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Critical Technology Evaluations 
Technology Description Status 

Compiler Automating the use of symmetry in input data (SCF) Identified 

Compiler Automating pre-computation of pure function values (SCF) Identified 

Parallel 
Language 

Completed first PIL API document Complete 

Parallel 
Language 

SCALE 0.11 code generation Complete 

Parallel 
Language 

Targeting distributed SCALE from PIL Identified 

Applications Identified two NWChem kernels for study  Complete 

Applications Delivered C-only version of the Self-Consistent Field computation  Complete 

Applications Investigating Coupled Cluster method for second NWChem module Evaluating 

Serial 
Optimization 

Optimization of C-Only SCF kernel. 15x-20x speedup Complete 

Single-Node 
Parallelization 

Parallelization of optimized SCF code with OpenMP and, SWARM single-
node 

Complete 

Multi-Node 
Parallelization 

Parallelization of optimized SCF code with MPI and SWARM multi-node Evaluating 

Runtime 
Collective 
Design 

Identified asynchronous broadcast and multi-part reduction in SWARM as 
possible speed improvements over MPI 

Identified 

Power Efficient 
Data Abstraction 
Layer 

Started a theoretical framework called “Group Locality” that will be used 
to identify opportunities for data manipulation such as compression 

Identified 

Power Efficient 
Data Abstraction 
Layer 

Survey of state-of-the-art compression algorithms Evaluating 

Power Efficient 
Data Abstraction 
Layer 

Working on 2 measurement frameworks  Evaluating 
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Summaries of Quarterly Work 

Deliverables 
This quarter’s deliverables include this report, an API document for the PIL library, the SCF module 
code, and SCF module optimizations and parallelizations. All of these can be found at 
https://www.xstackwiki.com/index.php/DynAX#Deliverables under the section: “Q2”. 

UIUC Work 
This quarter we completed the first draft of the PIL v0.3 API document with its associated high level 
language, SPIL. This API includes a data structure for creating and manipulating tiled arrays, as well 
as fundamental parallel operations on tiled arrays. The arrays may be either dense or sparse, and 
dense arrays may be laid out either row-major or tile-major. Operations for expressing data 
associations with codelets as well as data movement operations are provided. There is a notation to 
express task graphs. 
 
The high level language, SPIL, provides a language with syntactic sugar for common operations in PIL 
for programming convenience and program readability. The SPIL will have a source-to-source 
translator to generate code in PIL. 
 
The PIL API document can be found at https://www.xstackwiki.com/index.php/DynAX#Deliverables 
 
Work for PIL v0.2 generating SCALE was continued. A bug in the scheduler of SCALE 0.9 was 
identified. SCALE 0.11 was released to fix this bug and allow access to distributed SWARM. PIL v0.2 
now targets SCALE 0.11 and work to target distributed SCALE is in progress. 

ETI Work 
ETI has focused this quarter on optimizing and parallelizing the SCF benchmark provided by PNNL. 
Code was parallelized on a single node using OpenMP and SWARM. Code was parallelized across 
nodes using MPI and SWARM. Results for all of these optimizations and parallelizations are detailed 
in the Topic Detail below. Serial improvements show a ~10X improvement over the base code. 
Parallel improvements show linear scaling on one node and scaling of the twoel procedure across 
nodes up to 256 nodes. We have released the documentation and code under BSD open source on 
the xstackwiki.com webpage under the “Deliverables” section of the Dynax page at 
https://www.xstackwiki.com/index.php/DynAX#Deliverables 

PNNL Work 
PNNL Task 6- This quarter we completed and delivered a simple, C-only version of the SCF 
module of NWChem.  The release includes an input file, output file, and optimization suggestions.  We 
prepared a powerpoint presentation and Word document describing the modules’ mathematics, 
control flow, and data structures.  With regards to the second module, the Coupled Cluster method, 
we have decided that the computational routines are not appropriate for our purposes; however, the 
routines are called from a driver that maneuvers a DAG of the data dependencies among the routines.  
We believe the driver plus the routines may serve as an appropriate module.  
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PNNL Task 9 - The task is structured following a 3-prong approach:  
1) We are developing a fundamental theoretical framework we call “Group Locality” that will guide us 
towards data locality assessment shared by a set of threads.  
2) We are performing a survey of compression algorithms suitable for scientific computing that will 
lead to a report in the next quarter. Based on the current state of the art, we will perform a down-
selection that optimizes for low overhead and high compression ratios. 
3) We are developing two measurement frameworks to help us understand the lifetimes of the 
underlying data structures in SWARM: One framework is based on Intel’s PIN instrumentation tool set. 
It is currently in the early debugging stage. The second framework is based on Valgrind. This 
framework is in a more advanced stage and already capable of performing some rudimentary analysis 
on the SWARM Cholesky code provided by ETI.  

R-Stream compiler work (Reservoir) 
This quarter we have focused on two main areas: 

1 Optimizing abstract codelet generation. We designed a lightweight method for reducing 
transitive dependences generated by the dependence-declaring high-level operations created 
by the mapper. These operations translate to point-to-point synchronizations after code 
generation. This technique is close to completion. It will be presented in the next report. 

2 Finding out how to automate the most impactful optimizations implemented by hand on the 
SCF kernel. Let n be the trip count of every considered loop. One optimiztion takes advantage 
of the symmetry in the values of a pure function (g) that is evaluatedn! times in SCF to reduce 
the range of evaluated values to n!/8 using three symmetries. The other optimization targets 
subexpressions of g that are evaluated n! times but for which there are only n! distinct values. 
The goal is to precompute the n!expression values and use the pre-computed values instead 
of re-computing them. The savings in terms of computation are in O(n!) and the cost in 
memory is from 1 to n!.  
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Topic Detail: 

PNNL: Self-Consistent Field Method - A NWChem module for evaluation 
PNNL has completed and delivered the first of two NWChem modules.  The Self-Consistent Field 
Method (SCF) is often the central and most time consuming computation in ab initio quantum 
chemistry methods.  It is used to solve the electronic Schrodinger Equation, 

!Ψ = !Ψ. 

SCF assumes that each particle of the system is subjected to the mean field created by all other 
particles resulting in a non-linear system solvable by an iterative, fixed-point algorithm. 

By expressing the molecular system’s one electron orbitals as the dot product of the system’s 
eigenvectors and a set of Gaussian basis functions 

 ∅! =    !!"! !!  (!) , [1] 

the solution to the Schrodinger Equation reduces to the following self-consistent eigenvalue problem 

!!"   =   ℎ!" +   
!
!
      !" !" − (!"|!")   !!"!"   [2] 

!!"  !!" =   !  !!"!!" [3] 

!!"   =    !!"!!"!  [4] 

where F is the Fock matrix, C are the eigenvectors of the system, ε are the eigenvalues, S is the 
electron force overlap matrix, D is the system density matrix, h are the one-electron forces, and the 
terms in the square brackets in Equation 2 are the two-electron Coulomb forces and the two-electron 
Exchange forces, respectively. 

Figure 1 depicts the method’s control flow.  The upper two leftmost modules initialize the D and C 
matrices allowing the first iteration to compute Equations 2 and 3.  The Construct Fock Matrix, 
Compute Orbitals, and Compute Density Matrix modules compute Equations 2, 3, and 4, respectively.  
The Damp Density Matrix module scales the density matrix and finds the greatest changed value 
between the current and previous density matrix.  If the absolute value of the change is less than a 
threshold value, the method terminates; otherwise, a new iteration is started.  The method terminates 
after 30 iterations if convergence is not reached.  Figure 2 gives the modules’ names, and array inputs 
and outputs. 

The modules comprise rectangular, nested for loops of the form 

oneel 
for (i = 0; i < nbfn; i++) { 
for (j = 0; j < nbfn; j++) { 
   g_fock[i][j] = (g_schwarz[i][j] > tol) ? h(i,j) : 0.0; 
} } 
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makden 
for (i = 0; i < nbfn; i++) { 
for (j = 0; j < nbfn; j++) { 
   double p = 0.0; 
   for (k = 0; k < nocc; k++) p += g_orbs[i][k] * g_orbs[j][k]; 
   g_work[i][j] = 2.0 * p; 
} } 

dendif 
for (i = 0; i < nbfn; i++) { 
for (j = 0; j < nbfn; j++) { 
   double xdiff = fabs(g_dens[i][j] – g_work[i][j]); 
   if (xdiff > denmax) denmax = xdiff; 
} } 

where nbfn is the number of basis functions (= 15 * number of atoms).  The loops are embarrassingly 
parallel, but the inclusion of reduction operations such as sum and max require concurrent atomic 
updates. 

The most computationally intensive routine is twoel that computes the two electron forces, 

twoel 
for (l = 0; l < nbfn; l++) { 
for (k = 0; k < nbfn; k++) { 
for (j = 0; j < nbfn; j++) { 
for (i = 0; i < nbfn; i++) { 
 
   if (g_schwarz[i][j] * schwmax        ) < tol2e) {icut1 ++; continue;} 
   if (g_schwarz[i][j] * g_schwarz[k][l]) < tol2e) {icut2 ++; continue;} 
 
   icut3 ++; 
   double gg = g(i, j, k, l); 
   g_fock[i][j] += (      gg + g_dens[k][l]); 
   g_fock[i][k] -= (0.5 * gg * g_dens[j][l]); 
 
} } } } 

The time for all the other routines is much smaller than the time for twoel.  The guards in the innermost 
loop impose a cutoff limit and reduce significantly the number of updates computed.  The guards can 
be hoisted to reduce loop overhead as explained in the optimization file that accompanies the code 
release.  We note that the h values (one electron forces) and g values (two electron forces) used in 
computing the Fock matrix are constants, so they could be precomputed, saved, and reused.  While h 
is nbfn2, g is nbfn4 making it impractical to save g for even small molecular systems.  As explained in 
the optimization file, symmetries in g can be exploited to minimize storage and computation 
requirements. 
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Figure 1 – SCF control flow 

 

 
Figure 2 – SCF modules, inputs, and outputs 
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ETI: Optimization and parallelization of SCF module 

Serial optimizations 

Additional Sparsity Tests 
In the reference SCF code, there were two sparsity tests in the twoel function’s loops, one at the i,j 
level which allows skipping N2 iterations and one at the i,j,k,l level which only skips a single iteration. 
We identified a third sparsity test that can be added to the i,j,k level which allows skipping N iterations. 

Symmetry of g() 
The g function called by twoel and oneel has three symmetries: I and J can be swapped, K and L and 
be swapped, and the (I,J) pair can be swapped with the (K,L) pair. The calculation and result is 
identical for any combination of these symmetries, leading to a total eight-way symmetry. To take 
advantage of this symmetry, twoel was modified to only ever call g with one of the possible symmetric 
inputs, then perform all the appropriate updates to the fock matrix. 
 
This modification required decomposition of the N4 twoel loop into six separate loops to properly 
handle the cases where the I,J,K,L arguments to g have restrictions which preclude utilizing the full 
symmetry. As an example, when I and J are equal, updates to the fock matrix cannot include the 
swapped version as it would not have been performed by the original twoel function. 

1 Eight-way symmetry: IJ, KL and (I,J)(K,L); N4 iterations 

2 Four-way symmetry: I=J, KL and (I,J)(K,L); N3 iterations. 

3 Four-way symmetry: IJ, K=L and (I,J)(K,L); N3 iterations. 

4 Four-way symmetry: IJ, KL and (I,J)=(K,L); N2 iterations. 

5 Two-way symmetry: I=J, K=L and (I,J)(K,L); N2 iterations. 

6 No symmetry: I=J, K=L and (I,J)=(K,L) ; N iterations. 
All together, this modification reduces the number of expensive g calculations by nearly eight while 
maintaining the same total number of updates to the fock matrix. 

Lookup Tables in g() 
The g function performs many computations which only rely on the (I,J) or (K,L) argument pairs. 
These calculations can be pre-computed and stored in a lookup table to reduce the number of 
required calculations. The lookup table requires O(N2) memory, which is the same order as the 
existing matrices used in the SCF code.  In addition to reducing calculations, using a lookup table also 
reduces memory accesses as each value retrieved from the table generally would require two 
separate accesses to O(N) length arrays. Both pairs of arguments can use the same lookup table as 
swapping them was one of the symmetries in the g function. 

Standard BLAS and LAPACK operations 
When the input problem was increased to larger atom counts, the optimized twoel and g functions 
exhibited better scaling than several other operations. Specifically, the diagon phase of the 
computation can require more time to execute than twoel if the input problem is large enough. 
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To improve the performance of these operations, several BLAS and LAPACK functions can be used 
as drop-in replacements. The use of an optimized or parallel BLAS and LAPACK implementation 
drastically improves the speed of these operations and causes twoel to again dominate the total 
execution time. 

Symmetry of fock and dens matrices 
The number of memory operations performed in twoel can be approximately halved since the dens 
input to twoel is a symmetric matrix, and the resulting fock matrix will be symmetric. Because of the 
matrix symmetry, only one triangle of the matrix actually needs to be calculated, the other triangle can 
easily be reconstructed or may not even be necessary if a symmetric matrix multiply is used as the 
first action in diagon. 
 
In order to implement this, the coulomb and exchange contributions to the two-electron forces must 
handled separately as they have different symmetries. The coulomb contribution has an additional 
symmetry which allows a further halving of updates by instead multiplying the contribution value by 
two. The exchange contribution is more difficult to deal with as its symmetry doesn’t match that of g, 
and requires further loop decomposition to limit updates to only one triangle of the matrix. 
 
We did not further decompose the loops to limit the exchange contribution updates to one triangle. 
Instead, we took some advantage of the symmetry to eliminate writing the same value to both 
symmetric locations. This resulted in a matrix which is not symmetric, but can easily be reconstructed 
into a symmetric matrix. The symmetric matrix is reconstructed by summing the values from both 
symmetric locations in the upper and lower triangles then writing that sum back to both locations. 
 
This optimization was only added to the N4 and N3 decomposed twoel loops. Adding this change to 
the other loops would require additional decomposition, but wouldn’t be likely to result in substantial 
performance improvements. Fully decomposing all the loops so that only one of the triangles is 
updated would also improve the CPU’s cache utilization, as there would be fewer unique memory 
locations accessed by the twoel loops. 

Cache g() results 
A very straightforward implementation of the conventional method was added which simply caches the 
results of the g function in the order in which it is called. Because the order in which g is called with 
various arguments does not change between iterations, we were able to append results to an array 
during the first iteration, then in subsequent iterations values are retrieved in the same order from the 
array. This method minimizes the memory requirements of caching results as only the required values 
are stored and there is almost no overhead required to map input arguments to the location of the 
cached result. The only overhead of this implementation is three additional index or pointer variables, 
one to store the end of the allocated space, one to store the end of the used space, and one to store 
the index into the array for values that are being either read or written. 
 
Because this implementation of the conventional method requires that g is always called in the same 
order, it is not suitable for implementing as-is in the multi-threaded or multi-node versions of the SCF 
program since they would not have the same guarantee on the order in which g is called. 
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The memory requirements to cache results of g are not known until after the cache has been created 
and populated during the first iteration. At maximum the memory requirements would be on the order 
of N4, but the actual requirements are typically much smaller, although still substantial, due to the 
sparsity increasing as the problem size increases. The incremental speedup of using the conventional 
method with all other optimizations compared to the direct method with all other optimizations is about 
2x. Using the conventional method likely changes the limiting resource from CPU speed to memory 
bandwidth while also increasing power consumption. 

Results 
The following figure shows the speedup in overall program execution, for 50 atoms in a straight line. 

 

Single-node Parallelization 

OpenMP 
Initial parallelization was performed for the twoel() function which performed up to O(N4) work in 6 
different loop nests.   Because OpenMP does not support array based reduction in the C standard, we 
show 3 possible ways to solve this problem. 
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1 Utilize the atomic directive on each update to the g_fock matrix.  This would imply a locking 
mechanism per element with more exposed parallelism 

2 Utilize the critical section directive in each section of updates in the loops.  This would require 
as few as 1 locking operations per 8 updates but limit parallelism to one thread in the critical 
section at once 

3 Allocate auxiliary space outside the loop nests, 1 per openmp thread, and perform a single 
threaded reduction at the end of all loop nests.  This is the most similar to how an openmp 
reduction would be performed if the standard supported it. 

 
Due to the variable nature of the calculations in loop enumerations pruned using Schwarz inequality, 
we looked at guided, dynamic, and static scheduling scheme provided by OpenMP. 

SWARM 
A single-node parallel version of the SCF program was created using SWARM in which only the twoel 
function was implemented in codelets, the remainder of the program is the same serial implementation 
as the the optimized serial version. 
 
The twoel function was split into several codelets: 

● Initial codelet: initializes reduction dependency, schedules a worker codelet for each thread on 
the system, then executes all N2 and smaller twoel loops. 

● Worker codelet: processes chunks of the two N3 loops, then processes chunk of the N4 loop. 
Each worker codelet running in separate threads has its own local partial fock matrix which 
updates are written to. Work units are selected by each thread performing atomic get and add 
operations to a shared global, the resulting value is then used in place of the outermost for 
loop. 

● Reduction codelet: run after all other codelets have run and satisfied the dependency, 
accumulates all partial fock matrices into the main g_fock matrix 

Results 
The following chart shows the speedup of twoel, for 150 atoms in a straight line, over the same input 
running on a single thread.  This is running on a machine with 16 cores, and 2 hyperthreads per core. 
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The higher-performing programs show a distinct elbow at 16 threads, this is when the number of CPU 
cores was reached.  Hyperthreading allows performance to continue to increase after this, though at a 
much lower rate. 
 
Another thing to note is that the SWARM and OpenMP Dynamic v3 programs seems to run slightly 
faster than expected on multiple threads, showing better than linear speedup on 2 through 17 threads.  
One possible reason for this would be fewer cache misses, when data has already been read by a 
nearby core. 
 
The SWARM implementation is on par with the best OpenMP implementation until hyperthreading 
kicks in. At this point, OpenMP has a slight advantage. We will be looking into the difference in the 
next quarter. 

Multi-node Parallelization 

MPI 
Assuming an OpenMP solution at the node level, we looked at using MPI to statically distribute work 
out.  Very similar to the OpenMP solution, we assign different nodes to perform different iterations of 
the O(N4) twoel loop, and accumulate the g_fock matrix at the end of all loop iterations.  Fortunately, 
the only inputs into this loop which varied between iterations of the outermost convergence loop was 
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g_dens, the electron density matrix, which was order O(N2).  This created a simple MPI  program 
which broadcasted a new density matrix, performed OpenMP optimized computations, and reduced 
the resulting g_fock matrix to a single node for processing.   While it would be possible to send 
specific partitions of g_dens to only the nodes needing them and thereby possibly reducing the overall 
network bandwidth, broadcasting the entire density matrix to all nodes using a highly optimized MPI 
routine was a far more efficient technique and could allow for some level of load balancing with 
additional effort. 

SWARM 
Starting from the single-node SWARM version of SCF, network calls were inserted in order to split the 
twoel workload across nodes.  The work is strided with the i parameter, such that, for a 2 node job, 
node rank 0 does i=0, rank 1 does i=1, rank 0 does i=2, etc.  Outside of twoel, node 0 is responsible 
for the other phases of computation, such as oneel, diagon, makden, damp, and dendif.  The 
workflow for an iteration is now: 

● Node 0 performs single-electron interaction (oneel) work 

● Each node does a subset of the twoel work 

● Each node sums all of its per-thread partial fock matrices together 

● A network reduction sums all of these per-node partial fock matrices together 

● Node 0 adds the result into the main g_fock matrix 

● Node 0 performs diagon 

● Node 0 performs makden, damp, and dendif  

● Node 0 broadcasts the global data to all nodes, to prepare for the next iteration 

● Repeat 

Results 
The following chart shows the speedup of twoel, for 250 atoms arranged in two planes, over the same 
input running on a single node using SWARM. The single-node MPI version was twice as slow as the 
SWARM code, and both scaled fairly linearly from there. Each node is a 16 core machine, running 32 
threads. 
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In the SWARM implementation, the parallelization of twoel starts to drop off at around 512-1024 cores, 
as the overhead of network synchronization increases.  As the number of nodes increase, the real 
work to do per node decreases, so the percentage of total time spent doing networking increases.  For 
larger node counts, network implementation details and broadcast/reduction parameter values start to 
have a large effect on overall performance. 

Summary 
We have performed serial optimizations to the twoel kernel of the SCF module. We have parallelized 
those and shown better speedups over OpenMP and MPI in most cases. The diagon kernel is now the 
most significant part of the module execution and we will look for ways to improve its performance in 
the next quarter. The original code, all optimizations, and all parallelizations are available in open 
source at https://www.xstackwiki.com/index.php/DynAX#Deliverables. 
 

Reservoir: Automating hand-optimizations of SCF 
We have worked on designing how R-Stream could be used to perform the most impactful 
optimizations performed by hand by ETI. We have looked at taking advantage of symmetry in the g() 
function, and the pre-computation of sub-expressions of g().  
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g() is evaluated up to maxiter×n! times in the Hartree-Fock two-electron computation (twoel()), which 
makes it a computational bottleneck in the sequential code. Here n is the the number of atoms and 
maxiter is the maximum number of iterations of the outer time loop. The point of employing R-Stream 
to perform these optimizations is that R-Stream also performs automatic parallelization. The goal is 
then to have both parallelization and optimized sequential performance. To simplify the presentation 
here, we elude the time loop (maxiter).  

Taking advantage of symmetry in the g() function 
ETI identified symmetries in the g function, which is evaluated for every (i,j,k,l) in [0, n)!(within a 4-
deep loop nest). These symmetries are as follows: 

○ g(i,j,k,l) = g(k,l,i,j) 
○ g(i,j,k,l) = g(j,i,k,l) 
○ g(i,j,k,l) = g(i,j,l,k) 

 
Each of these symmetries can be used to divide the number of evaluations of distinct values of g in 
half. They can be combined to divide the number of distinct evaluations by eight. Here we explain an 
automatic process through which this can be performed in R-Stream. The process is based on 
partitioning the set of evaluations using linear inequalities. For sets that represent about 7 out of 8 
evaluations (i.e., loop iterations), g(i,j,k,l) is replaced with one of its equivalent values computed in the 
remaining 1-out-of-8 iterations.  
 
The values can be cached to take advantage of this reuse of computed value.  
Let us see how the partitioning process works for one symmetry, and then how partitions can be 
combined. 

Case of a single symmetry 
In this section we choose to consider the first symmetry because it is less simple than the two first 
ones. We can express the symmetry as follows:  
 

g(i, j, k, l)   =   g(i’, j’, k’, l)  with  {i = k’, j = l’, k = i’, l = j’}, (1) 
 
where{0 ≤ i ≤ n, 0 ≤ j ≤ n, 0 ≤ k ≤ n, 0 ≤ l ≤ n}.  
 
For clarity, from now on we will omit these boundary constraints on (i,j,k,l) (and the constraints they 
imply on i’,j’,k’,l’) when expressing domains of values. For instance, {i ≤ k} should be interpreted as 
{0 ≤ i ≤ n, 0 ≤ j ≤ n, 0 ≤ k ≤ n, 0 ≤ l ≤ n, i ≤ k  }.  
 
Our goal is to use the symmetry to partition the (i,j,k,l) space into disjoint sets for which either g(i,j,k,l) 
or g(k,l,i,j) will be evaluated. Our method starts out by forming non-disjoint but symmetric sets, and 
then turns the symmetric sets into disjoint sets.  
 
g(i,j,k,l) = g(k,l,i,j) is always true for (i=k, j=l), but when i<k or j<l, it is only true because of the 
symmetry. Hence we are using the hyperplanes {i=k} and {j=l} as partition boundaries. We are going to 
look at sets that include {i=k} and {j=l} first, and then make the sets disjoint.  
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The hyperplanes define four sets. One of the sets (let us call it A) is defined by: 
A = {i ≤ k, j ≤ l} 
Its image through symmetry (1) is  
A′   =    {k′ ≤ i′, l′ ≤ j′} 
Within this image, we can use the symmetry and replace any calls to g(i,j,k,l) with g(k,l,i,j).  
The other sets are:  
B = {i ≤ k, l ≤ j}, whose image is B′   =    {k′ ≤ i′, j′ ≤ l′}.  
C = {k ≤ i, j ≤ l}   = B′  , and 
D = {k ≤ i, l ≤ j} = A′ 
 
The union of A, A’, B and B’ (two sets and their image) define the entire set of values of (i,j,k,l). Using 
these two hyperplanes, we would partition the values of (i,j,k,l) in four sets and eliminate half of the 
evaluations.  
 
However, by using the hyperplane {i=k}, we can partition (i,j,k,l) into two non-disjoint sets as follows:  
A = {k ≤ i},A′ = {i ≤ k}, A’ being the image of A. This partitioning is simpler and results in the same 
two-fold savings.  
 
However the sets are non-disjoint, so some values of (i, j,k,l) are in two different subsets. As a result, 
the current partition is ambiguous as to what to evaluate (g(i,j,k,l) or g(k,l,i,j)) for these values.  
We can remove the ambiguity by computing their “disjoint union”. The algorithm available in Jolylib 
(Reservoir’s polyhedral library) does so by computing the (Galois) subset lattice of the input domains. 
The meet operation here is the intersection. Disjointness is then obtained by assigning each element 
(each intersection) to a unique parent in the lattice, and subtracting it from all its ancestors.  
In our example, we get:  
A! = {k ≤ i}: g(i, j, k, l) → g(i, j, k, l)	
   
A′! = {i < k}: g(i, j, k, l) → g(l, k, i, j), 
Assuming the following original code,  
for (i=0; i<= n; i++) { 
  for (j=0; j<=n; j++) { 
    for (k=0; k<=n; k++) { 
      for (l=0; l<=n; l++) { 
        f(i,j,k,l) = g(i,j,k,l); 
      } 
    } 
  } 
} 
 
The partitioning defines the following transformed code:  
for (i=0; i<=n; i++) { 
  for (j=0; j<=n; j++) { 
    for (k=0; k<=i; k++) { 
      for (l=0; l<=n; l++) { 
        f(i,j,k,l) = g(i,j,k,l); 
      } 
    } 
    for (k=i+1; k<=n; k++) { 
      for (l=0; l<=n; l++) { 
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        f(i,j,k,l) = g(k,l, i,j); 
      } 
    } 
  } 
} 
 
There are degrees of liberty in which we can assign g(i,j,k,l) or g(k,l,i,j) to the partition sets.  

Combining symmetries 
Let us now consider the three symmetries together. A naive method would be to compute disjoint 
partitions and combine the partitions by simple superposition. The drawback of doing so is that the 
algorithm that computes the disjoint partitions does not offer any form of guarantee that the 
boundaries of the domains formed by the different symmetries would match or mesh particularly well.  
Instead, we combine the symmetries by computing the symmetric, non-disjoint sets for each symmetry, 
combine the sets, and finally compute a disjoint partition from these sets.  
For example, combining the two first symmetries would proceed as follows.  
We have the following domains for the first symmetry:  
 
For the second symmetry, we have:  
C = {j ≤ i}:  g(i, j, k, l) → g(i, j, k, l) 
C′ = {i ≤ j}: g(i, j, k, l) → g(j, i, k, l) 
 
Combining these two symmetries gives us four domains:  
AC = {k ≤ i, j ≤ i}: g(i, j, k, l) → g(i, j, k, l) 
A′C = {i ≤ k, j ≤ i}: g(i, j, k, l) → g(k, l, i, j) 
AC′ = {k ≤ i, i ≤ j}: g(i, j, k, l) → g(j, i, k, l) 
A′C′ = {i ≤ k, i ≤ j}: g(i, j, k, l) → g(l, k, i, j) 
 
We can now turn this non-disjoint partition into a disjoint partition:  
AC! = {k ≤ i, j ≤ i}: g(i, j, k, l) → g(i, j, k, l) 
A′C! = {i < k, j ≤ i}: g(i, j, k, l) → g(k, l, i, j) 
AC′! = {k ≤ i, i < j}: g(i, j, k, l) → g(j, i, k, l) 
A′C′! = {i < k, i < j}: g(i, j, k, l) → g(l, k, i, j) 
 
The resulting code would be:  
for (i=0; i<=n; i++) { 
  for (j=0; j<=i; j++) { 
    for (k=0; k<=i; k++) { 
      for (l=0; l<=n; l++) { 
        f(i,j,k,l) = g(i,j,k,l); 
      } 
    } 
    for (k=i+1; k<=n; k++) { 
      for (l=0; l<=n; l++) { 
        f(i,j,k,l) = g(k,l,i,j); 
      } 
    } 
  } 
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  for (j=i+1; j<=n; j++) { 
    for (k=0; k<=i; k++) { 
      for (l=0; l<=n; l++) { 
        f(i,j,k,l) = g(j,i,k,l); 
      } 
    } 
    for (k=i+1; k<=n; k++) { 
      for (l=0; l<=n; l++) { 
        f(i,j,k,l) = g(l,k,i,j); 
      } 
    } 
  } 
} 
 
Notice that we chose to combine the symmetries in the (first, second) order. By choosing the (second, 
first) order we would have obtained 
A′C′ = {i ≤ k, i ≤ j}: g(i, j, k, l) → g(k, l, j, i) 
By combining the symmetries in a specific order, we took advantage of the symmetries but not of the 
fact that both symmetries commute (they can be applied legally in any order).  
 
Also, while the second symmetry defines the partitioning unambiguously, the first symmetry has two 
degrees of freedom in terms of partitioning hyperplanes, and we have only used one. However, while 
using the additional degree of freedom does partition the space further, its smallest set occupies a 
quarter of the (i,j,k,l) domain. So the resulting code is more complex for no additional savings (a four-
fold saving as well).  

Optimization notes 
Spatial locality  
Were the g function to materialize as an array, applying the symmetries as we have has an impact on 
the locality of array accesses. In this case, the spatial locality of the sets A’C and A’C’ is reduced. 
Complementary optimizations such as tiling may reduce the impact of these issues on the overall 
performance by reducing the number of large strides performed in the innermost loops (l loop in 
g(l,k,i,j) for instance).  
 
But reducing the overall footprint of g also directly reduces the number of cache misses, which 
reduces the negative effect of non-spatially local accesses.  

More symmetries in Hartree-Fock 
Using the three symmetries, we can reduce the number of distinct values of g evaluated in the 
execution of the program by a factor of 8.  
 
ETI took advantage of more symmetries than the ones present in pure function g. ETI also used 
symmetry in the read-only array g_dens, and in the write-only array g_fock.  
 
It is worth exploiting symmetries in a write-only array since it reduces the number of computations that 
are then assigned to the array. But additional caution is needed. If we know where the array is used 
and if it stays symmetrical, then we don’t need to complete the array definition by copying the 
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computed data to their symmetric, non-computed counterparts. This works as long as symmetry is 
used when accessing the array as well.  
 
Otherwise, uncomputed array elements must be defined by copying their value from their symmetric 
computed array element.  

Precomputing reused sub-expressions 
Another important optimization of the bottleneck g() function performed by ETI comes from the fact 
that some of its expressions take n! distinct values within the maxiter×n!loops in which g() is called, 
where maxiter is the maximum number of iterations of a time outer loop that encloses the four-deep 
loop calling g() as modeled in the previous section. Hence each of these expressions is re-computed 
maxiter×n!times too many.  
 
In their hand-optimization effort, ETI took advantage of this by pre-computing these sub-expressions 
and using the pre-computed values in the computation of instead of recomputing them. In this section, 
we sketch how most of this optimization can be automated in a compiler.  
 
For presentation purposes and without loss of generality, we are eluding the outer time loop. The 
same optimizations extend to the outer time loop.  

Basic idea 
Here we explain the general idea of the proposed optimization in terms of compiler optimizations, in 
order to show how they could be automated.  
 
The basic principle is to detect expressions that are pure functions (i.e., there is no side-effect within 
the expression) that depend upon a subset of the loop indices. In the case of Hartree-Fock, in the four-
deep loop nest that calls g(i,j,k,l), we can single out a subexpression of g that depends on (i,j) only and 
write g(i,j,k,l) = g0(g1(i,j),i,j,k,l).  
 
We will describe a way of detecting such subexpressions in the next section.  
R-Stream is based on a scalar compiler that supports the SSA (Static Single Assignment) form, and 
the GVN-GCM optimization (Global Value Numbering - Global Code Motion). GVN-GCM uses SSA to 
assign a non-ambiguous value to each expression in the program. This is used to detect that two 
expressions are equivalent (which triggers common subexpression elimination) and to detect whether 
an expression is loop-invariant. When it determines that an expression is loop-invariant, GVN-GCM 
hoists the expression out of the loops.  
 
In our example:  
for (i=0; i<= n; i++) { 
  for (j=0; j<=n; j++) { 
    for (k=0; k<=n; k++) { 
      for (l=0; l<=n; l++) { 
        f(i,j,k,l) = g0(g1(i,j),i,j,k,l); 
      } 
    } 
  } 
} 
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In this favorable example, g1(i,j) is invariant within the k and l loops. Hence an existing GVN-GCM 
would hoist it above the k loop:  
for (i=0; i<= n; i++) { 
  for (j=0; j<=n; j++) { 
    t = g1(i,j); 
    for (k=0; k<=n; k++) { 
      for (l=0; l<=n; l++) { 
        f(i,j,k,l) = g0(t,i,j,k,l); 
      } 
    } 
  } 
} 
However, GVN-GCM is insufficient when we find a pure subexpression that only depends on k and l: 
 
for (i=0; i<= n; i++) { 
  for (j=0; j<=n; j++) { 
    for (k=0; k<=n; k++) { 
      for (l=0; l<=n; l++) { 
        f(i,j,k,l) = g0(g2(k,l),i,j,k,l); 
      } 
    } 
  } 
} 
gives 
for (i=0; i<= n; i++) { 
  for (j=0; j<=n; j++) { 
    for (k=0; k<=n; k++) { 
      for (l=0; l<=n; l++) { 
        t = g2(k,l); 
        f(i,j,k,l) = g0(t,i,j,k,l); 
      } 
    } 
  } 
} 

 
After a pass in the scalar optimizer, R-Stream lifts the representation of loop programs into a 
representation specialized on dense loops, in which all array accesses are explicit. This representation 
(called “polyhedral”) is based on linear algebra, but some more traditional loop optimization concepts 
are available there as well.  The part of R-Stream which works on the polyhedral representation is 
called the (polyhedral) mapper.  
 
The steps of the optimization that would hoist pre-computations are as follows:  

1 Detect pre-computable statements 
2 Apply fission to move the pre-computable statements before all their uses in the computation 

(this usually turns scalars into arrays) 
3 Project the data domain along the reuse space defined by the pure/read-only function to obtain 

a single definition for each distinct pre-computed value. 
4 Project the iteration domain along the same reuse space.  
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Detecting pre-computable statements 
Pre-computable statements are statements that represent N definitions of values as a read-only (or 
pure) function of M values, where M’s complexity is lower than N’s. In the case of t=g1(k,l), the 
complexity of N is n!and M’s is n!. 

Applying fission 
The mapper takes into account the notion of “scope” of a value, which is roughly the set of loops that 
contain the entire value flow for each element of an array or scalar. The mapper uses this information 
to correctively disambiguate (“expand”) arrays automatically when performing loop transformations.  
The result of fission in our example is 
for (i=0; i<= n; i++) { 
  for (j=0; j<=n; j++) { 
    for (k=0; k<=n; k++) { 
      for (l=0; l<=n; l++) {  
        t[i][j][k][l] = g2(k,l); 
      } 
    } 
  } 
} 
for (i=0; i<= n; i++) { 
  for (j=0; j<=n; j++) { 
    for (k=0; k<=n; k++) { 
      for (l=0; l<=n; l++) { 
        f(i,j,k,l) = g0(t[i][j][k][l],i,j,k,l); 
      } 
    } 
  } 
} 
Notice that the scalar t is now an array, which results from the mapper’s automatic memory 
disambiguation (also called “expansion”) mechanism. Note that the set of legal fissions is defined by 
the data dependencies in the program.  

Projecting the data domain 
The reuse space is defined by the kernel of the space of values of the read-only/pure function: !

!
!
!
!
!
!
!

 

Projecting the data domain along this function gives the following program: 
for (i=0; i<= n; i++) { 
  for (j=0; j<=n; j++) { 
    for (k=0; k<=n; k++) { 
      for (l=0; l<=n; l++) {  
        t[k][l] = g2(k,l); 
      } 
    } 
  } 
} 
for (i=0; i<= n; i++) { 
  for (j=0; j<=n; j++) { 
    for (k=0; k<=n; k++) { 
      for (l=0; l<=n; l++) { 
        f(i,j,k,l) = g0(t[k][l],i,j,k,l); 
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      } 
    } 
  } 
} 

Projecting the iteration domain 
Finally, the redundant iterations of the precomputing statement can be removed by applying the same 
projection, giving: 
This gives the (desired) following program: 
for (k=0; k<=n; k++) { 
  for (l=0; l<=n; l++) { 
    t[k][l] = g2(k,l); 
  } 
} 
for (i=0; i<= n; i++) { 
  for (j=0; j<=n; j++) { 
    for (k=0; k<=n; k++) { 
      for (l=0; l<=n; l++) { 
        f(i,j,k,l) = g0(t[k][l],i,j,k,l); 
      } 
    } 
  } 
} 

Detecting pure sub-expressions 
This optimization relies on the detection of pure/read-only sub-expressions in a function (g() in the 
case of Hartree-Fock) that depend upon a strict subset of the loop iterators.  
Within R-Stream, this decomposition is best performed in the scalar optimizer. 
The inputs to the optimized function may be induction variables (loop iterators) or pure functions of the 
induction variables.  
Initially, each parameter to the function that is a pure function of the induction variables gets marked 
with the induction variables they depend upon.  
In our example:  
g(int i, int j, int k, int l) 

i depends upon [i] 
j depends upon [j] 
k depends upon [k]  
l depends upon [l] 

Roughly, R-Stream’s internal representation (IR) is an operator graph, in which nodes are operations 
and edges represent value flow between two operands. The predecessors to a node are the 
operations producing values for the node.  
 
The algorithm walks the successors of the nodes that depend upon loop induction variables by 
keeping track of which induction variables the successor node will depend upon. Walked nodes are 
added to the subexpression formed until a stopping criterion is met.  
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A successor node is associated with the union of the induction variables associated with its 
predecessors. Since the goal is to form pure sub-expressions that depend upon a subset of the 
induction variables, the aggregation of nodes into pure subexpressions stops when (before):  

1 the visited node would depend upon too many loop iterations, or 
2 the subexpression would contain a side-effect. This happens when a STORE is done on a 

variable that escapes the subexpression.  If the original function in which we are forming sub-
expressions is pure, this test is always false.  

There is an important tradeoff between the goals of forming large sub-expressions and forming sub-
expressions that depend upon a small number of induction variables.  
 
The amount of savings obtained through this optimization are in C×n!, where k is the number of 
induction variables that the expression does not depend upon, and C is the number of flops in the 
subexpression. Unfortunately, the number of loop iterations is not usually available to the scalar 
optimizer. Hence we have to rely on heuristics. A simple heuristic is based on the comparison 
between the cost of accessing a pre-computed value from memory versus the cost of recomputing it. 
This gives us a lower bound on the size of the subexpressions to form, since their estimated cost (in 
cycles) should be higher than, say, a L2 cache miss. Once this threshold is met, the heuristic would 
keep growing the subexpression until the number of iteration variables it depends upon grows, so that 
the number of reuses of the pre-computed subexpression is not reduced.   
 
In our example, at one step of the subexpression formation, the maximal subexpressions for i,j,k, and l 
would be:  
[i]: x[i], y[i], z[i], expnt[i] 
[j]: x[j], y[j], z[j], expnt[j] 
[k]: x[k], y[k], z[k], expnt[k] 
[l]: x[l], y[l], z[l], expnt[l] 
None of these expressions are big enough to justify precomputation, hence the formation of 
subexpressions aggregates subexpressions further, forming maximal expressions that depend upon 2 
variables: 
[i,j]: (expnt[i] * expnt[j]) / (expnt[i]+expnt[j]) * ((x[i]-x[j])(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])+(z[i]-z[j])*(z[i]-z[j])) 
[k,l]: (expnt[k] * expnt[l]) / (expnt[k]+expnt[l]) * ((x[k]-x[l])(x[k]-x[l])+(y[k]-y[l])*(y[k]-y[l])+(z[k]-z[l])*(z[k]-
z[l])) 
The number of flops in these expressions would be bigger than the threshold, which would define the 
expressions as eligible for pre-computation.  

Comparison with the hand-optimization 
In the previous sections, we have shown how a sub-expression of g that depends on (i,j) and on (k,l) 
may be optimized by computing their value once only. To summarize, we decomposed g(i,jk,l) into 
g0(g1(i,j),g2(k,l),i,j,k,l) and we rewrote the original four-deep loop as: 
 
for (k=0; k<=n; k++) { 
  for (l=0; l<=n; l++) { 
    t2[k][l] = g2(k,l); 
  } 
} 
for (i=0; i<= n; i++) { 
  for (j=0; j<=n; j++) { 



24 

    t1 = g1(i,j); 
    for (k=0; k<=n; k++) { 
      for (l=0; l<=n; l++) { 
        f(i,j,k,l) = g0(t1, t2[k][l], i,j,k,l); 
      } 
    } 
  } 
} 
 
ETI detected further that g1(x,y)=g2(x,y) for any(x, y) ∈ [0, n)!, which allowed them to not pre-compute 
both values of g1 and g2. Instead, they are computing one single pre-computation array:  
 
for (k=0; k<=n; k++) { 
  for (l=0; l<=n; l++) { 
    t[k][l] = g1(k,l); 
  } 
} 
for (i=0; i<= n; i++) { 
  for (j=0; j<=n; j++) { 
    for (k=0; k<=n; k++) { 
      for (l=0; l<=n; l++) { 
        f(i,j,k,l) = g0(t[i][j], t[k][l], i,j,k,l); 
      } 
    } 
  } 
} 
This saved anothern!computations per run of the four-deep loop (in reality, in both cases the 
precomputation happens out of the outer time loop), as compared to what our optimization would have 
obtained. The savings in terms of space is of only one element (t1=g1(i,j) isn’t fissioned, and hence 
not expanded into an array).  

General remarks 
The four-dimensional loop that we discussed in this section is actually embedded in a time iteration 
loop, which has a maximum number of iterations of (say) maxiter. The savings we can obtain (and that 
ETI has obtained) through this technique are then not in n!but (maxiter×n!). 
 
In general, a subexpression may be read-only only within a given scope (its inputs would be modified 
outside of that scope). The automatic optimization presented here is applicable to the restricted scope 
where the subexpression is read-only.  

g() caching optimization 
We are working on designing the automation of the optimization applied by ETI that consists of 
caching the values of g(). Our current thinking is that it would combine a pre-computation of g() into an 
array t that would be declared sparse. We would leverage the generation of sparse array codes within 
R-Stream that we are working on in the frame of the DoD-sponsored ENSIGN project. We will present 
our results in future reports.  


