Data Race!
assert(C == foo(A*B));

foo is an expensive function

13

Simple Example in UPC: Data Race

foo(x) = x

1: void matvec(shared [N] int A[N][N], 4 A 4 N
shared int B[N], ? 1 1 1
shared int C[N]) {

: upc_forall(inti=0;i< N;i++; &C[1]) { ? 1 1 1

int sum = O; \ / _ A <

for(int j=0;j < N; j++)
sum += A[1][j] * B[j]; B A B

: sum = foo(sum);
i }C,W{n/ Do you see any problem
3 is this code?

Data Race!
assert(C == foo(A*B));

foo is an expensive function

14

Simple Example in UPC: Data Race

foo(x) = x

1: void matvec(shared [N] int A[N][N], 4 A 4 N
shared int B[N], p) 1 1 2
shared int C[N]) {

: upc_forall(inti=0;i< N;i++; &C[1]) { ? 1 1 1

int sum = O; \ / _ A <

for(int j=0;j < N; j++)
sum += A[1][j] * B[j]; B A B

: sum = foo(sum);
i }C,W{n/ Do you see any problem
3 is this code?

Data Race!
assert(C == foo(A*B));

foo is an expensive function

15

Simple Example in UPC: Data Race

foo(x) = x

1: void matvec(shared [N] int A[N][N], 4 A 4 N
shared int B[N], p) 1 1 2
shared int C[N]) {

: upc_forall(inti=0;i< N;i++; &C[1]) { 3 1 1 3

int sum = O; \ / _ A <

for(int j=0;j < N; j++)
sum += A[1][j] * B[j]; B A B

: sum = foo(sum);
i }C,W{n/ Do you see any problem
3 is this code?

Data Race!
assert(C == foo(A*B));

foo is an expensive function

16

Simple Example in UPC: Trace

1: void matvec(shared [N] int A[N][N],
shared int B[N],
shared int C[N]) {
upc_forall(int i =0; i < N; i++; &C[i]) {
int sum = O;
for(intj=0;j < N; j++)
sum += A[i][j] * B[Jj];
sum = foo(sum);
C[i] = sumn,

}

© 0T kAW

'}
assert(C == foo(A*B));

foo is an expensive function

Example Trace:

NN NTQOT OO a www

sum = 0;
sum = 0;
sum = 0;

sum+= A[O][OT*B[O];
sum+= A[1][O]*B[O];
sum+= A[2][OT*B[O];

sum+= A[O][1]1*B[1];
sum+= A[1][1]*B[1].
sum+= A[2][1]*B[1];

sum+= A[O][2T*B[2];
sum+= A[1][2]*B[2]:
sum+= A[2][2]*B[2];

sum = foo(sum);
B[O] = sum;
sum = foo(sum);
B[1] = sum;
sum = foo(sum);
B[2] = sum;

17

Simple Example in UPC: Trace

Example Trace:

3: sum=0;
1: void matvec(shared [N] int A[N][N], g zﬁm] gf
shared int B[N], 5: sum+= A[O][0O]*B[O];
shared int C[N]) { 5: sum+= A[1][0T*B[QL
2: upc_forall(inti=0;i<N;i++; &C[1]) { B5: sum+= A[2][0]*B[JT
3- int sum = 0; 5: sum+= A[O][1T*B[1];
4: for(intj=0;j < N;j++) 5t sum+= A[1][1]*B[1]:
) _ i s . 5: sum+= A[2][1T*B[1];
5 sum += A[1][J] * BUJJ; 5. sum+= A[O][2]*B[2]:
6: sum = fOO(Sum); 5: sum+= A[1][2]*B[2];
7. C[i] = sum; 5: sum+= A[2][2]*B[2];
8: } 6: sum = foo(sum);
: 7: B[O] = sum; Data Race?
9:}
6: sum = foo(sum);
7: B[1] = sum;
assert(C == foo(A*B)); 6: sum = foo(sum);
7: B[2] = sum;

foo is an expensive function

18

Simple Example in UPC: Trace

Goal 1. Nice to have a trace

exhibiting the data race

1: void matvec(shared [N] int A[N][N],
shared int B[N],
shared int C[N]) {
upc_forall(int i =0; i< N; i++; &C[1]) {
int sum = O;
for(int j =0;j < N; j++)
sum += A[i][j] * B[Jj];
sum = foo(sum);
C[i] = sum;

}

© 0T kAW

'}
assert(C == foo(A*B));

foo is an expensive function

Example Trace:

NN AT AN Www

sum = O;

sum = 0;

sum = 0;

sum+= A[O][OT*B[O]

sum+= A[O][1]*B[1];

sum+= A[O][2T*B[2];

sum = foo(sum); l
i A[”[O]*B[O];Data Race!
B[O] = sum;

su 2 B[O

sum+= A[1][1]7*B[1];

sum+= A[2][1]*B[1];

sum+= A[1][2]*B[2];

sum+= A[2][2]*B[2];

sum = foo(sum);

B[1] = sum;

sum = foo(sum);

B[2] = sum;

19

Simple Example in UPC: Trace

Goal 2. Nice to have a trace

exhibiting the assertion failure

1: void matvec(shared [N] int A[N][N],
shared int B[N],
shared int C[N]) {
upc_forall(int i =0; i< N; i++; &C[1]) {
int sum = O;
for(int j =0;j < N; j++)
sum += A[i][j] * B[Jj];
sum = foo(sum);
C[i] = sum;

}

© 0T kAW

'}
assert(C == foo(A*B));

foo is an expensive function

Example Trace:

NN AT AN Www

sum = O;
sum = O;
sum = O;
sum+= A[O][OT*B[O]
sum+= A[O][1]*B[1];
sum+= A[O][2T*B[2];

sum AcFEO(SINY; |
B[Om Data Race!
sum+= A[1][0]*B[O];

sum+= A[2][0OT*B[O];
sum+= A[1][1]7*B[1];
sum+= A[2][1]*B[1];
sum+= A[1][2]*B[2];
sum+= A[2][2]*B[2];
sum = foo(sum);
B[1] = sum;

sum = foo(sum);
B[2] = sum;

20

Simple Example in UPC: Trace

Goal 3. Nice to have a trace

Example Trace:

: sum = 0O;

sum = O;

sum+= A[O][OT*B[O];
sum+= A[O][1]*B[1];
su 00);

with fewer threads

1: void matvec(shared [N] int A[N][N],
shared int B[N],
shared int C[N]) {

NSO aNTTTOww

2: upc_forall(inti=0;i<N;i++; &C[i]) { B0] = sum:

3: intsum=0; sums= ap1jjo-ejorPata Race!
4: for(intj=0;j <N;j++) sume+= A[I][I]*B[ll:l

S: sum += A[1][j] * B[jl; sum = foo(sum);

B: sum = foo(sum); B[1] = sum;

7 C[i] = sum;

8: 1}

9:}

assert(C == foo(A*B));

foo is an expensive function

Simple Example in UPC: Trace

Goal 4. Nice to have a trace

with fewer context switches

1: void matvec(shared [N] int A[N][N],
shared int B[N],
shared int C[N]) {
upc_forall(int i =0; i< N; i++; &C[1]) {
int sum = O;
for(int j =0;j < N; j++)
sum += A[i][j] * B[Jj];
sum = foo(sum);
C[i] = sum;

}

© 0T kAW

'}
assert(C == foo(A*B));

foo is an expensive function

Example Trace:

NSO agwNTTOow

sum = 0O;
sum+= A[O][O]*B[O];
sum+= A[O][1T*B[1];

sumg m);
B[O] = sum;
sum = O;

sum+= A[1][o]*B[o];Data Race!

sum+= A[l][l]*B[l]}
sum = foo(sum);
B[1] = sum;

22

Goals: Summary

* Would be nice to have a trace
— showing a data race (or some other concurrency bug)
— showing an assertion violation due to a data race
— with fewer threads
— with fewer context switches

23

Active Testing: Phase |

1: void matvec(shared [N] int A[N][N],
shared int B[N],
shared int C[N]) {
upc_forall(int i =0; i < N; i++; &C[i]) {
int sum = O;
for(intj=0;j < N; j++)
sum += A[i][j] * B[Jj];
sum = foo(sum);
C[i] = sumn,

}

© 0T kAW

'}
assert(C == foo(A*B));

foo is an expensive function

Example Trace:

3: sum = 0;

3:

NoXNoogaaoa

sum = O;

sum+= A[O][OT*B[O];
sum+= A[l][O]*B[O])

sum+= A[O][1T*B[1];
sum+= A[1][1T*B[1];
sum = foo(sum);
B[O] = sum;

sum = foo(sum);
B[1] = sum;

24

Active Testing: Phase |

1. Insert Instrumentations at

compile time

shared int C[N]) {
upc_forall(int i =0; i< N; i++; &C[1]) {
int sum = O;
for(int j =0;j < N; j++)
sum += A[i][j] * B[Jj];
sum = foo(sum);
C[i] = sum;

}

© 0T kAW

——

assert(C == foo(A*B));

foo is an expensive function

25

Active Testing: Phase |

1. Insert Instrumentations at

compile time
shred int C[N]S {

2. Run instrumented program

normally -> Trace

assert(C == foo(A*B));

foo is an expensive function

Example Trace:

3: sum = 0;

3:

NNYooaogaaoa

sum = O;

sum+= A[O][0O]*B[O];
sum+= A[l][O]*B[O]}

sum+= A[O][17*B[1];
sum+= A[1][1T*B[1];
sum = foo(sum);
sum = foo(sum);
B[O] = sum;

B[1] = sum;

26

Active Testing: Phase |

1. Insert Instrumentations at

compile time
shred int C[N]S {

2. Run instrumented program
normally -> Trace

3. Find potential data races

fooIs an expensive rtunction

Example Trace:

3: sum = 0;

3:

NNYooaogaaoa

sum = O;
sum+= A[O][OT*B[O];
sum+= A[1][OT*B[O
sum+= A[O][1T*B[1];
sum+= A[1][1T*B[1];
sum = foo(sum);
sum = foo(sum);

27

Active Testing: Phase |

1. Insert Instrumentations at

compile time
shred int C[N]S {

2. Run instrumented program
normally -> Trace

3. Potential race between
statements 5 and 7

fooIs an expensive rtunction

Example Trace:

3: sum = 0;

3:

NNYooaogaaoa

sum = O;
sum+= A[O][OT*B[O];
sum+= A[1][OT*B[O
sum+= A[O][1T*B[1];
sum+= A[1][1T*B[1];
sum = foo(sum);
sum = foo(sum);

28

. Goals. 1. Confirm races
ACtIVE Te 2. Check Assertion Failure

1. Insert Instrumentations at Example Trace:

compile time 3: sum=0;
3: sum =0;
shared int C[N]) | 5: sum+= A[O][0]*B[O].
e i 5. sum+= A[1][O]*B[O
2. Run instrumented program [EimiiRae s i
5: sum+= A[1][1]*B[1];
normally -> Trace
6: sum = foo(sum);
7 C[i] = sum; , 6: sum = foo(sum);
8; 7: B[O] = sum;
; 7: B[1] = sum

3. Potential race between
statements 5 and 7

fooiIs an expensive rtunction

29

Active Testing: Phase Il

Control Scheduler using

knowledge that (5,7) could race [JEZiEuiimigda

3: sum =0;

1: void matvec(shared [N] int A[N][N], 3: sum=0:

shared int B[N], , _ * _

shared int G[N]) { 0 sum+= A[OJIOJ"B[O)
2: wupc_forall(inti=0;i<N;i++ &C[i]) { 2 Sum+= A[O]J[1]*B[1]
3: intsum =0; 6: sum = sum); |
4: for(intj=0;j <N j++) 7: B[offm Data Race:
S: sum += A[1][j] * B[j]; B: sum+= A[1][0T*B[O];
6: sum = foo(sum); . _ .
7. C[i] = sum; Ot sum+= A[LII1J"BLLL
8:) 6: sum = foo(sum);
9:) 7. B[1] = sum;

assert(C == foo(A*B));

foo is an expensive function [ERCEEIMCEEREIEICRIIENCY Cleblilo]y

30

Active Testing:
Predict and Confirm Potential Bugs

* Phase I: Predict potential bug patterns:
— Data races: Eraser or lockset based [PLDI’08]

— Atomicity violations: cycle in transactions and happens-before
relation [FSE’08]

— Deadlocks: cycle in resource acquisition graph [PLDI’09]

— Publicly available tool for Java/Pthreads/UPC [CAV’09]

— Memory model bugs: cycle in happens-before graph [ISSTA’11]
— For UPC programs running on thousands of cores [SC'11]

* Phase Il: Direct testing using those patterns to
confirm real bugs

Challenges for Exascale

Java and pthreads programs
— Synchronization with locks and condition variables
— Single node

Exascale has different programming models
— Large scale

— Bulk communication

— Collective operations with data movement

— Memory consistency

— Distributed shared memory

Cannot use centralized dynamic analyses
Cannot instrument and track every statement

32

Further Challenges!

* Targeted a simple programming paradigm
— Threads and shared memory

e Similar techniques are available for MPI and
CUDA

— ISP, DAMPI, MARMOT, Umpire, MessageChecker
— TASS uses symbolic execution
— PUG for CUDA

* Analyze programs that mix different paradigms
— OpenMP, MPI, Shared Distributed Memory

— Need to correlate non-determinism across
paradigms

33

How Well Does it Scale?

e Maximum 8% slowdown at 8K cores
— Franklin Cray XT4 Supercomputer at NERSC

— Quad-core 2.x3GHz CPU and 8GB RAM per node
— Portals interconnect

e Optimizations for scalability

— Efficient Data Structures

— Minimize Communication
— Sampling with Exponential Backoff

20 30

40

)
9
[0
L .
11 Ty 1)

50

1 T T1
barrier barrier notify
barrier barrier wait

access access
barrier barrier notify
barrier barrier yyait

T

notify notify

wait

wait

notify

access

notify

wait

wait
notify
wait

T1 T&Q

notify
wait
notify
wait
notify
wait

34

Found a Bug. Now what?

Il. Debugging Tools

35

Debugging project |

Detect bug with fewer threads and
fewer context switches

36

Found a Bug. Now what?

Goal 3: Show a buggy trace having fewer threads

REROONERROUNERROONNEROONANln

‘ Automated Thread Reduction

37

Found a Bug. Now what?

Goal 3: Show a buggy trace having fewer threads

REROONERROUNERROONNEROONANln

‘ Automated Thread Reduction

Goal 4: Show a buggy trace having fewer context switches

Automated Context Switch
Reduction

38

Our Experience with C/PThreads

Histogram of the Context Switch Optimality of
Simplified Traces

30 Q
O bzip2
§ 25 = P
& 50 % B dedup
©
+ X
é 15 § O pbzip2
-: ><
g 10 X X pfscan
s MK
X N blackscholes
] 1 & [0
Optimal 1 2 3 4

Context Switches > Optimal Number of Context Switches

* Over 90% of simplified traces were within 2
context switches of optimal.

Small model hypothesis

* Small model hypothesis for Parallel Programs

— 1. Most bugs can be found with few threads

e 2-3 threads
* No need to run on thousands of nodes

— 2. Most bugs can be found with fewer context
switches [Musuvathi and Qadeer, PLDI 07]

* Helps in sequential debugging

40

Debugging project li

Two-level debugging of DSLs.
Correlate program state across
program versions

41

Two level debugging for DSLs

Translation Compilation
Program and Program and
INDSLENe g sty inlowslevel [ulultzutiy s EXecutable
Python, language: Binaries
MATLAB C
Bug:
1. Correlate states
across two
programs
2. Distinguish

translation bugs
from application
level bugs

42

Debugging project lll

Find floating point anomalies.
Recommend safe reduction of
precision.

43

Floating point Debugging:
Why do we care?

Usage of floating point programs has been growing
rapidly

— HPC

— Cloud, games, graphics, finance, speech, signal processing

Most programmers are not expert in floating-point!

— Why not use highest precision everywhere

High precision wastes
— Energy

— Time

— Storage

44

FP Debugging Problem 1:
Reduce unnecessary precision

« Consider the problem of finding the arc length of the function

g(x) =x + Z 27 sin(2%x)
0<n<b

FP Debugging Problem 1:
Reduce unnecessary precision

« Consider the problem of finding the arc length of the function

g(x) =x + Z 2~ sin(2%x)
0<n<b

0S|
05 10 15 20 25

double-double 20X 5.795776322413031 .,
double 1X 5.795776322412856 X
summation variableis < 2X 5.795776322413031 v

double-double

FP Debugging Problem 1:
Reduce unnecessary precision

Consider the problem of finding the arc length of the function

g(x) =x + Z 2~ sin(2%x)
0<n<5 1

How can we find a minimal set of code fragments
whose precision must be high?

double-double 20X 5.795776322413031 .,
double 1X 5.795776322412856 X
summation variableis < 2X 5.795776322413031 v

double-double

FP Debugging Problem 2:
Detect Inaccuracy and Anomaly

Precondition: x[i] > O for all i
float f(float * x, size_t nel, float * y) {
float sum = 0.0;
for (inti=0;i<nel;i++){
sum = sum + x[i]*x[i];
sum = sqrt(sum);
for (i=0; i< nel; i++) {
yli] = x[i]*x[i]/sum;
}
}

Can lead to NaN even when given strictly positive inputs.
Can we generate such an input?

48

What we can do?

» We can reduce precision "safely”
— reduce power, improve performance, get
better answer

« Automated testing and debugging techniques
— To recommend “precision reduction”
— Formal proof of "safety” can be replaced by concolic testing

« Approach: automate previously hand-made debugging
— Concolic testing
— Delta debugging [Zeller et al.]

49

Implementation

* Prototype implementation for C programs
— Uses CIL compiler framework
— http://perso.univ-perp.fr/quillaume.revy/
index.php?page=debugging
* Future plans
— Build on top of LLVM compiler framework

50

Summary

Detect | Bug
Data Races Simplification

| \ 2-Level
Reproducibility Precision Debugging

in FP programs Reduction for DSLs

Concolic | Partial restart Handle CUDA,
Testing for for debugging OpenMP
Input Generation |

N
e

51

Potential Collaboration

e Dynamic analyses to find bugs - dynamic parallelism,
unstructured parallelism, shared memory

e DEGAS, XPRESS, Traleika Glacier
e Floating point debugging

* Co-design centers
e 2-level debugging
 DTEC

52

Conclusions

* Build testing tools
— Close to what programmers use

— Hide formal methods and program analysis under testing
* If you are not obsessed with formal correctness

— Testing and debugging can help you solve these problems
with high confidence

53

