
1

Resilience and Containment 
Domains

Sam Kaplan
ET International

January 21, 2015



2

Outline

● Background
● Status
● Code example
● Future Work



3

Background

● Exascale systems will have much higher rate of faults than 
current systems
– Larger systems = more failures

– Small components = more failures

– More complex applications/data = more failures

● Traditional checkpointing schemes do not cope well with 
such high failure rates
– Global checkpointing requires too much I/O

– Local checkpointing may cause a “domino effect”

● Errors must be caught quickly to avoid propagation



4

Problem

● How can we allow application programmers to 
easily make their programs resilient to these 
faults?

● How can we reduce the overhead of traditional 
resilience (i.e. checkpointing)?

● How can we provide resilience in an extreme-
scale, codelet-based environment?



5

Solution approach

● Containment Domains!
● Proposed by Mattan Erez and team at UT 

Austin
● http://lph.ece.utexas.edu/public/CD
s/ContainmentDomains

● C++ API in development
– Current implementation works only with serial 

programs

http://lph.ece.utexas.edu/public/CDs/ContainmentDomains
http://lph.ece.utexas.edu/public/CDs/ContainmentDomains


6

Containment domains

● Distributed, fine-grained, hierarchical method for 
error checking and recovery

● Allows optimization for specific applications or 
systems

● Maps well to codelet model
– Each CD can be handled independently from any other 

CDs in the system

– Only need to preserve data associated with currently 
active CD



7

Containment Domain API

● Preservation
– Save input data for later recovery

● Body
– Main algorithm function

● Detection
– User-defined function to check correctness of results 

– Includes checks for hardware faults

– If fault is detected, recover preserved data and re-run body



8

Containment Domain features

● Application is known to be in correct state before and after 
containment domain
– Correct state is defined by detection function

● Tunable
– Some CDs can be ignored if error rate is low enough

– May regenerate input data algorithmically instead of storing

● Scalable
– No coordination is needed

– Multiple recoveries can occur simultaneously

– Current model does not allow communication between CDs



9

Containment Domains in SWARM

● Basic feature set supported in SWARM 
prototype
– Data preservation/recovery

– User-defined detection functions

– Continuation-based API to fit SWARM model

● No support for nested CDs (yet)
● Hardware failures can be simulated through 

random failures of a detection function



10

SWARM API

● swarm_ContainmentDomain_begin(THIS, begin, begin_ctxt, check, 
check_ctxt, done, done_ctxt)
– begin: start of main body

– check: checks for errors
● On success, runs done()
● On failure, re-runs begin()

– done: cleanup and continue

● swarm_ContainmentDomain_preserve(THIS, data, length, id)
– Save input data on first execution

– Recover saved data on subsequent executions

– Allows arbitrary number of preservations per CD

● swarm_ContainmentDomain_finish(THIS)
– Close current CD and return to parent



11

SWARM API

● Next steps of CD are passed in NEXT and NEXT_THIS
– NEXT and NEXT_THIS should be scheduled after body or 

check phase is complete

● Result of check function is passed as INPUT parameter
– Depending on result of INPUT, either body or done codelet 

will be run next

● Able to re-run body and compare results without code 
duplication

● Everything else is handled internally in SWARM runtime



12

Code example

Codelet entry():
swarm_ContainmentDomain_init(cd);

/* set up contexts */

swarm_ContainmentDomain_begin(...);

Codelet begin():
swarm_ContainmentDomain_preserve(cd, &ctxt->A, sizeof(int), 0);

swarm_ContainmentDomain_preserve(cd, &ctxt->B, sizeof(int), 1);

*ctxt->C = ctxt->A * ctxt->B;

swarm_dispatch(NEXT, NEXT_THIS);



13

Code example

Codelet check():
int C2 = ctxt->A * ctxt->B;

success = (*ctxt->C == C2);

swarm_dispatch(NEXT, NEXT_THIS, success, NULL, NULL);

Codelet done():
swarm_ContainmentDomain_finish(cd);

swarm_shutdownRuntime(NULL);



14

Open questions

● What types of faults are expected?
– Arithmetic errors

– Memory errors

– Node failure

● How can we recover from each type of error?
● How can these errors can be simulated on current hardware?

– Randomly declare failure of check function, with certain probability

● What makes a good “check” function?
– Checksum: quick but not complete

– Run multiple times and compare results: thorough but slow



15

Future work

● Polishing prototype implementation
● Instrumenting a simple SWARM application 

with CDs
● Performance testing

– Compare CD approach to checkpointing with 
various error rates


