GVR: Robust Resilience for High Error Rate Environments/Systems

- Expand ABFT from immediate to <u>Latent</u> and <u>Silent</u> Errors at extreme scale
 - Efficient Versioning and Recovery library
 - High performance, scalable versioning (NVM)
- Deep App Studies & New Recovery Types
 - Monte Carlo: OpenMC, Particle: ddcMD, AMR: Chombo, Iter: PCG/Trilinos.
 - Rollback, Adaptive, and Fwd Approx Recovery
 - 16,384 Rank experiments: <u>Scalable</u> & High Perform
 - Practical: Only Localized Code Change

			0	
		%	Application	Leverage
	Application	Changed	Lines of Code	Global View
	OpenMC	<2%	30 K	Yes
	PCG/Trilinos	$<\!\!1\%$	300 K	Yes
	ddcMD	<0.3%	110 K	Yes
	Chombo	$<\!\!1$ %	500 K	Yes

A. 1000's of Fast versions (NVM,SSD)

B. Scales well, demonstrated >16K Ranks

http://gvr.cs.uchicago.edu Andrew A. Chien & Pavan Balaji DOE/ASCR DE-SC0008603, DE-AC02-06CH11357 THE UNIVERSITY OF CHICAGO Argonne

<u>C. Practical:</u> < 1% change