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1 Executive Summary

Programming models and environments play the essential roles in high performance computing of enabling

the conception, design, implementation and execution of science and engineering application codes. Program-

mer productivity is strongly influenced by the effectiveness of our programming models and environments, as

is software sustainability since our codes have lifespans measured in decades, so the advent of new comput-

ing architectures, increased concurrency, concerns for resilience, and the increasing demands for high-fidelity,

multi-physics, multi-scale and data-intensive computations mean that we have new challenges to address as

part of our fundamental R&D requirements. Fortunately, we also have new tools and environments that

make design, prototyping and delivery of new programming models easier than ever. The combination of new

and challenging requirements and new, powerful toolsets enables significant synergies for the next generation

of programming models and environments R&D. This report presents the topics discussed and results from

the 2014 DOE Office of Science Advanced Scientific Computing Research (ASCR) Programming Models

& Environments Summit, and subsequent discussions among the summit participants and contributors to

topics in this report.

This report presents and discusses the following topics:

1. Fundamental Drivers for Programming Models and Environments: Programming model

and environment changes are driven by two fundamental forces: (i) architecture changes stemming

from reaching scaling limits in traditional architectures and (ii) demands for more complex modeling,

simulation and decision-making support that spur increased demand for coupling of capabilities, in

addition to reducing approximation error with higher-fidelity representations. These drivers require

disruptive changes at all levels of the computing software stack, including programming models and

environment.

2. Emerging Application Design Requirements: The goal to produce ever more effective com-

putational results leads to demands for coupling previously separate software capabilities to enable

simultaneous resolution of multiple physics and scales, and to integrate large-scale data with large-

scale modeling and simulation. Tight coupling of these phenomena exposes new computational and

data access patterns as well as drives software complexity. Programming models and environments

must adapt to meet these emerging requirements.

3. Disruptive changes in application software architectures: The design and implementation of
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application software is changing. Application software developers are learning how to map their ap-

plication architectures to system architectures for both performance and portability. Programming

models and environments need to adapt in order to support application developers with proper ab-

stractions, and effective transformation to the underlying specific runtime and hardware systems for

performance and portability.

4. Primary programming challenges: New programming models and environments must assist the

application developer in handling massive, dynamic and hierarchical concurrency, performance vari-

ability arising from complex hardware control system that limits predictably, much greater attention

to data structures, placement, movement and locality and, potentially, explicit handling of resilience

at the programming level.

5. New approaches for design, prototyping and delivery of new programming models: The

emergence of several new programming environments is of particular interest for programming models

research. LLVM, clang, and, in the future, Flang, provide modular, extensible community program-

ming environments that enable syntax, analysis and transformation extensions to be inserted into a

production software stack. New features in C++ are also providing approaches for exploring pro-

gramming models, permitting effective and efficient embedded domain-specific languages (DSLs) that

enable design and development of new programming models within a supported, portable and standard

compiler environment.

6. Adapting applications to future systems requires a tiered and multi-phased approach:

Modeling and simulation for science and engineering cannot stop while we wait for new programming

models and environments to emerge. Furthermore architectures will continue to change over the com-

ing decades. Therefore we need near and long term strategies for adapting applications for effective

performance while at the same time keeping application codes viable for producing results. We discuss

a three-tier vision path for adapting applications to new systems, now and in the distant future.

7. Continued funding for fundamental parallel programming models research: While short

and medium term research efforts are necessarily limited by pragmatic constraints, some exploration

should focus on the fundamental semantics of programming representation, exploring pathways that

may enable disruptive changes for long term parallel programming approaches.
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2 Introduction

The creation of new programming models and environments is driven by the needs of user productivity and

operational effectiveness of the computing system. Programming models differ by the domain of applications

to be captured and the nature of systems upon which the applications are to run. Projected exascale computer

systems are expected to stress the means of programming and may demand advances in programming models

and the languages they imply.

The intent of this report is to provide a vision for exascale programming and a migration strategy that

will provide a meaningful path forward for domain scientists and application programmers from 2016 systems

to the 2023 exascale timeframe and beyond. The report highlights key areas of research as well as future

Research and Development (R&D) that must be put in place to accomplish this objective. As part of the

coordinated research programs being formulated to achieve exascale computing of the next decade, future

programming models are identified as crucial to its viability and success, requiring new R&D projects to

deliver the necessary programming environments.

Multiple reports have outlined the benefits of continuing the growth in computing performance with the

specific goal of building exascale computing systems to be used for modeling, simulation, and analysis of

large, complex scientific and engineering phenomena, (e.g., [5, 26]). The primary challenges in building an

exascale system are related to energy consumption, which causes problems with both heat density and total

cost of ownership, and these concerns at the hardware level will lead to a number of architectural trends

that will significantly change the way the systems must be programmed. An exascale system will have 100⇥

more hardware threads than current systems, new memory mechanisms, new communication mechanisms,

new synchronization mechanisms, explicit voltage and clock controls, new forms of heterogeneity, and higher

rates of errors and performance variability.

Some of these new features will require support in the programming models used for exascale; all of

them will require support in the environment: compilers, runtime, and tool infrastructure used to implement

these programming models. It is not reasonable to expect most programmers to address these new exascale

architecture features “by hand.” Thus, while energy is the primary design constraint for hardware designers,

the ability to program these systems may be the single biggest factor in their usability, effectiveness, and

widespread adoption.

Many of the anticipated hardware changes are not related to overall system scale (i.e., number of nodes),
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but instead are about the exascale building blocks: the processors, memory, interconnect, and storage

technology, as well as the interfaces between these pieces. The exascale programming techniques are not

only needed for the applications that will run on full exascale systems, but also for computations that run

on subsets of these systems or on smaller “petascale versions” of the exascale technology.

In addition, applications are evolving and are also imposing new requirements on programming models

and environments. The desire to solve increasingly complex problems that span length and time scales, as

well as multiple physical domains (e.g., mechanics, fluids and chemistry), are scientific drivers for exascale

computing, but they come with new challenges for the programming environment. Multiphysics simulations

will require the composition of separately developed codes; the desire for increased model fidelity will lead to

sparse and adaptive algorithms that create varying workloads; and the emergence of data intensive problems

may introduce new patterns of irregular data access. The usage models are also changing, with increased

emphasis on some approaches: ensemble runs will be used for uncertainty quantification and high throughput

screening; observational data may be incorporated into or compared with simulations; and I/O limitations

will increasingly require in-situ analysis of simulation results.

2.1 Hardware Challenges for Programming Environments

There have been numerous workshops, panels, task forces, and reports over the last seven years highlighting

the challenges that will be faced by domain experts and application developers when trying to program

projected exascale systems in a manner that fully exploits their key architectural features. A selection of

this material can be found on the Department of Energy (DOE) Advanced Scientific Computing Research

(ASCR) Web site [1]. One of these most recent reports is the “Top Ten Exascale Research Challenges” report

from a subcommittee of the DOE’s Advanced Scientific Computing Advisory Committee (ASCAC) [32]. The

list of challenges includes the need for programming environments that support massive parallelism, data

locality, and resilience. Several of the other challenges, such as energy efficiency, interconnect and memory

technology, and correctness, and scientific productivity also directly impact the programming environment.

In particular, the impact of energy efficiency on node architectures is discussed in the Abstract Machine

Models report [3]. Here we highlight some of the major hardware drivers for changes to implementation and

use of programming environments:

Energy Efficiency: Reducing power requirements and increasing energy efficiency is a critical issue.

Some power projections for exascale systems based on standard multicore technology are over 100 megawatts,
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making such systems impractical. To address the stringent requirements for energy efficiency, hardware

technology will continue to evolve, and in some cases, affect the lowest level programming interface provided

by the architecture.

Node Architecture: Architectural changes in the node have already disrupted the previously universal

programming model of flat message passing parallelism and even the more recent hybrid model that combines

message passing with intranode thread parallelism. Fine-grained data parallelism of various forms, limited

memory per core, non-uniform memory access effects, and software-managed levels of the memory hierarchy

all need to be addressed. In addition, the nodes are likely to become more hierarchical and heterogeneous, and

power (voltage and clock) controls are being exposed that may require significant management by software.

Scalability: The scalability of systems, systems software, and applications is a significant issue for

exascale computing. Exascale systems will pose unprecedented challenges in system-wide parallelism as well

as intra-node complexity. Systems will consist of one hundred thousand to one million nodes, and perhaps

as many as a billion cores. Managing and servicing a system of this size will be a challenge. Highly reliable

and scalable operating systems and systems software will be needed. Applications must maintain at least a

hundred-fold increase in the available parallelism, which is certainly a challenge, but also an opportunity for

new models, environments and algorithms.

Reliability and Correctness: Reliability is a significant concern as the number of processors grows and

software becomes more complex. Other factors driving up the rate of faults include smaller circuits running

at lower voltages, higher likelihood of low probability events, and the increased complexity of hardware

(e.g., heterogeneity, voltage controls, etc.), which may introduce more programming errors. Silent hardware

errors may become more frequent. The exascale system reliability target is a system with one day between

application-level interrupts. More frequent interrupts will require development of a fault model, which will in

turn enable co-designed advances in hardware and software reliability as well as new methods for application

resilience. Reliability will require some contribution at the programming interface level, but not burden

the programmer with devising and specifying detailed fault handlers. The programming model will need to

support characterization of success criteria associated with the program operation for automatic testing and

validation.

Another challenge, sufficiently important to be documented in the Secretary of Energy Advisory Board

(SEAB) Task Force on Next Generation High Performance Computing report [72], is the importance of

program portability. The report acknowledges that future hardware constraints will be significant enough to
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effect a broad and disruptive paradigm shift in algorithms and software architecture. While addressing these

challenges opens up renewed opportunity to introduce a higher level of software engineering, at the same

time, prior investments must be protected and a migration path from current to future environments must be

devised. Performance portability will be a significant concern. Experience has shown that application groups

will not develop software for next-generation supercomputers unless there is some assurance that the new

software will run on multiple generations of future systems, and run at different scales and on different types

of architectures at any point in time. To improve productivity, a programming model that abstracts some

of the architectural details from software developers, without sacrificing performance, is highly desirable.

2.2 Application Challenges for Programming Models and Environments

The 2010 ASCAC Subcommittee Report on Exascale Computing [5] describes several application-driven

challenges that arise from modern computational science simulations and the numerical techniques within

them.

Multiscale and Adaptive Methods: Many physical simulations involve modeling across a wide range

of space and time scales. As the physical system being simulated evolves over time, the data structures

and computational workload adapts to the need for higher resolution and higher accuracy. The result is

variable timestepping, adaptive discretizations based on techniques such as adaptive hierarchical blocks or

unstructured meshes, subscale models, and other dynamic techniques. Such methods are already used in

some petascale applications today, but there is a trend towards increased sophistication and broader use. In

addition, multiscale methods can bridge among multiple different physics models at different scales [42], on a

global or local/selective basis. To support high performance implementations of these methods, programming

models will need to move beyond static parallelism to facilitating the epxression and efficient execution of

irregular and dynamic forms of parallel computation, involving simultaneously multiple types of models and

algorithms.

Multiphysics Simulations: Increased computing power also allows multiple physical models to be

coupled in a complex simulation. For example, mechanics, fluids and chemistry are all necessary to under-

standing a combustion engine. Multiphysics simulations may be built by adding a new set of features to

an existing code or by combining two or more codes into one, which often requires some complex (in both

mathematics and software) communication between the different models. We would like to optimize such

communication so that the parts that are communicating can be localized; this locality optimization is a
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form of advanced loop fusion. Multiphysics simulations are not a new phenomenon for exascale, but they are

increasingly popular and have traditionally lagged in scalability and adaptation to new hardware features

relative to simpler applications focused on a single physical model. The implication of multiphysics is similar

to that for multiscale methods, where programming models need to move well beyond SPMD.

New Usage Models: The national Materials Genome Initiative exemplifies high throughput computing

used to screen many thousands of possible materials for a given application, such as the design of new energy-

efficient batteries. Similarly, ensembles of related simulations with different parameter settings may be used

to quantify uncertainties, to compare against observational data, and generally to gain confidence in the

results. The simulations in an ensemble may execute independently, but running times may vary widely and

the choice of which simulations to run can depend on previous results. Exascale systems will need to support

sophisticated workflow tools for these applications.

Application Size and Software Complexity: Some scientific applications are written by a single

person or small research group and contain only a few thousand lines of codes, but large codes that are used

in areas like climate modeling, weapons simulations, and engineering contain often millions of lines of code

and involve multiple programming languages, and libraries. Some of these have grown in size by an order of

magnitude since massive parallelism was introduced, making disruptions to the programming environment

much harder than it was in the early 90s. Programming tools must support maintenance and evolution of

such codes for exascale.

Data-Driven Applications: The SEAB report also highlighted an additional challenge of supporting

data-driven applications. As computer models of scientific phenomena have increased both in scale and in

detail, the requirements for increased computational power, typically in the form of FLOPS, have increased

exponentially, driving commensurate growth in system capability. The requirement for increasing Floating

Point Operations Per Second (FLOPS) is not likely to slacken in the foreseeable future. However, the nature

of the workloads to which these systems are applied is rapidly evolving. Even today, the performance of

many complex simulations is less dominated by the performance of floating-point operations than by memory

and integer operations. Moreover, the nature of the problems of greatest interest to security, industrial, and

scientific communities is becoming increasingly data driven. The implication for the programming model

and environment is that it should move toward supporting algorithms for the analysis of data. One aspect

of this is that the programming should facilitate efficient in-situ analysis.
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2.3 Application Software Design Challenges

At the start of the previous disruptive parallel computing transition from sequential and vector computers to

distributed memory systems, programming models research attempted to preserve a sequential programming

view for application developers. For example, the FORALL statement of High Performance Fortran (HPF)

attempted to support distributed memory execution while hiding the details of distributed data and execution

from the programmer. Unfortunately, while this approach preserved programmer productivity, it did not

enable execution productivity. Once the SPMD design pattern emerged as the superior approach to writing

distributed memory parallel applications, first supported via PVM and later by MPI, parallel programming

models research acquired a sharper focus guided by the specific needs of the new and emerging SPMD

application base.

Today, the parallel application design patterns for emerging platforms is still in an exploration phase.

While there is strong evidence that some kind of task management layer is needed as part of new application

designs, the details are still emerging. As a result, our programming models and environments research is

somewhat hindered and speculative by a lack of clear understanding of what our new application software

base really needs.

2.4 Principles of Exascale Programming Models and Environments

Future exascale computing systems have yet to be precisely defined, but many of their attributes can either

be predicted or can at least be narrowed to a few alternatives. Indeed, 100 petascale systems are already in

development and will soon be available, leaving little doubt about viable exascale designs. In this context,

the derivation of classes of appropriate programming models and environments can be considered to suffi-

cient degree of accuracy to guide the creation of research programs through which necessary programming

models and environments may be developed. This comes from general requirements as well as more specific

architecture characteristics. These will be discussed in more detail throughout this report, but some overall

principles and practices can be established. These include:

Asynchrony: Future systems will exhibit long and variable latencies to read data stores in remote

nodes or another level of the memory hierarchy. Contention for network, I/O, or memory bandwidth may

also create uncertainty of response times to remote accesses and service requests. Programming models and

environments will need to address these latencies, probably by embracing asynchrony in performing data
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movement and work scheduling to minimize waiting time for such events.

Load Balancing: To best make use of system resources for computations that are adaptive or for

machines that are highly variable, the programming environment will need semantic methods for guiding

load balancing of data and workflows, and at the same time minimizing data movement by co-locating

computation and data, and/or it will have to facilitate automatic methods (e.g., static/dynamic compilers)

for such purpose.

Dynamic Adaptive Control: Future systems may be too complex and too dynamic to be managed

efficiently by static mechanisms. Programming environments that employ dynamic resource management

and task scheduling through the support of runtime system software for introspective operation may achieve

higher efficiency and scalability than those that employ static methods, as long memory affinity concerns are

adequately respected.

Performance Portability: As a diversity of architecture types, scales, and generations will be served by

applications written in the new programming environments, the programmer effort needed to achieve good

performance on different systems has to be minimized by hiding some of the differences or allowing them

to be managed in an abstract way. Concerns that are specific to one architecture should affect application

codes in very limited and isolated parts.

Data Structures, Placement, and Layout: Data structures (both simple arrays and complex irreg-

ular structures) need to be mapped onto deep memory hierarchies and across distributed main memory, and

those mappings may need to adapt dynamically. The more complex data structures and mapping problems

arise in multiscale, multiphysics applications, both today and in future applications; they require sophisti-

cated data representation, organization, and transformation that is easy to use and that conforms to the

modalities of the applications and systems. Productivity gains are likely if the data structures’ implementa-

tion and mapping details can be hidden in the programming model implementation.

Data Movement: Exascale systems will likely involve new levels of memory, such as scratchpads and

Non-Volatile Random Access Memory (NVRAM), that are under software control. The programming model

and environment will need to either expose this to the programmer or manage it within the implementation.

Interoperability and Workflow Management: The programming models and environments of the

future have to enable big and complex applications to be constructed from smaller, more simple functions and

libraries, and they have to work with execution models and environments developed from other programming
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languages and interfaces.

2.5 Ecosystem Considerations

The development of programming models and environments for exascale does not happen in a vacuum, but

within an ecosystem that imposes major socio-economical constraints, such as:

Backward Compatibility: Many of the codes that now exist or are currently being developed will

continue to be used for decades; the cost of wholesale recoding would be prohibitive. The Department of

Energy, alone, has billions of dollars invested in its current application software, and individual applications

may have millions of lines of software. Some of the most widely used applications have grown substantially

since the last major disruption in high performance software, moving from sequential and vector machines to

distributed memory massively parallel ones. Therefore, exascale systems will need to run existing software

and, to the extent possible, minimize the need for changes to code.

Application Redesign: Changes in application design may eliminate many present programming model

challenges (and expose new challenges) by explicit design. Programming models research is derived in part

from an understanding of how today’s applications are designed and developed. Broad adoption of message

passing in the 1990s eliminated the need for global data and execution concepts in programming models,

and introduced other demands. We should expect the same shift in demands in the future.

Technology Reuse: The supercomputing market is small; it is viable economically because it reuses

hardware and software technologies that have much broader markets. This is true for programming en-

vironments as well; languages and compilers used in High-Performance Computing (HPC) have broad use

(C, C++), or are small modifications of languages that have broad use (OpenMP). The tool chain used to

support HPC programming environments (languages, compilers, debuggers, linkers, etc.) reuses technology

from broader markets. Exascale programming environments will need to achieve a similar level of reuse.

Open source software plays an important role in facilitating this reuse: it promotes commonality across

platforms, reduces the level of investment and risk undertaken by system integrators, and enables an ecosys-

tem where small companies and research organizations can contribute components to the exascale stack.

LLVM is a good example of such software. While it contains many components, programming environment

developers are free to use only those pieces they would like, such as just the code generation portion. Thus,

they can choose how to trade off product differentiation against reduced development cost.
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Financial Viability: In order to encourage private investment, and thus extend the government dollar,

it must be recognized that there needs to be a return on that investment. For industry, this often means

that contributing everything to open source is not viable. In some cases, significant private investment has

already been made to develop capabilities such as industrial strength C++ and Fortran compilers, advanced

optimization systems, and math libraries. There is no justification for spending government funds to try

to reproduce such capabilities as open source. In fact, developing open source can undermine the private

investment. While the support revenue business model for open source exists, it provides low return and thus

it does not always allow developers of advanced technologies to recoup their costs. So it must be recognized

that, while some exascale developments could be contributed to open source, some industry technology

should be employed, which ought not be open source.

Human Skills Reuse: The community of people that develop HPC codes is small. This community,

due to past experience, is reluctant to adopt new programming models, especially if those models have a

high learning curve. New programming technologies will generally not be adopted unless they (i) provide

great benefit; or (ii) have a low learning curve and low risk.

Diverse and Competing Requirements: It is important to remember that any discussion of program-

ming models addresses the needs of a diverse community that includes domain experts who use codes but do

not develop them; application development teams who integrate domain expertise and computer expertise;

and library development teams who combine algorithmic expertise with computer expertise. These commu-

nities, and the players within the teams, have different needs and are likely to use different programming

environments; one size does not fit all.

Furthermore, with the diversity of the community that programming models address, there is the ques-

tion of who benefits from the adoption of new programming tools. For example, the adoption of a high-level,

semantics-rich exascale programming approach may provide portability and increased sustainability of soft-

ware through multiple generations of hardware platforms and users. This great benefit to the overall program

life cycle may not be recognized by an application group solely working toward short-term research goals.

3 Role of Programming Models and Environments Research

There are a number of ways in which a programming environment research program can impact—and has

impacted—the practice of parallel programming. Ongoing research is needed to resolve open questions related
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to the uncertainty around hardware features, find the best approach for dealing with them, and uncover the

potential for radically improved productivity from higher-level programming models. The various research

projects (and the discussions at the 2014 workshop) naturally revealed different emphases on which of the

hardware or application challenges are most important, and different approaches to hiding or exposing those

features.

3.1 Challenges

Approaches to develop new programming models have a “chicken and egg” problem: developers are reluctant

to use a new programming environment that is not in broad use and may be discontinued; on the other

hand, it is hard to justify large investments in a new programming environment that is not in broad use,

and it is hard to properly evolve and evaluate such an environment without a large user community. It is

seldom the case that the first version of a new system is “right.” Multiple generations are needed before the

system is appropriate for broad use. This vicious circle causes most attempts to develop new languages and

systems to fail to achieve widespread adoption.

This threshold for adoption is higher with approaches that require more wholesale changes to applications.

This is most severe with “all or nothing” solutions that require a major commitment to a new approach, rather

than a gradual introduction. This means that innovations in the programming system implementation may

be preferred over things that affect the programming model itself, and more incremental solutions may be

preferred to preserve prior application software investments. At the same time, the desire to minimize change

can limit creative solutions, such as hardware innovations or new high level languages, so it is important

that a research program balance investments across potential risk and reward spectrums.

Finally, there should be a process by which research ideas are transitioned to production, perhaps by

focusing, initially, on small stand-alone codes that are more experimental and later aim for the gradual

replacement of components in large application codes. Such a process involves shared investments of time

and funding across disciplines to ensure that new ideas are given due consideration, while acknowledging

that application experts, especially those that understand advanced programming notions, are a critical

resource. Such activities should therefore be a two-way communication, starting with some education of

the programming environments research community to understand the requirements and desires of a given

application area.
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3.2 Metrics for Success

Here we consider some of the metrics for a successful research program and how results could feed into a

production software stack development activity:

• A research project may define a new language, library, or tool that becomes widely adopted by compu-

tational scientists. This requires a successful prototype implementation from the research project, in

addition to a substantial long-term commitment to fund development and maintenance, possibly com-

bined with ongoing research. The commitment can either come through the DOE computing centers

and vendors, so that the programming environment becomes part of procurements, or directly from

the DOE research program.

• Specific concepts within a language, library, or compiler implementation or tool can be transferred into

existing open source or proprietary software. In this case, the support costs are part of the ongoing

cost of developing, say, GNU tools, the MPI vendor implementations, or various OpenMP compilers.

However, the bar for adoption is higher than in the first scenario, and possibly requires that other

communities outside DOE or scientific computing see them as valuable. UPC was an example of this

kind of transfer, where the language constructs were added to GNU tools and the EDG front-end

used by many vendor compilers, which encourages new implementations. However, the existence of a

complete open source solution (with continued support from DOD) was also part of this picture.

• An improved understanding of programming model or implementation techniques can influence other

research projects. This can be important in developing a consensus around certain ideas, just as the

many message passing libraries in the early 90’s gave the community enough experience to define

a standard message passing interface. Community consensus is needed on the semantics of these

abstractions, and an understanding of how they can be embedded in the languages programmers are

likely to employ (e.g., C, C++, Fortran, etc.).

• While the impact may be less obvious, research programs that show certain techniques to be imprac-

tical, inefficient, provably suboptimal, or cumbersome are also important to the success of those ideas

that succeed. They help the community move forward and develop the ideas that achieve other forms

of impact. Formalizing concepts in the form of a programming language and implementation can

help crystallize the ideas and reveal ambiguities or inefficiencies, even if the language itself is not in

widespread use.
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4 Background, Challenges and Opportunities

The focus on programming models in this report (rather than the explicit concentration on a particular

language syntax) permits a more generalized strategy of investigation. Multiple languages or libraries may

be devised to realize a particular family of programming models. The model provides a unifying abstraction

for which choices of form may be later selected. We present in this section a taxonomy of the design choices

for exascale programming models and a few basic assumptions that guide us through this report.

4.1 Characterizing Programming Models and Environments

We use the following definitions:

• A parallel programming model provides a set of abstractions that simplify and structure the way the

programmer thinks about and expresses a parallel algorithm [67].

• A parallel programming environment implements one or more parallel programming models. Thus,

Message-Passing is a parallel programming model; MPI is a parallel programming environment. A

parallel programming environment may implement multiple parallel programming models: MPI can be

used for two-sided message-passing (send-receive), for bulk-synchronous communication (collectives),

or for one-sided communication, i.e., Remote Direct Memory Access (RDMA).1

New programming models and environments aim to achieve two goals:

1. Improve the programmer productivity of code development activities.

2. Improve the execution productivity of code as it runs on a given system.

The first item covers the human effort needed to design, code, debug, test, validate, tune, port, support,

modify, and sustain applications and libraries. The second item covers the machine resources (time and

energy) needed to execute a program. These two goals are partly conflicting forces: code that executes faster

may take longer to write, debug, and test, and may be harder to port and maintain.
1
RDMA is a system level mechanism that can be used to move data between nodes without involving the processors on

the remote node. Even on the initiating process, much of the communication work can be offloaded to the network interface.

RDMA features in libraries and languages may implement more general mechanisms that perform reformatting, which may

either be supported directly by hardware or implemented in software.
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The apparent competition between programmer and execution productivity can be reconciled to a large

degree by proper application software design. As mentioned in 2.3, parallel application design has not

yet evolved to support effective mapping onto emerging scalable manycore, accelerator and hybrid node

architectures. As new designs emerge the conflict between the above items can be substantially reduced.

This document focuses on the needs of application programmers and, to a lesser extent, the developers of

scientific libraries. This ignores the development of system services and middleware. Application program-

ming for exascale will focus on the concerns that are specific to large-scale parallelism. We describe these

concerns, assuming an imperative programming model:

Execution Distribution: The potentially dynamic decomposition of a computation into “execution chunks”

(for example iteration tiles, or more generally tasks) that can be executed concurrently, and the ex-

pression of dependences among these chunks.

Scheduling: The allocation of iteration tiles to execution units (e.g., cores), so as to enhance the utilization

of the execution units (load balancing) and reduce communication.

Data Partitioning: The decomposition of global data structures into “data chunks” (for example data tiles)

that can be stored in distinct locations.

Data Placement: The potentially dynamic mapping of data tiles to specific physical memory locations.

Data Layout: The potentially dynamic organization of the elements of a data tile at each physical memory

location.

Communication and Synchronization: The movement of data tiles or iteration tiles that is needed to

handle dynamic distributions, to ensure each iteration tile has access to the data tile it works on, and to

enforce dependences. Communication and synchronization can happen together (as in a message-driven

computation) or separately (an event occurrence that satisfies a dependence).

Error Handling: Detection and handling of faults, such as rollback of the computation and restoration of

state from checkpoints, and potentially disabling faulty processors.

Power Management: Dynamic control of voltage and clocks; also maintaining power limits when hardware

is over-provisioned, meaning that there are more transistors in the processors, network, and memory

than can be simultaneously powered and operated.
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A parallel programming model may ignore some of the concerns listed above, assuming that compilers or

the runtime system will make the appropriate choices. In fact, the process of creating parallel code can be

considered a process of successive refinement, where one starts with a high-level abstract specification of an

algorithm and progressively provides more information on the actual binding of the computation to machine

resources. The discussion in our community focuses on the exact layering of parallel programming models

and parallel programming environments that supports this process. In particular:

• Do we have one parallel programming environment that is used to express algorithms, or do we have a

stack of different parallel programming environments, where higher-level systems are implemented on

top of lower-level systems? (e.g., using a Domain Specific Language (DSL) that is compiled into MPI

+ OpenMP.)

• Do we stop programmers from meddling with programming to low-level details of the architecture,

in the interest of portability or to avoid constraining the compiler and runtime? In particular, do

we expose error handling and power management in the parallel programming model? Do we expose

physical resources (e.g., node count), or higher-level, virtual resources?

We make two fundamental assumptions:

1. Programming will be done at multiple levels of abstraction, and the application programming stack will

support programmer intervention at all levels of abstraction. A three-level model for these abstractions

(see Appendix A for details) is:

• High-level: Domain-specific programming models, perhaps supported by DSLs, that are used by

application domain experts, in order to express the application logic in terms that are meaningful

for the particular domain. This layer may also be implemented via an application-specific data

and work decomposition similar to the approach traditionally used with SPMD applications, but

would be extended to include task-level decomposition.

• Middle-level: General-purpose programming models, that expose algorithmic abstractions that

are not specific to one application domain and use general data structures. Most programming

languages (Fortran, C++, OpenMP, etc.) support such a programming model. The compiler and

runtime that maps these languages to the hardware may hide some features of the system—such

as the number of cores running an OpenMP program.
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• Low-level: Architecture-specific programming models, that provide explicit control of the com-

puting resources and, therefore, have well-defined performance models.

The separation between these levels is fuzzy, and one may more properly speak of a spectrum, rather

than three well-separated clusters.

An area of discussion in our community concerns the degree to which new execution models needed

for efficient exascale computing permeate through the levels of abstraction. In one view, the execution

model is only exposed at the lowest level, and reflects the nature of new exascale architectures. In

this view, the higher-level programming models are more familiar to the applications programmer,

and tools such as compilers map into the new execution model. In another view, the new execution

model for exascale is reflected at every level of abstraction, and programmers must take the exascale

architecture into account, even at the highest levels of programming.

A programmer can program an application at multiple levels (e.g., some parts using high-level DSLs

and other parts at a low level using machine level constructs). The same code can be successively

developed at a high level and tuned at a low level. An implication of this choice is that low-level code

generated from a DSL program should be, to the extent possible, human readable. It may turn out

that application programmers will never have to deal with low-level resilience or energy, if compilers,

runtime, and middleware can successfully handle these, with no significant performance loss. But it is

too soon to decide one way or another.

2. The application programming stack will support multiple starting points (at high level or middle level)

to get to low-level, executable code. Large applications already combine code developed using different

parallel programming environments, and there is no reason to assume this will change. Also, any new

parallel programming environment will need to coexist with “legacy” code. This makes the question of

interoperability paramount.

The different parallel programming environments may eventually converge to one execution model that is

supported by the system. The execution model is supported by the hardware operating system and common

runtime available on the machine. It defines the set of operations supported by the system and their effect,

and the mechanisms for composing them. In addition to this semantic aspect, a Performance Model will

provide an estimate of the resources (processors, time, memory, energy, etc.) consumed by an execution.

Thus, for a current supercomputer, the execution model may describe a system as consisting of interconnected
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nodes, each with a fixed number of hardware threads, each executing one instruction stream and sharing

the node’s memory; nodes support various intra-node and inter-node synchronization and communication

operations. The above simplified model would not describe in an accurate manner heterogeneous nodes with

accelerators and different memory types. The model can be refined to account for those. Our community is

still debating whether it is feasible to provide one common execution model that would work for all relevant

platforms. While, at some distance, all computers look the same, a common execution model may not be

able to support an accurate Performance Model.

4.2 Design Choices

This is a survey of the design choice considerations. It provides a general overview of the design space. We

will expand this in more detail regarding specific implementation strategies in later sections.

4.2.1 Low Level

We assume that the hardware, OS, and common runtime will be supported by a low-level parallel program-

ming model that is very close to the execution model.

For example, today’s execution model is supported by a parallel programming model that is a low-level

communication library and a simple thread library: a set of cores is dedicated to the application code; a

logical thread is associated with each physical thread of these cores. The threads within a node communicate

via shared memory and simple (non-blocking) synchronization operations. Communication across nodes uses

message passing and simple (non-blocking) synchronization operations. This lowermost parallel programming

model is focused on exposing the performance of the underlying hardware in the most direct way possible.

The parallel programming model can be supported by using MPI and OpenMP in a restricted fashion.

They could also be supported by lower-level common runtimes, which more directly embody the an-

ticipated exascale execution model. In this runtime, computation is expressed as lightweight, fine-grained,

event-driven tasks with explicit and structured use of memory, dependencies, and synchronization. This

runtime will facilitate dynamic fine-grained scheduling, load balancing, and resilience. Such a lower-level

abstraction could support multiple types of parallel programming models.

As we move to higher-level programming models, we face a plethora of choices, some of which are listed

below.
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4.2.2 Uniform vs. Hybrid

Low-level models will use different communication mechanisms inside nodes (intra-node) and across nodes

(inter-node). While it is possible to design a parallel programming model that hides this distinction at

higher level of abstractions (e.g., by focusing on the transfer of ownership of data tiles while ignoring the

mechanisms used for this transfer; the difference will be in the relative performance, not in the semantics),

it is highly unlikely that it will be satisfactory. Inter-node latency, bandwidth and control transfer costs are

substantially higher than intra-node. Algorithm developers will need to take advantage of lower on-node

costs in order to achieve optimal performance. For example, wavefront algorithms that assume light-weight

control transfer, synchronization and shared data access are feasible for intra-node execution, but typically

not for inter-node. If forced to program at a high-level only, we are destined to have suboptimal performance.

Furthermore, the broader performance-oriented computing community, in particular the vendors, will

invest in intra-node parallel programming models and environments. These models and environments will

support multiple levels of parallel (not just one), including vectorization/SIMT and one or more levels of

tasking. Our efforts must acknowledge and build on these investments, not try to replace or hide them;

otherwise we face the same destiny as HPF.

Respecting the independent availability of intra-node models and environments does not mean we have

to explicitly write code for each type of node. A low-level model may use different programming models

and environments for different types of computation engines, such as CPUs and GPUs. Or, it can use

the same model and same language (e.g., OpenMP), and let the compiler and runtime decide how do map

iteration tiles among different types of computation engines. In fact, programmer productivity demands

that we should strive for performance portability across node architectures as much as our algorithms and

programming environments permit, while keeping performance levels acceptably high.

4.2.3 Physical vs. Virtual

Resources in the system, such as memory, cores, or nodes can be virtualized by adding a layer that maps

logical resources onto physical resources: paging is used to virtualize memory; thread schedulers virtualize

cores by dynamically mapping logical threads onto physical cores. Nodes are virtualized in a package such

as Charm++ [50] in a system that supports the migration of “virtual nodes.” Virtualization frees the

programmer from the need to manage the mapping of computation or data chunks to physical locations; the
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price is a possibly suboptimal mapping, the need for over-decomposition (e.g., having more logical threads

than physical threads) to ensure high utilization, and the overhead for dynamically scheduling threads or

moving data that restricts the frequency at which mappings can change. Thus, systems such as TBB

[65] or Cilk [17] can manage the dynamic scheduling of an execution every few microseconds (thousands

of instructions); Charm++ migrates virtual nodes only a few times in an hour. Concurrent Collections

(CnC) [21] provides a fully virtualized space of control tags and data items that can be mapped strategically

to reliable and volatile storage to provide resilience [81].

4.2.4 Scheduling and Mapping

The mapping of virtual resources to physical locations can be done with a variety of constraints: the mapping

of threads can happen once, when the thread is created, or multiple times, with migration. Thread migration

can be restricted either to a set of cores or to one node; alternatively, threads could be migrated (together

with their private data) across nodes.

In order to reduce communication, it is necessary to properly align the mapping of computation and the

mapping of data. Most memory references in a computation should be made to local data. Determining the

optimal alignment is a hard (NP hard) problem, and various heuristics have to be used.

One approach is control parallelism, which focuses on the distribution of control and moves data where

it is needed. Most shared-memory programming models and environments, including OpenMP, implement

control parallelism: they provide the programmer some control of how computation is laid out among cores,

but no control on data location. These models were designed for systems where efficient use of cores was

paramount, whereas communication overheads to shared memory were negligible. They are less appropriate

for environments where communication costs are a major issue (as for modern CPUs).

The dual approach is data parallelism, which provides programmer control over the distribution of data

and moves execution where the data resides—by using an “owner compute” rule so that each operation is

executed near the location of its stored result. High-Performance Fortran is an example of such an approach.

Most systems exist in between these two extremes: object parallel models, such as Charm++, use objects

that combine data and control as the unit that can be migrated. Message-passing systems and PGAS

languages have a fixed association of data and control. However, since data allocation is controlled locally in

a message passing application, data migration can be efficiently executed by using portable libraries such as
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Zoltan [46, 30] and Metis [52]. Use of these libraries within a message-passing application enables high-fidelity

mapping of control and data parallelism, informed by computation and communication costs known only to

the application developer, and the ability to decide if and when to remap control and data if load imbalance

occurs during execution, e.g., if the given application tracks front as part of an evolutionary simulation.

Some highly optimized kernels—such as neutral territory methods, systolic array algorithms, and communication-

avoiding algorithms—combine control scheduling tightly with data scheduling in order to optimize commu-

nication.

While scheduling and mapping of computation and data appear to be extremely challenging problems in

the presence of emerging node-parallel architectures, we anticipate that new application architectures–which

explicitly manage work-data partitioning at a task level–will provide the primary means of assuring local

data access, in the same way that distributed memory application architectures have addressed this issue

in the past. Intra-node tasking application architectures will have more flexibility than classic MPI-based

approaches, for example enabling light-weight control transfer via futures mechanisms, but will, by design,

enable co-location of computation and data.

4.2.5 Communication

Communication moves data from one physical location to another. It can be one-sided, issued by one thread

only; two-sided involving two threads; or collective, involving multiple threads. It can be implicit, as a

side-effect of a reference that moves data from memory to cache or can cause a cache line eviction; it can be

explicit, as with a cache prefetch or a put or get operation. It can be synchronous, or blocking, as with a read

that must appear to complete before the next instruction executes; it can be asynchronous, or non-blocking

or split-phase, if the operation that initiates the communication is distinct from the operation that completes

it. Data movement can be an explicit copy, where the source and destination have distinct names; or caching,

where the physical location changes, but not the name of the datum. Caching is coherent if hardware or

firmware can locate the latest copy of a piece of data, or non-coherent otherwise. Data can be reformatted,

distributed, or computed on as it moves, for individual communications and collectives. Communication can

also effect synchronization, as in a message-driven computation that starts a task upon message arrival.
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4.2.6 Synchronization

Synchronization affects the relative (perceived) ordering of concurrent operations. Thus, a send-receive

communication is synchronizing since the send must start before the receive ends. Synchronization can be

two-sided or collective. Message-passing typically uses ordering synchronization that determines the relative

order of operations at two threads; a signal-wait pair is an ordering synchronization; shared-memory often

uses non-ordering synchronizations, such as locks. Non-ordering synchronizations introduce nondeterminism,

where different execution schedules may lead to different interleavings and different outcomes. Some limited

forms of nondeterminism, such as changes in the relative order of operations in a reduction, are more benign

than others, as they only cause rounding errors. Nondeterminism makes debugging and testing more difficult,

and should be avoided whenever possible. It would seem that avoiding nondeterminism is difficult and costly

for some classes of computations, such as some graph algorithms, but some numerical algorithms can manage

to get the right result with benign nondeterminism.

Excessive use of synchronization can result in arbitrary dependence graphs, which can make code hard

to understand. Many systems restrict synchronization so that the dependence graph is a series-parallel

graph. Such a model is often called fork-join; fork-join is also used for programming models where control

dependences form series-parallel graphs, but where synchronization operations can add additional depen-

dences. The same effect can be obtained by a restricted use of synchronization, such as in a bulk-synchronous

programming model. The execution of such a code has serial semantics.

Some in the exascale programming community are developing systems for arbitrary synchronization—

specifically event-driven programming models. This comes from the recognition that a very promising source

of the additional concurrency needed for exascale is to avoid restrictive synchronization models that can only

approximate the true dependences in the application. While programming at this level is verbose and hard

to understand, compiler technology exists that can generate efficient schedules expressed in an event-driven

model from high-level programming abstractions [22]. Furthermore, task-centric application designs will

naturally enable expression of relaxed synchronization, since, by default, tasks are asynchronous execution

units that are annotated with synchronization restrictions.
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4.2.7 Global View vs. Local View

Global view, or more accurately aggregate view, approaches provide pre-defined support for managing data

across more than one memory image and dispatching execution across more than one thread. Local view

approaches support logically sequential execution accessing a unique data source. Modern programming

models and environments can support aggregate and local views at various levels of the system architecture.

For example, an application using message passing is a local view approach at the inter-node level, but may

use OpenMP as an aggregate approach within a node.

Global or aggregate views typically improve programmer productivity, but can hinder performance if

the aggregate execution does not effectively map computation and data. Programming languages such as

UPC and Co-Array Fortran support dual views of data with clear process-data mapping with some success.

However, the most common and reliable performance, which blends global view productivity benefits and

local view performance is obtained from application frameworks that provide global view programming

support but local view execution underneath.

4.3 Examples

The following are brief examples of the types of systems currently used to execute parallel programs.

4.3.1 Shared Memory Systems

Shared memory languages, such as OpenMP, TBB, or Cilk provide a global (flat) address space—hence

a global view of data. Communication in these languages is implicit (via shared memory accesses), while

synchronization is explicit (via parallel control constructs, atomic operations, or synchronization operations).

TBB and Cilk++ encourage, but do not enforce, a fork-join programming model. OpenMP supports

nested loop parallelism that is a form of a fork-join programming model. All allow more general synchro-

nization.

4.3.2 Distributed Memory

MPI+C (or C++ or Fortran), which is often called flat MPI, provides a uniform programming model; it can

support a distributed address space, with explicit communication, but can also be implemented on top of
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shared memory hardware. Communication can be one-sided, two-sided, or collective, as well as synchronous

or asynchronous. It can be used in a bulk-synchronous programming style with all communication happening

in a separate phase, possibly as collective operations.

Synchronous PGAS languages, such as UPC, also support a homogeneous programming model. In these

languages, communication is implicit through pointer dereferences and array indexing, and can also be done

with more explicit bulk copy operations as one-sided communication. PGAS languages can be implemented

for shared or distributed memory hardware, and can take advantage of the shared memory system by

using simple load and store instructions for accesses to “remote” data. In UPC and Co-Array Fortran, the

scheduling of threads and the mapping of data is static. UPC provides a global view of data, and a local

view of control. Chapel supports a global view both of data and of control.

4.3.3 Hybrid Models

MPI+OpenMP is a hybrid model, with different notation for shared memory parallelism and distributed

memory parallelism. It reflects the popularity of multicore processor building blocks for parallel systems,

and directly uses the load/store operations in shared memory—but explicit communication between nodes.

While MPI is used in an estimated 90% of HPC applications, a smaller fraction use OpenMP and still fewer

use a node programming model specifically for GPUs, e.g., OpenACC or CUDA.

4.4 New Approaches for Programming Model Design, Prototyping and Deliv-

ery

The emergence of several new programming environments, tools and language capabilities is of particular

interest for programming models research. For many years the computing community has wanted a common

backend compiling environment. In the past few years, the emergence of LLVM has provided the right layers

of abstraction and adaptability for almost universal standardization of intermediate representation (IR) of

source code, and efficient adaptation of the IR to a specific target processor. Similarly clang has emerged

as a new community effort to provide a C/C++ compiler environment built on LLVM, and the very recent

announcement of renewed Flang effort provides hope for a similar impact on Fortran. All of these efforts

also promote modularity and the opportunity to insert custom syntax and IR analysis and transformation

layers within an otherwise production software stack, enabling localized innovation in programming models
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that can be used by application codes with minimal risk exposure.

Another emerging capability is effective and efficient support for embedded domain-specific languages

(DSLs) in C++. The series of 2011, 2014 and 2017 C++ standards enable design and development of

new programming models within a supported compiler environment. C++ 2017 will also include a parallel

algorithms library. New programming models, expressed as embedded DSLs, can be written in standard

portable C++ and delivered to application teams with far less concern for sustainability issues. Furthermore,

DSL concepts, if general enough, can be considered as candidates for future C++ standard features. Array

views are a concrete example of this kind of migration.

4.5 Current State

Most existing DOE applications are written in flat MPI, where each MPI rank is a single process and thread.

There has been some progress in making ranks multi-threaded, usually through the use of OpenMP for CPUs

and CUDA or OpenMP for GPUs. These applications are typically written in Fortran, C or C++, with C

and C++ being increasingly used.

Porting a flat MPI application is relatively straightforward, but is often not the best strategy for good

performance, especially with manycore chips. Accelerating such an application with OpenMP or OpenACC

can be challenging. Offloading portions of the application onto GPUs adds further complexity and requires

additional work.

Various compiler analysis tools are available (of varying quality) that can help identify parallel regions

amenable to using OpenMP (or OpenACC). The best of these tools provide sufficient dependence analysis

to help the programmer identify what can and cannot be parallelized to the compiler.

New applications today tend to be written in some combination of Fortran, C, C++, and Python. While

Fortran is often dismissed as an out-of-date language, and its viability as a commercial product is often weak,

it is still very important to the HPC community. Any comprehensive plan for preserving our application base

must include credible Fortran plans. C++ (with C as an important subset) has emerged as the preferred

portable parallel programming environment in portions of the HPC community, and is widely used in the

performance-oriented technical market, by companies such as Google. Python is a preferred workflow and

scripting language, but is structurally not suitable for most large-scale application codes.

There has also been some experimentation with DSLs. Embedded DSLs, built directly within or upon
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existing languages, have shown some early benefits in their ability to leverage existing tool chains (e.g.,

debuggers and performance analysis tools). However, these experiences have been fairly limited to date.

In addition, some newer languages and programming models are starting to see very limited use for

applications. While many of these are early in their research phases, a few have seen use for production

applications, or have at least made significant progress on benchmarks or mini-apps. Charm++ has been

used successfully in production for the molecular dynamics code NAMD and several other applications.

Chapel has shown some promise in programmability and portability, including an implementation of the

shock hydro mini-app LULESH, but it still needs to demonstrate sufficient performance.

Much of the ongoing efforts in programming work by hardware and software vendors is focused on

continued improvements of existing programming environments. MPI advances include better support of

one-sided communication, support for fault-tolerance (in experimental libraries), support for new MPI3

features, and better performance with large thread counts. Work on OpenMP includes support for new

OpenMP 4 features, better scalability with high thread counts, and compilation for GPUs. Vendors are also

working to bring support for parallel execution to the underlying programming languages, such as in the

most recent C++11 and C++14 standards.

Along with this evolutionary work, some vendors are also investigating potentially revolutionary ap-

proaches to HPC. This includes work on Chapel by Cray [24], X10 by IBM [70], Concurrent Collections

(CnC) [21] by Intel, and R-Stream [56] by Reservoir Labs. While these are interesting research projects,

history and current market size limits suggest that the broad HPC community will not adopt them because

of portability and sustainability concerns.

A major trend in several vendor products (OpenMP, Cilk, TBB) and research projects is support for a

lightweight task model running in shared memory—i.e., the dynamic scheduling of entities that are light-

weight threads, not visible to the Operating System (OS). In these projects, work stealing is used for load

balancing and for regulating the amount of currency to balance with the amount free execution hardware

resources [16]. Work stealing can be made very low overhead through the use of fast data structures, deques,

for task queues. In research ,it has been demonstrated that work stealing can scale to very large numbers of

tasks and nodes on distributed memory hardware [31].

A global name space, together with RDMA communication, provides the internode communication mech-

anism for many of the emerging languages and runtimes; the objects moved can be logical tiles, rather than

address ranges. A key issue for such a model is the efficient scheduling of tasks upon the arrival of data they
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require. The efficient support for such models is a key goal of projects such as Qthreads with Portals [75]

and Argobots [9].

Such models can also be expressed using message driven objects as in Charm++ [51] or with a dataflow

model that expresses dependences across objects, such Legion [15], Dague [20], CnC [21], or SMPSs and

OmpSs [62, 34].

This event-drive, lightweight task, model has many attractive features:

• Latency hiding: Having many tasks “in-flight” enables latency hiding, as stalled progress on one task

can be covered by execution of another task.

• Dynamic load balancing: Similarly, many tasks mean that work can be dynamically scheduled, with

sensitivity to temporal locality issues.

• Natural resilience strategy: If tasks communicate only with data that is read when the task is dispatched

and data written when the task has completed, then the task parent can re-dispatch a task that fails

or times out—assuming that errors are detected before task completion.2

• Domain scientist productivity: Task code does not need to be highly scalable itself, since parallelism

is obtained by concurrent execution of many tasks. This permits a domain scientist to write simpler

code—paying attention to vectorization or SIMT concerns, perhaps modest thread parallelism to exploit

low-level shared caches, and hyper-threading—but otherwise write correct sequential code in common

languages.

• Increased concurrency: The event-driven task model can express dependence synchronization with

fewer approximations, becoming a source of additional parallelism.

• Multi-language development: Task code can be written in Fortran, C, or C++, or be generated auto-

matically from higher-level abstractions.

• Multi-level memory systems: Tasks can be spawned recursively, and data scoped dynamically to enable

efficient use of multi-level memory architectures.

On the downside, the envisioned event driven lightweight task model requires an overdecomposition, where

the number of tasks is much larger than the number of executing threads; this makes the task granularity
2
This is a good assumption. Exascale hardware that is being designed will with extremely high probability detect faults:

RAM, latch, and register state will have parity or ECC. Combinational logic will be designed with circuits for which faults will

be unlikely, even running at Near Threshold Voltage (NTV).
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more fine, and reduces the computation intensity (i.e., computation to memory access ratio) of the tasks,

unless the tasks can be scheduled in ways that find locality among tasks. Also, it has proven difficult so

far to find a compromise between load balancing and locality preservation. The problems becomes even

more difficult if task dispatching and load balancing targets the entire system, rather than one node only.

System-wide task management strategies are best integrated into applications where particular knowledge

about the cost of task migration across nodes can be used to inform migration choices.

It is important to note that new application architectures are emerging that are expressly designed to

exploit lightweight tasking runtime environments, as they mature. When the application architecture itself

provides a task data and work decomposition, programming model requirements become much simpler. In the

same way that distributed memory application designs bypassed the need for HPF in the 1990s, task-based

application architectures will significantly simplify programming model and environments requirements for

many applications.

5 Vision

Future applications will need to expose massive concurrency, tolerate dynamic execution variability, exploit

locality in many levels of memory, and at the same time tolerate latencies that vary by many orders of

magnitude. Applications will also need resilient implementations so that the impacts of faults and halts are

localized and repaired.

Furthermore, to preserve domain scientist productivity, new applications must present a programming

framework that supports insertion of new functionality as simple code that is close to the mathematical

representation of the science. Although sophisticated parallel algorithms and implementations are certainly

required for application scalability, in many cases the concerns of introducing new modeling features can

be separated from the details of parallel implementations. For example, well-designed MPI applications are

implemented in this way. Domain scientists introduce new functionality as sequential code, understanding

when they need to perform a halo exchange, or a collective operation such as dot-product. But these

operations are performed via abstraction layers—whose implementations are sophisticated, scalable, and

adaptable, but also outside the scope of a domain scientist’s concerns. For future applications, domain

programmers can be expected to write efficient code that can be vectorized and compiled for modest thread-

scalable execution, but should not need to write complicated parallel code that is best left to application
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framework developers. Today’s domain programmers seldom make direct calls to MPI functions when

executing a halo exchange operation. Instead the application framework supports this programmer by

providing an “exchangeHalo” function.

Parallel programming environments must be developed pragmatically. A strategy that balances between

evolutionary development and revolutionary development may be best.

On the evolutionary side, although the research community can and must experiment with new languages,

we must recognize that application portability, cost of compiler development and support, and the need for

our applications to be part of a larger ecosystem limit our ability to move new programming languages

into a production setting. Our programming environments research must be conducted with an eye toward

delivering new capabilities in existing or emerging industry-supported languages. This certainly increases

the expectations on compiler developers to produce efficient code for complicated expressions. Compiler-

generated code must also interact with new runtime capabilities that are needed to support asynchronous

task-centric dataflow execution environments. The cost of the evolutionary approach alone is that it may be

very difficult for exascale (to manage exascale hardware features) and it may constrain forward portability

(applications become baked to one architecture).

The evolutionary side would emphasize that application teams adopt new programming models as em-

bedded DSLs in languages like C++. The C++ standards community has and continues to introduce new

language features that make C++ embedded DSL features feasible. Application developers can even toler-

ate modest language extensions, such as CUDA, OpenMP, or OpenACC. These incremental extensions can

be implemented within an existing compiler environment, reducing costs of both application and compiler

developers.

The revolutionary side has investment in, and use of, new programming models, new automatic opti-

mization tools, and new environments. This aims for greater productivity (automatic code generation to

manage exascale hardware), greater portability (code mapped to new architectures through retargeted tools),

and greater performance (optimizations greater than can be achieved with traditional programming). This

requires sustained investment and a good partnership with software tool vendors to develop and maintain

tools.

In the remainder of this section, we consider three strategies for programming models and environments

of the future, along with a baseline strategy of continuing on the current petascale path.
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5.1 Baseline

The cost of porting current HPC software to new programming models is likely to be prohibitive. Even

if cost was not an issue, there is not enough time to rewrite much code in the next eight to ten years. It

takes multiple years to firm up a new programming model—often more than a decade; and the number of

programmers with HPC skills is limited. Therefore, it is essential to support current programming models

in the exascale timeframe, with best possible performance.

Current evidence indicates that some, possibly many, codes written using MPI+OpenMP will scale up to

billions of threads: MPI has been used with real application with up to 7.8M ranks [12], and, experimentally,

with over 100M ranks.3 OpenMP has been scaled up to 128 cores [55] and to 240 threads [71], with speedups

of 70-100, for various applications.

It is not yet clear how broad the set of codes is that can achieve good performance in this model, and

whether alternative models can expand this set. Also, with new exascale application requirements (e.g.,

multi-physics) and with new exascale hardware (e.g., explicit voltage and clock controls), it may be costly

and difficult to write code in the traditional low-level way, and the portability of such code will be even

lower.

Still, due to the value of existing code, and the infeasibility or rewriting it, it is essential to perform R&D

to ensure that MPI and OpenMP codes scale as well as possible. These include evolution of the MPI and

OpenMP standards, evolution of the implementations, and application code refactoring. We list below some

of the required work for this baseline course.

OpenMP Language Enhancements. OpenMP provides limited support for locality of computation and

for locality of data. This will be needed as shared memory systems become non uniform (NUMA) and

have a deeper hierarchy. Richer synchronization primitives, such as asynchronous and point-to-point

synchronization, are needed to achieve high performance on large numbers of cores. More support is

also needed for heterogeneous computing.

OpenMP Runtime Scalability. Current OpenMP runtimes are not designed for the use of hundreds of

threads. Work is needed to avoid scalability bottlenecks in the runtime.

OpenMP Scalable Programming Model. OpenMP supports multiple programming models: atomic ex-

ecution units that can thread (parallel sections); iterates (parallel loops) or tasks (task constructs).
3
See https://www.westgrid.ca/westgrid_news/2013-01-14/ubc_researchers_use_westgrid_explore_exascale_computing
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The interaction between these different constructs is complex, and different OpenMP implementations

use different scheduling algorithms for scheduling these constructs. As a result, it is too easy to write

innefficient code, and too hard to write code with portable performance. The pragmatic solution is to

promote a recommended programming model and to orient runtime implementations toward the effi-

cient support of this model (say, task parallelism, with a work-stealing scheduler). This model should

be chosen so as to facilitate the development of asynchonous code.

MPI Scalability. Current implementations often use multiple data structures of size proportional to the

number of ranks at each node. This must be avoided when the number of ranks increases faster than

the amount of memory per node. One can also improve the scalability of various collective operations.

MPI Resilience. MPI must provide a means of continuing an application after the loss of a node.

MPI Interface with OpenMP. MPI defines an interface to processes. OpenMP supports threads, tasks

and parallel iterators, as units of control; threads is the least useful of the three. The interface between

MPI and OpenMP has to be standardized and well implemented, so as to support concurrent MPI

invocations for parallel OpenMP code. In particular, it is important to define precisely how MPI

interacts with tasks, and to provide a tight coupling between communication and task scheduling.

MPI Support for Multithreading. MPI performance suffers when multiple threads are associated with

the same MPI rank. This is due in part to the limitations of current MPI implementations (e.g., coarse

locking) and in part to inherent problems with MPI semantics (e.g., the complex rules for matching

send and receives). Work on implementation, and possible changes in the MPI standard, could alleviate

the problem. The problem can also be alleviated by providing a thread model for MPI, where MPI

ranks are associated with threads, rather than processes.

MPI Support for Deep Memory Systems. Work is needed to ensure “zero-copy” implementations of

MPI communication, irrespective of the location of source and destination.

MPI+OpenMP Scalable Programming Models. As for OpenMP, MPI supports different program-

ming models, and implementations may favor one over another. It is important to promote a style

of programming in MPI+OpenMP that can be supported efficiently, and to favor this style in imple-

mentations. For example, it may be desirable to increase the use of one-sided communications, and

optimize their implementation.
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In addition, the MPI+OpenMP model can benefit from many of the technologies described in the previous

sections. DSLs, frameworks and libraries can target MPI+OpenMP as their low-level programming model.

Tools for autotuning, refactoring tools that pinpoint troublesome parts of the code and facilitate transfor-

mations, compiler hints, just-in-time compilation for MPI or OpenMP, autotuning, formal verification, etc.,

are all applicable to the MPI+OpenMP model—and should be applied so.

5.2 Path I: Migration of Applications to New Programming Environments

While MPI+OpenMP is a viable option for applications at exascale, it may not provide the best performance,

especially for strong scaling that requires support for finer grain parallelism. It may not provide a good way of

expressing new types of concurrency needed for multi-physics and multi-scale, and may not be a good way to

implement power controls. It may also not provide the best sustainability, as code written to MPI+OpenMP

will be bound very tightly to particular hardware models, and thus costly to port to new architectures and

generations of hardware.

Concurrent with exploration of more disruptive parallel programming model development, application

developers can realize significant performance portability by refactoring applications to expose more task and

SIMD/SIMT data parallelism. Such approaches have already had value [57, 58], and represent a ubiquitous

modification to application architecture that preserves a large portion of the computational source code base.

Migration to new application architectures can improve the performance of existing applications, or may

enable use of these codes for a broader range of inputs and scales. Migration will also facilitate continued

maintenance and evolution, in a future where other programming models become dominant. In this section

we describe two basic models for preserving the value of existing applications as we move forward to new

programming models.

5.2.1 Inplace Migration

An inplace migration strategy involves refactoring an application for a new system architecture, while at

the same time keeping it functioning and full-featured. This approach has been used in situations where

application teams cannot afford the resources or disruption associated with more substantial refactoring

efforts. Although this approach can be effective when architecture changes are incremental, it has not

historically been effective when architecture changes are disruptive. For most applications preparing for
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modern exascale systems, an inplace approach may give quick and incremental performance improvement;

the long-term impact effect is either increased cost, poor scalability, or both.

5.2.2 Clean Slate Migration

During the MPP disruption of the 1990’s, the most successful approach to developing a truly scalable

MPP application followed the approach outlined in Figure 1. In this model, the basic data movement and

dependence requirements are distilled and represented by a minimal set of modeling capabilities from the

existing application. Then a new, clean slate application framework is developed to support the scalable

execution of the minimal modeling capabilities. Once the new framework is robust and scalable, the modeling

capabilities from the original code can be “mined,” refactored, and integrated into the new application

framework.

Recent experiences with the Concurrent Collections (CnC) model [21] has shown how dependence require-

ments of applications can be captured in executable models with a well-defined semantics. These executable

models can also support automatic code generation for event-driven runtimes such as the Open Community

Runtime (OCR) [44]. While it is well understood how to infer data movement requirements for a given do-

main decomposition or data distribution, there is a need for more experience with specifying data movement

requirements at a more abstract level (e.g., in the form of communication avoidance [10], hierarchically tiled

arrays [40], CnC affinity groups [25], or lower bounds on data movement [37], at the level of the experience

gained with expressing dependency requirements in CnC).

5.2.3 Phased Migration

Independent of inplace vs. clean slate migration strategies, application teams must also decide how to

best manage the (eventual) replacement of the MPI-supported SPMD bulk synchronous parallelism in an

application, which may occur by migrating to future versions of MPI that have critical adaptations. Presently,

most application teams are eager to introduce parallelism underneath MPI, replacing their sequential-only

approach with a threading model. Many application teams are open to radical refactoring underneath the

SPMD (MPI) layer. As a result, although we may need to replace the MPI layer with a more dynamic

task-driven inter-node approach, the best practical strategy is a two-phased approach. First, focus on

introducing a new node-level parallel programming approach. Then, expand the new approach to include

inter-node activities. It is important to explore node-level parallel programming approaches that can be
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Figure 1: Basic “clean slate” application migration strategy for preserving existing application capabilities on emerging

computing platforms. Application developers (domain experts) are often in the best position to identify the minimal modeling

capabilities required to represent the full application requirements. The architecture of the minimal-feature app is often informed

by design space exploration using miniapps or other application proxies.

integrated seamlessly with (possibly asynchronous) inter-node communications, so as to go beyond many

current approaches to hybrid programming that require (for example) that all communications be performed

by one thread in an MPI process. This could be achieved either by evolving or replacing MPI.

5.3 Path II: Developing New Applications in New Programming Environments

This section outlines the vision for developing brand new applications in a new programming environment.

So-called "green field" development of applications is relatively rare these days—most applications rely on

code or libraries developed from previous projects—so any vision for application development must address

questions of incremental adoption and compatibility with legacy code. Nevertheless, the development of new

code—or the migration of legacy code to new programming environments—offers important opportunities

for improving performance and maintainability for scientific applications.

5.3.1 Requirements

The four guiding requirements behind a new programming environment should be: separation of roles,

reuse, automation, and debugging/correctness. Due to the growing complexity of writing scalable software,
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Figure 2: Most application teams are moving toward an MPI+X application architecture as sketched in this figure. The upper

layer is executed as bulk synchronous using MPI. The bottom layer is the focus of application refactoring efforts at this time.

Preparation for future extreme scale computing environments should leverage the application community’s willingness to adopt

agressive on-node refactoring as Phase 1 of a two phase effort.

future programming systems must support users with varying levels of expertise, from domain scientists

to architecture experts, consistent with the multiple levels of abstraction described in Section ??. Reuse

has been recognized as one of the most important drivers of productivity, but it has proven challenging to

achieve while maintaining performance. Automation, in turn, will be crucial in making applications forward

scalable and easily ported as architectures change. Finally, if we provide higher abstraction levels to make

programmers more productive, the system must continue to provide support for verifying correctness and

debugging at the same level of abstraction.

Separation of Roles. One of the biggest challenges in developing high-performance scientific applica-

tions is the need for close interaction among experts with widely dissimilar backgrounds. Any non-trivial

application in this domain will at least require the involvement of domain scientists, experts in numerical

methods—usually applied mathematicians or computer scientists—and performance experts—generally com-

puter scientists with a good knowledge of programming environments and tools, and a strong background
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in parallel computer architecture and parallel algorithms.

The programming environment can have a significant impact on the efficiency with which these different

groups of experts can interact. For example, the improved support for programmer-defined abstractions

offered by C++ (compared to Fortran or C) has facilitated the development of rich frameworks and toolkits

that help isolate domain scientists from the details of the low-level algorithms and data structures needed to

support the desired functionality. In addition to simplifying initial development, the use of such frameworks

and toolkits also helps isolate domain scientists from changes to the architecture that may require reimple-

mentation of the framework but do not affect the client code. Despite the success of frameworks, however, a

number of obstacles remain in achieving true separation of roles. It is difficult to achieve high performance

with completely general frameworks, and specialized frameworks that can achieve high performance tend

to be limited in their applicability and difficult to extend. In practice, these obstacles have meant that,

despite the promised separation of concerns, successful use of frameworks, and especially the use of multiple

frameworks in the same application, very close interaction is still required between domain, algorithm, and

system experts.

Reuse. The software engineering community has recognized for many years that the key to productivity

is reuse; i.e., the cheapest code is the one you do not have to write because it is already there. In the high-

performance community, frameworks have attempted to draw from the best practices in software engineering

to achieve a high-degree of reusability; however, the intense performance requirements of the domain have

introduced several challenges in achieving high degrees of extensibility and reuse. The main problem is that

many standard approaches to achieve reusability—such as relying on indirection and dynamic dispatch—tend

to significantly reduce performance.

One consequence of this is that designers of frameworks often have to trade off performance, generality

and usability. Generality and performance can be achieved by providing the user with many configuration

options to specialize the behavior of the framework to a particular use, but this is often at the expense of

usability. Similarly, frameworks often make assumptions about data layout and organization, which limits

their applicability. In some cases, the assumptions are very strong and explicit: the data must be in a

data-structure provided by the framework. But even frameworks that leverage generics (templates) and

polymorphism in order to provide flexibility on the data representation have implicit assumptions about

data layout; for example, iteration patterns in the framework often imply that some data layouts will be
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more efficient than others. Finally, developing and maintaining high-performance frameworks that work

efficiently across a variety of architectures is extremely difficult. Only a handful of frameworks have been

able to do this. The programming systems of the future will have to overcome these challenges to provide

the necessary separation of roles required for high productivity.

One of the challenges for future programming systems will be to allow for high levels of reusability without

strong performance penalties and without an undue burden on the programmer.

Automation. Increased architectural complexity and the rapid rate of change in architectures will make

performance optimization increasingly challenging. For example, the growing diversity in architectures will

mean that optimization for a particular architecture will not be limited to tuning block sizes for loops

and messages, but will require exploring many alternative algorithms, data structure choices, optimization

strategies, and their combinations. Additionally, the performance characteristics of future architectures are

likely to be much more dynamic because of power management. This means that developers will not be able

to evaluate the performance implications of different design choices by timing a small number of executions,

but will instead need to rely on statistical analysis and architecture models to evaluate the impact of different

optimizations.

The programming systems of the future will have to provide very high levels of automation, while avoiding

many of the pitfalls that have mired previous attempts at automation. The most important of these is

avoiding all-or-nothing automation, where the programmer is entirely reliant on a heroic compiler to achieve

high performance. When the compiler falls short, the programmer is left with a few unappetizing choices

which include writing compiler plugins, mastering cryptic annotation systems, or most often simply rewriting

the problematic functionality in low-level, architecture-specific code. By instead providing access at various

levels to the implementation of mapping, automation can work in collaboration with developers to achieve

the desired result. For example, even if code needs to be rewritten at a low level, the changes in the code

should be well-contained and easily reversed, so as not to invalidate the automation. A “code” is more

than one source file; it becomes a set of representations at different levels, with well-understood relations

between the different representations. Also associated with this code object is the information on various

experiments done with the code for performance tuning, decisions made by autotuners, refactorings made

by programmers, etc. The programming environment should enable all this information to be used by

higher-level automation tools, and to be exposed to the programmer in a convenient manner.
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Checking and Debugging Support. Testing and debugging are among the most onerous aspects of

development. Chasing bugs that only manifest themselves at scale will be particularly challenging, since

traditional debugging techniques do not scale beyond a few dozen cores. The programming system will

have to provide enough support for automated testing and computer-aided debugging. This may include

increasing use of formal methods, combining static analysis and dynamic assertions, as well as automated

test generation. The information generated while debugging and testing should also be part of the extended

“program object.”

5.3.2 DSL-Centric Development

All of the previously mentioned requirements can be met using the domain-specific approach outlined in

Section A.1. The developer of a DSL is an expert programmer who understands both the domain and the

right set of optimizations to map applications in that domain to a variety of architectures. The users of a

DSL can be less expert, thus providing a multiresolution programming system (i.e., separation of concerns).

Reuse is achieved by encapsulating domain-specific abstractions and their implementations. Automation,

partial automation, and debugging support are achieved by the implementers of the DSLs.

5.3.3 Separate Mapping Meta-Information

The problem of generating optimized code that ports across architectures places too much burden on either

programmer or compiler in the general case. An optimization that is very effective for one application or for

one architecture may actually hurt performance in another context. Therefore, optimization strategies must

be tailored to both application and architecture.

To achieve separation of roles, a desired goal is for the parts of an application to be expressed with a

separation of concerns. The expression of the intended computation, which would be the responsibility of the

domain scientist, should articulate a high-level (or perhaps mid-level) architecture-independent specification.

Additional programmer specifications to describe details of data and computation partitioning on a particular

architecture, as well as guidance for managing energy or resilience, should be separate from the specification

of the algorithm. A separate specification means that it is possible to describe multiple mappings of the

same high-level code to different architectures, power/energy constraints, or resilience requirements.

In Section A.4, we described a process of mapping from high-level, domain-specific implementations to
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mid-level and subsequently low-level abstractions. This mapping was described as automatic, user-directed,

or mixed. Any user-directed mapping requires such specifications. We would like the underlying mapping

framework to be based on a rich set of optimizations and code generation capabilities that are general,

which can be composed in a variety of ways to develop specialized mappings of different domains to different

hardware.

5.3.4 Role of New Programming Models

Starting with a clean slate makes it possible to rewrite some or all of an application in new, more architecture-

appropriate programming model. When DSLs are embedded into another programming language, then using

new programming models is a somewhat orthogonal issue.

The introduction of new programming models and systems faces many obstacles, as listed at the intro-

duction to Section 4. The great majority of newly designed programming languages die in their childhood.

The few survivors often owe their survival to serendipity, or to major investments by vendors. The benefits

of new programming models have been made clear in this report; a R&D environment and procurement

policies should be developed that encourage sustained private vendor investment.

New programming models should enter the community incrementally, generating code for portions of

applications that could not be practically implemented by hand, allowing focus of human investment on

critical factors. These new programming models should be frequently evaluated for their effectiveness. As

promise is realized, support for increasing breadth of application should be provided.

5.4 Path III: Performance portability beyond Exascale

Some of the research outlined in Path II will continue into the exascale era and beyond. A longer timeframe

will create new problems, as well as opportunities for more radical changes in the way supercomputers are

programmed.

As devices approach atomic scale, silicon scaling becomes increasingly difficult and expensive. Moore’s

Law, which governed the evolution of MOS technologies, is coming to an end in the next decade. New

materials and new structures might help to continue the increase in the performance of integrated circuits;

silicon manufacturers seem to be confident about scaling to the 5nm node. However, it is not clear that they

can offer improved cost/performance beyond that and it is clear that they are subject to the same limitations
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of size, as silicon devices cannot shrink to less that a few hundreds atoms.

Nevertheless, the evolution of supercomputers will not stop at exascale. More specialized hardware and

software architectures can provide performance improvements of one or two orders of magnitude with the

same technology and power budget. In the longer term, new information processing technologies will emerge.

5.4.1 Algorithm-Specific Hardware

It is well known that special-purpose architectures can achieve 50-100⇥ better performance than general-

purpose systems. An example is the Anton architecture for accelerating molecular dynamics computations

[73]. The use of special-purpose computers has been limited in the past because of the longer development

time needed for such systems, and the difficulty of refreshing the technology used in such systems. However,

if semiconductor technology evolves more slowly, then longer development time is less of an impediment.

Also, progress has been made in technologies for the synthesis of special-purpose systems.

A possible obstacle to this approach is that special-purpose computers are algorithm-specific, not application-

specific: they accelerate one particular kernel, such as the computation of inter-atomic forces in molecular

dynamics. DOE applications often mix multiple algorithms and models, so that in order to exploit special

purpose hardware for them, multiple special-purpose systems may need to be tightly connected. This may

not be an insurmountable obstacle: future microprocessors are expected to have more logic than can be

powered at once. It has been suggested that one possible approach to leverage this situation is to populate

the chip with specialized compute engines that are used as needed, and not used all the time [27].

The software stack for algorithm-specific hardware should share components with that for general-purpose

exascale hardware. Specialized architectures will still have general purpose components that should be pro-

grammed with the general-purpose tools (compilers, etc.). Specialized accelerators will require specialized

code generators. Verification-oriented compilation tools should have continuity with the system-level verifi-

cation of the specialized hardware.

5.4.2 Reconfigurable Computing

The selective use of specialized accelerator engines on a chip is a simple example of reconfigurable computing.

Another approach is to combine standard microprocessor logic with Field Programmable Gate ArraysField

Programmable Gate Arrays, thus providing some hardware reconfigurability, where it is most effective, with-
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out sacrifing the performance of custom designed components. This approach has a long history [39], but

has become more practical in recent years. Some companies are now marketing processors with Field Pro-

grammable Gate Array accelerators, and Field Programmable Gate Array chips can now contain embedded

microprocessors, memory controllers, I/O controllers, and other higher-level components. Intel is offering

computing chips with in-package FPGAs, and this trend is expected to be continued, with speculation that

the FPGAs will be brought on-die.

FPGA accelerators are increasingly being brought into the fold of other accelerator programming; for

example, FPGAs can be programmed with OpenCL. However, it is critical to note that the OpenCL written

for GPUs, which emphasize data parallelism, will not necessarily run well on FPGA. To get good OpenCL

performance on FPGA, new structural idioms within the OpenCL are needed that emphasize pipeline paral-

lelism. This illustrates the value of the application programmer writing code at a higher-level than OpenCL.

Such higher-level code could be retargeted from GPU to FPGA, generating the OpenCL variant with the

right target-specific idioms using a compiler.

5.4.3 Specialized Architecture

Hardware specialization is not a black-and-white situation. Current supercomputers already use cores and

accelerators that are specialized for numerical applications; future supercomputers will use more specialized

hardware to reduce their energy consumption. Some of these specializations may be unique to supercomput-

ing; many others would have broader applicability, but might be deployed first on supercomputers. Examples

of such specializations are listed below. Many of these have a strong chance of appearing in exascale archi-

tectures, because they can contribute so strongly to power efficiency.

Cache-less Computing: Caches consume a large fraction of the power budget of a chip: caches use a

large fraction of the chip surface; each cache access requires multiple SRAM accesses (because of

associativity) and cache misses can generate tens or even hundreds of such accesses. It is widely

believed that the use of scratchpads could significantly reduce the power consumption of chips [11].

However, the manual generation of code for non-coherent address spaces is tedious, and current codes

will not port easily. High-level compiler technology exists that can generate the code needed to manage

scratchpads, including the generation of code that software pipelines DMAs or block reads and writes

to the scratchpads for streaming computations.
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Near-memory Computing: A significant fraction of the power consumption of chips is due to commu-

nication. This fraction is reduced if computations are done close to memory, e.g., in the memory

controller of a Hybrid Memory Cube [49]. The programming model must be extended to support

message-driven computation, also known as active messages or parcels, which invoke a computation

starting at a particular data address upon arrival of an event or data token. To be profitable, such

data-driven computations must be sufficiently coarse grained to amortize the overhead of sending the

control-oriented messages that initiate computation. This implies that careful data and computation

partitioning is still needed in using near-memory computing. This granularity selection is directly

addressed with modern high-level compiler iteration and data tiling techniques.

Variable Precision and Approximate Computing: The use of 64-bit addresses and numbers increases

the amount of physical memory consumed by applications and increases the power consumption, as

more data has to be communicated and processed. It is well known that full precision is not needed

everywhere in scientific computations: lower precision can be used in many places without reducing

the accuracy of the results [8, 53]. While such techniques can be applied on current systems, using

32-bit and 64-bit arithmetic, better hardware support for variable precision could make them more

prevalent. Early results indicate that precision choice could be largely automated [69]. Technology has

emerged in the compiler community for careful management of error in the evaluation of mathematical

expressions implemented in floating point [61]; although such work is framed in terms of reducing the

error for normal precision floating point, it could potentially be used to choose optimal precision, or

minimize error when reduced precision floating point hardware is available.

More dramatically, it seems feasible to use arithmetic circuits that consume much less energy, but

commit systematic errors in low order bits, for some inputs [33]. The practical use of such circuits

will require compilers that have significant awareness of the numerical properties of the compiled code.

This might be achieved using some of the technology for management of floating point error described

earlier.

Probabilistic computing: There is a fundamental trade-off between the power consumed by a device and

the probability the device will have incorrect transitions: a larger energy gap between a zero and one

reduces the probability of spurious transitions, by increasing the energy needed for that transition. By

the same token, this increases the energy needed to switch state. Traditional computers have been built

with logic where spurious transitions are rare and always detected. Ongoing research is considering
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Figure 3: Information processing technologies of the future may use new state variables, materials, devices,
data representations, and architectures (reproduced from the ITRS 2013 report).

the impact of forsaking this assumption. Algorithms are designed to tolerate frequent silent errors in

memory or in the CPU, while still converging to a useful result, thereby reducing the amount of energy

needed for computations [60].

Current work is mostly ad-hoc and algorithm-specific. The widespread use of probabilistic computing

will require the automation of transformations that “bulletproof” computations.

5.4.4 Beyond Moore

Figure 3 indicates possible choices for future information processing technologies. State is often currently

represented by a charge on a capacitor. In the future, it could be represented by a spin, or a phase in a

material, or a molecular state. New materials can be used. New devices are being tested; e.g., spintronics

for manipulating state that is represented by a spin, and so on. While not all the combinations are possible,

the choice of future technologies is dauntingly large. However, some of these technologies have been studied

in more detail and some observations can be made about their implication on programming models. Here
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we mention one, Cryogenic Computing. A future study continuing from this report should comment in more

detail on quantum computing, including adiabatic quantum computing.

Cryogenic Computing: IARPA has a large program aimed at developing technologies for cryogenic

computing.4 It has been estimated that the use of such technologies could produce a petaflop computer with

a consumption of 25 kW. However, many obstacles still remain.

The use of cryogenic technologies has interesting consequences for software:

Cryogenic technology consumes very little energy for transmitting signals (as it uses superconducting

wires), and very little energy for storing bits (as these are stored as a signal rotating on a superconducting

loop). Almost all energy is consumed on circuits (including fan-out). This is a major reversal as compared

to our current emphasis on reducing communication.

Cryogenic devices are now manufactured at relatively low densities (⇡ 200nm feature size). Devices can

switch very quickly (⇡ 1ps), and long distance communication—even off-chip communication—will use very

little energy. But signals will not propagate any faster; thus extensive use of latency-hiding technologies is

paramount.

Cryogenic memory devices require a large number (⇡ 30) of Josephson junctions. As a result, cryogenic

memory has very low density. Cryogenic computers will have very small amounts of fast, low-energy memory;

this will need to be complemented by slower, denser memory. The design of software and algorithms for such

a memory structure will be very demanding.

A possible software architecture for a cryogenic computer was studied more than 15 years ago by the

HTMT project [79]. The proposed software organization was very different from that used in a conventional

von Neumann machine.

6 Summary and Conclusions

Parallel programming models and environments R&D faces its most challenging period in history, perhaps

ever, but at least since the start of distributed memory computing in the early 1990s. At the same time,

extensible community programming environments and language standards such as LLVM, clang, Flang (in
4
http://www.iarpa.gov/index.php/research-programs/c3
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the future) and C++ features provide ways to develop new models and extend environments that result in

rapid protyping, co-design with application developers and production-quality, portable tools that can be

more easily adopted by applications. Whenever possible (and it is not always possible), new R&D efforts

should be done within these environments to reduce cost, improve quality and accelerate use in production

computations.

Opportunities for R&D impact include not only new models and environments, but also collaboration

with application, runtime systems and hardware teams to design and produce application architectures that

are more readily mapped to emerging systems. Distributed memory application architectures (SPMD with

message passing) emerged to replace high level programming models like HPF, but drove the need for message

passing models, environments and standards. New application architectures will help clarify what is needed

for future models and environments that must support asynchrony, load balancing and the other attributes

discussed in Section 2.4. R&D efforts must be done in collaboration with forward looking application teams

for most impact, and there is a sense of urgency since our existing application base is not well prepared for

scalable performance on emerging systems.

Basic research in programming models requires continued efforts in programming semantics including

mixed task and data, replacement of local vs. remote explicit control to forms of shared memory computing

that simplifies programming and yields performance portability, asynchrony management through event

driven control, reliability clauses that permit user understanding of error responsiveness and more. Even if

these kinds of concepts do not have sufficient mass appeal, pattern explorations that lead to reusable parallel

programming patterns can have broad impact.

R&D efforts will have multiple timelines. It is clear that fundamental work is needed–separate from

today’s practical environments–that is highly speculative and has no obvious path for application migration.

At the same time, some new R&D efforts must be done in tight collaboration with applications, runtime

systems and hardware teams in order to produce practical models and environments with a migration path, an

ability for domain scientists to write simple code and a utilization of industry and community programming

environments.

Programming models and environments R&D is essential for the future success of our parallel applications.

While we can persist with classic message passing and modest OpenMP approaches for a few years and for

some applications, our existing code base is not ready for emerging platforms. The only way to sustain

and increase the number of applications that are truly scalable on leadership systems, and to address the
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ever-growing complexity of our emerging application base, is to develop new parallel programming models

and environments that can enable these advances.
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A Abstractions and their Compositions

In this section, we elaborate on a three-level decomposition of program abstractions. The highest-level

abstractions are domain specific, and seek to achieve the previously stated goal of programmer productivity.

Beneath these are domain-independent abstractions, whose aim is to provide functional and performance

portability across machines. At the bottom of this pyramid are the execution-level abstractions, which

provide direct access to and control over the execution of code and the placement of data. We also describe

how to automatically or semi-automatically map from higher to lower levels, and the tools that might be

employed to support this mapping process.

A.1 Domain-Specific Abstractions

It is an established idea that the best high-level programming abstractions are domain-specific [47]. For HPC,

DSLs allow experts in a science to describe processes and algorithms in a language that is as close as possible

to what they would use to describe an algorithm in a paper or on a whiteboard. Today, there are already many

examples of systems that allow developers to code at a very high level of abstraction. Most of these systems

fall into two broad categories: (1) stand-alone DSLs; and (2) frameworks. The use of DSLs, embedded

DSLs, and frameworks should be expanded within the programming approach for exascale, because high-

level expression provides productivity and sustainability, and it enables opportunities for domain-specific

optimizations to be performed that can enable very high performance. New approaches for embedding

domain-specific languages into general-purpose languages could bring about even more opportunities for

optimization. C++ embedded DSLs are particularly attractive since they are portable and can deliver high

performance when using template meta-programming techniques.

Stand-alone DSLs generally allow developers to express computation at a very high level of abstrac-

tion, and rely on domain-specific program representations to support high-level optimizations with minimal

analysis. A very successful example of a DSL is the Tensor Contraction Engine (TCE), a domain-specific

language for many-body theories in chemistry and physics [6]. TCE allows domain scientists to express

their computation in terms of tensor operations and is able to produce implementations that would be pro-

hibitively expensive to develop by hand. Other examples of successful DSLs include Pochoir—a DSL for

stencils that can produce parallel and efficient (particularly with good cache behavior) stencil implementa-

tions competitive with hand-optimized code [78]—and Spiral, a system that can generate highly optimized
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implementations of many signal processing applications [63]. Chroma [36] is a data parallel DSL for lattice

field theory that can generate optimized code for a range of processing targets including GPU [7].

While the benefits of DSLs are positive, there are well-known challenges to developing a good stand-alone

DSLs and seeing it used. First, it requires adequate investment, for both the expertise to properly engineer

the compiler and the expertise in the domain.5 By properly engineering optimizations and using “real”

compiler technology, this course addresses the second challenge of a DSL, which is standing up an entirely

new specialized compiler. Third, the development course for a DSL requires proper resourcing to fill out the

ecosystem—with user training, syntax-aware editors, debuggers, profilers, etc. Finally, any custom DSL that

requires a special toolset, presents a severe sustainability challenge. Numerous software studies have shown

that 70–80% of total product cost is post-delivery maintenance. Unless a DSL has a broad, active developer

and user community, the support cost of the DSL will be too large to warrant the investment. Because of

this embedded DSLs are typically better.

Embedded DSLs rely on the abstraction and encapsulation mechanisms in a general purpose language

to support domain-specific abstractions as a framework. Examples of this approach are Chombo [28], a

framework for solving partial differential equations using adaptive mesh refinement, and Sierra toolkit [35], a

framework to support solving PDEs over unstructured meshes. Most frameworks include a set of generic data

structures that programmers can specialize to fit their problem domain, as well as libraries of operations that

can be performed on these data structures. Some of these frameworks rely heavily on polymorphism (gener-

ics/templates) and high-order functions (often implemented using object-oriented inheritance mechanisms)

to allow programmers to specialize the behavior of the framework to solve a particular problem instance.

Frameworks address one challenge of the DSL approach, since they do not require a separate ecosystem of

tools; programs written in the framework can be edited and debugged using the tools of the host language.

New embedded DSL technology is emerging that can help bridge the gap between frameworks and stand-

alone DSLs. One example is illustrated by the Selective Embedding Just In Time Specialization (SEJITS) [23]

approach, which leverages the reflection facilities available in most productivity level languages (python,

javascript, ruby, etc.) to manipulate at runtime the high-level code written by the programmer. Traditionally,

metaprogram execution would be at compile time; SEJITS extends this to metaprogram execution at run

time. (The benefit of mixed static/dynamic optimization of the application itself for parallel computing is
5
A typical course seen in the development of DSLs is for the team to initially under-invest in the compiler aspects, and

then to find itself needing general compiler optimization technology. At this point, the DSL team works to re-engineer the DSL

compiler to interface to a proper compiler. For example, TCE is currently making use of Rose; Chroma is moving away from

using the Portable Expression Template Engine (PETE) solely, to using LLVM.
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already well established [14].) The use of a dynamic language helps in to blur the line between library and

DSL, although it is not strictly required. Halide [64], for example, follows a similar approach to embed a

high-level DSL for stencil computations in C++. At run time, the programmer-provided DSL code actually

builds an internal representation that is then manipulated, compiled, and linked with the program so that

the code can execute efficiently.

A.1.1 Language Features to Enhance Support for Embedded DSLs

From the point of view of the programming environment, the most important thing is to make it easy to

define domain-specific notations and their mapping to low-level code. Languages like C++ (and especially

C++11) already provide important features that allow programmers to define domain-specific abstractions

that have been used very successfully by a number of frameworks. Some areas for programming language

R&D that will enable greater and more powerful use of DSLs are as follows:

• Syntactic Extensibility: C++ supports some syntactic extensibility in the form of operator overloading

but in general, DSLs embedded in C++ tend to be much more verbose than stand-alone DSLs because

of the syntactic restrictions imposed by the language. There is a significant body of work concerning the

addition of syntactic extensibility to languages [38, 54]; some of this technology is being incorporated

into the Rose compiler as part of the DTec X-Stack Project.

• Symbolic Manipulation: One of the major benefits of DSLs is that the exposed high-level semantics

show optimization opportunities that would be hard for lower-level optimization tools to analyze. For

example, given a set of matrix multiplications, it is easy to optimize the multiplication order at a high

level through algebraic manipulation of the expression, but if instead we are given a series of nested

loops implementing the said multiplications, program manipulation becomes significantly harder [59].

Expression Template [80, 45] programming (as in PETE) provides a means to accomplish this, and is

used in HPC embedded DSL such as Chroma, but such programming is extremely difficult to master

and understand and it makes libraries very complex. Also, expression rewriting is a limited (and

somewhat crude) form of optimization; modern compiler optimizations are typically based on some form

of dependence graph (e.g., SSA, Array-SSA, Concurrent-SSA, GVN, PDG, GDG, ...) representation

of the program. As footnoted earlier, DSL optimization projects that start with expression rewriting

typically discover along the way that it just better to plug in a proper compiler that provides the modern

representation and optimizations. PETE is particularly complex because it co-opts the type system
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into a data structure to represent expression trees, which is a highly stylized and refined programming

technique at best. The Scala language has been very successful in supporting compile-time computation

through lightweight modular staging [68] and has shown significant potential in applying the technology

to develop high-performance DSLs [76]. R&D in this overall area is desperately needed.

• Autotuning Support: The high-level programming model should allow developers to make explicit state-

ments about choices that can affect the performance, accuracy, or energy efficiency of the resulting

implementation without affecting correctness. This can be accomplished through the good old fash-

ioned concept of polyalgorithms [77], in which choices are expressed simply through idiomatic use of

conditionals and branched code in the host language. A modern example of this is PetaBricks [4],

which allows programmers to explicitly introduce choices as part of their code.

• High-level Algebraic Properties: The programming system should also give programmers the ability to

specify high-level algebraic properties of functions or data structures that can be exploited for automatic

or manual program manipulation. Some of the most important properties include equivalences among

sequences of calls, as well as properties such as associativity and commutativity.

• High-level Semantic Information: This can include facilities to express precondition/postcondition in

order to support expansion of optimization and mapping alternatives, to assist with verification and

validation, to support composability, and to enable sustainment. The community for programming

language research has very advanced and established technology available for reasoning about programs

(e.g., Coq [29]), and new approaches for reasoning about and composing models correctly relative to

deep properties of concurrency, security, and math (e.g., CompCert [43]). This community is beginning

to show results in applying such technology to the formal proof of domain specific numerical solvers

and floating point programs in general [19, 48, 18] and the ability to generate new floating-point math

library routines with guaranteed improvements to accuracy [61]. Such technology could be a route

to the general introduction of mathematical ontology to reason about correctness of domain-specific

algorithms, particularly with regard to their concrete implementation in floating-point programs and

with mixed or non-standard precision.

• Debugging Support: As the DSL reflects a higher level of abstraction than the code that will execute on

the architecture, it is important not to forget to install the plumbing to reflect back to the programmer

the state of the execution in terms that are representative of the high-level program.
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In addition to these language features, the future success of DSLs will be assisted by general investment in

the tool ecosystem that provides the ability to rapidly construct and extend them, as this can help overcome

the long development cycle of general-purpose compiler frameworks which has been a limitation to their

adoption in the application community. Further, for multi-physics applications, it is not unreasonable to

imagine multiple DSLs composed together into a single code; thus, composability of DSLs must be supported.

These two additional goals imply the need for an underlying meta-framework for embedded DSLs.

These high-level abstractions then rely on tools that take this domain-specific expression lower to the

mid-level abstraction, which is more general across many domains but still hides details of the architecture

or machine instance target.

A.1.2 Pragmatics

Support for DSLs is not a specific HPC requirement. In fact, DSLs are much more prevalent in application

areas that have large user communities. For DOE, where the communities are smaller, a strategic approach

led to successful use of DSLs. Suitable tools and language features can reduce the cost of developing a DSL.

For maximum effectiveness, DSL development should integrate “real” compiler technology and involve “real”

compiler expertise to avoid spending time and money rediscovering known optimizations and reimplementing

them in silos. This requires proper investment. The investment in a DSL will achieve a good return because

it enables significant high-level optimization for performance, documents semantics for sustainability, enables

advanced verification approaches, and facilitates porting from petascale to exascale and beyond. Even when

the DSL is for modest size user communities, the general ecosystem of the DSL approach can be shared

across many DOE programs and a variety of applications. In general, library development with technology

silos should not be proceeding without a DSL strategy.

A “co-design” effort of the CS and Applied Math community with domain scientists could help identify

opportunities for new libraries, frameworks, and DSLs, and couple the development of language and tool

technologies with their use in the implementation of new DSLs and frameworks.

The development of DSLs for scientific computing is facilitated due to the existence of a mathematical

definition of the desired output, and a mathematical definition for many of the transformations involved

in optimizing the DSL-generated code. Systems such as TCE and Spiral express their transformations as

algebraic manipulations. It would likely be profitable to explore the extent to which such a rigorous algebraic

approach can be applied to PDE solvers and other scientific kernels.
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Ultimately, the impact of any particular DSL will be determined by successfully maintaining it over the

required many years, if not decades, that an application written in terms of the DSL requires. If the DSL is

part of the application code itself, or if it is portable code, such as template meta-programming in C++, then

sustainability is not a major issue. However, if it is a stand-alone DSL, the cost of sustainability is a serious

concern. The HPC community is too small and specialized to warrant heavy investment in stand-alone DSLs

as a core strategy for programming models and systems research.

A.2 Domain-independent Abstractions

High-level abstractions encourage programmers to write their applications in the most portable and se-

mantically rich way possible, often by using application-specific or domain-specific constructs. Low-level

abstractions aim to provide maximal control and transparency to the programmer, and thus typically offer

a minimally abstracted view of the underlying platform. Between these two extremes of the abstraction

spectrum lie mid-level abstractions that provide a portable means of expression without relying on domain-

specific notation or semantics. These abstractions are supported in general-purpose languages, such as C++,

and their goal is to provide a domain-independent means of describing a parallel computation, and the data

on which it operates, in a manner that still provides both functional and performance portability across a

range of possible machines.

Machine architectures in the exascale time frame will exhibit deep, heterogeneous hierarchies of both

processors and memories. They will support parallel execution at many levels—from instruction-level par-

allelism to coarse-grained task parallelism—and storage of data at the many corresponding levels of the

memory hierarchy. The precise organization of these hierarchies may differ substantially between target

machines, as will their favored mix of parallelism and data layout. Consequently, a program that seeks rea-

sonable performance portability across a range of targets must be able to express the structure of parallelism

and data in a manner that abstracts these choices. Given such an abstracted, target-independent program

representation, the various components of the programming environment—including tuned libraries, runtime

systems, compilers, and autotuners—should be capable of making a set of choices that achieves reasonable

performance.

There will, of course, be cases in which automatic mapping by the programming environment produces

performance that is lower than desired. The program may not adequately expose the inherent parallelism

of its computation to effectively utilize a given target, or it may provide too little information about the
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structure of its data. There may also be cases in which, even given the appropriate information, generating

optimal code is beyond the ability of the provided tools. In these cases, it is important to both provide

analysis and visualization tools which allow the programmer to understand the behavior of their program,

and the means by which a motivated programmer could selectively write lower-level, target-specific code for

critical portions of the program that can interoperate with the rest of the application. This interoperation is

most easily achieved if both the portable abstractions discussed here, and the low-level abstractions discussed

in a later section, are embedded in the same language.

A.2.1 Programming Model Components

Mid-level programming model abstractions express the logical structure of parallelism and locality in the

program, without committing to a specific mapping onto the resources provided by the platform. The

expression of parallelism and locality should also be in a form that can be mapped onto the varieties of

parallelism that the platform might require.

Such abstractions often follow a form combining three fundamental components: (1) a pattern of compu-

tation/communication; (2) a collection of data being operated upon; and (3) user-provided function bodies

that execute within the pattern. These abstractions may be embedded in the program in several ways,

including extra-linguistic directives or language-supported constructs. The most common example of such a

construct is a parallel loop. This may be written using directives, such as:

#pragma omp parallel for

for(int x=0; x<N; ++x) F(x);

or as a language-supported parallel loop:

parallel_for(x : interval(0, N)) { F(x); }

This loop exhibits the three components described above. It names a computational pattern—a loop. It

describes the data this pattern operates over—the half-open interval [0, N). And it specifies an arbitrary

function body that is embedded within the pattern—the loop body F(x). The named parallel pattern

(parallel_for) permits different iterations to be executed concurrently and separately on different processors,

sequentially on a single processor, or some combination thereof. The compiler and runtime environment, in

cooperation, must decide precisely how to execute this loop. By supporting arbitrary function bodies, these
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loops provide general-purpose functionality that can be easily reused.

Parallel loops are one of the simplest parallel patterns. Other fundamental data-parallel operations

include reductions, prefix sums, and data partitioning operations. Common task parallel patterns include

pipelines and fork-join recursion. A fully-realized programming model should provide a complete collection

of flexible, reusable patterns that covers the space of necessary patterns. Attempts at assembling suitable

collections of parallel patterns can be seen in directives models such as OpenMP and OpenACC, as well as

C++ libraries such as TBB and Thrust.

Accompanying this set of parallel patterns, the programming model also requires a corresponding model

of data. Programs require a collection of data types—such as arrays, lists, or sets—to structure the data

on which they operate. Moreover, they require the means to hierarchically decompose these data structures

into smaller sub-structures. Just as parallel computation patterns give the system information about tasks

that can be executed across different processors, the ability to hierarchically structure collections of data

gives the system information about data that can be stored across different memories. Separating the logical

structure of the data from the physical layout also provides opportunities for the system to optimize the

layout both for architectural characteristics (e.g., cache sizes) and algorithmic access patterns.

Real computations seldom involve a single instance of a parallel pattern or a single data structure. Rather,

they consist of an interwoven chain of many patterns and nested data structures. It is therefore necessary that

the programming model make apparent to the programming system the dependences between the various

pieces of the program. This may be purely implicit, such as information produced by dependence analysis

of the source program. It may also be provided in the form of side-band information, such as data directives

decorating the program, or directly embedded in the program via mechanisms for composing operations

(e.g., an explicit parallel pipeline pattern).

The full set of abstractions outlined here requires a higher level of expression than directives approaches

such as OpenMP currently offer. Flexible languages, such as C++, with support for generic programming

may be able to encompass the necessary set of abstractions. They may also be conveniently embedded in

new languages such as Chapel. Regardless of the language in which they are embedded, the design of the

programming model should be driven by the set of parallel patterns and data structures prevalent in parallel

programs, and these patterns should be common across languages.
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A.2.2 Target-specific mapping

A program written using abstractions, such as those described above, expresses the logical structure of

parallelism in a target-independent fashion. The programming environment—in the form of the compiler,

runtime, and standard library implementations—is responsible for constructing a target-specific mapping

for executing this program on the target machine and for mapping its data structures onto the machine’s

memory hierarchy. These mappings, or schedules, will in general embody static and dynamic decisions.

Certain scheduling decisions can be made statically when the program is compiled, but others can only be

settled program has started to run and the dynamic configuration of the machine can be observed. Some

scheduling decisions may even be data dependent, and thus emerge during the execution of the program.

One part of scheduling is to map the mid-level control structures—the parallel patterns such as loops,

tasks, and reductions—to low-level execution constructs. The environment must decide which portions will

be executed in parallel, and which will be executed sequentially within threads. A placement of this work

on the machine resources must be chosen, and is generally driven by information about the affinity of work

with the data it must operate upon.

Similarly, the programming system composed of the compiler, runtime, and supporting libraries will select

how to map data structures across nodes and across different memory levels within a node. They may select

the order in which elements of a structure are ordered (e.g., row major, column major, or block major, for

arrays). They may select a specific low-level representation for a high-level data structure, such as a set (bit

vector, list of elements, hash table, etc.). This mapping is now static (mapping across nodes), or managed

by hardware (mapping to caches), but is likely to become more dynamic. With multiple memory levels and

possibly non-coherent nodes, as well as the changes in program access patterns through different phases of

algorithms, it will be important for the programming system to include automatically transposing storage

layouts, redistributing data structures, or reconfiguring the use of fast memories during the execution of the

program.

The compiler and runtime improve locality by aligning, to the extent possible, control mapping to data

mapping so that operations are executed near the data they need. The problem for finding a good alignment

is complex, even when the only degree of freedom is choosing an execution order that improves temporal

and spatial locality in cache, for a sequential code, with a fixed data layout; e.g., by tiling loop nests and by

performing loop fusion. The problem becomes much more complex with multiple execution locales, multiple
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storage locales, and the dual abilities to move data to execution and execution to data. The two mapping

problems are tightly coupled and will need to be managed jointly. Programming abstractions will need to be

designed with the goal in mind of exposing the full space of mapping options to the compiler and runtime. It

is not clear that the current abstractions used for expressing programs are sufficient for the needed automatic

analysis and optimization. Even when they are expressed, new methods for co-optimizing execution and data

placement will also need to be developed.

The compiler and runtime components that identify opportunities for parallelism and locality optimization

should not be restricted to “flat” data types such as arrays or tensors. These properties must be expressible

over more general data structures—such as sets, graphs, tables, and trees—or even algebraic structures—such

as intervals or polynomials. This suggests that the required programming abstractions should have the ability

to cleanly express polymorphism over data type, and also compose with the various available parallel patterns

such as loops and reductions.

A.3 Execution-level Abstractions

The low-level abstractions provided by the programming environment are responsible for providing access

to and an abstracted representation of the platform(s) used to execute the desired application. They must

serve the needs of programmers who find it necessary to write low-level code, application libraries that seek

to exercise careful control over the execution of their computations and the placement of their data, and the

mid-level abstractions of the programming environment that will be mapped onto this lower level.

There are two broad categories of abstractions described in this section. First are the set of programming

model abstractions that describe the computations to be performed and the data on which they are performed.

Second are the set of platform interfaces that are used to describe and control the platform where the data

is stored and the computations are executed.

The set of low-level abstractions provided by the programming environment should provide a complete

programming target in themselves; it should be possible (though not necessarily practical or desirable) to

write an entire program solely in terms of these low-level abstractions. Moreover, they should collectively

support the needs of a broad range of programs, although individual abstractions may potentially be more

narrow in scope. The functionality exposed at this level reflects capabilities that roughly align with the

actual mechanisms provided by the underlying platform and can be expected to be implemented efficiently
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by the platform. Low-level abstractions reflect how the computation will actually be performed, providing

explicit control over the creation of parallelism and synchronization amongst parallel activities.

A.3.1 Underlying Platform Abstractions and Interfaces

The programming environment targets an underlying platform comprised of hardware, operating system

software, and machine-dependent portions of the runtime system. The outlines of an exascale platform have

been described in other reports [3, 74]. This section summarizes the platform terminology and components

that most directly impact the form of the low-level programming abstractions.

A container is the set of physical resources (e.g., cores and memory) at each node in the system, dedicated

to one application for a period of time. An application executes within a container on a collection of threads,

each of which represents a sequential execution of a portion of the application code. All threads in a container

access memory via a single, shared address space, and thus normally communicate via this shared memory.

The shared address space within a node could be divided into one or more coherence domains. A coherence

domain, shown in Figure 4, is potentially a subset of a node (otherwise usually true within the entire node)

where the memory consistency model is strong, (i.e. where reasonable expectations of the visibility of loads

and stores applies such as sequential consistency). Outside of a coherence domain, the consistency model

is much weaker. While loads and stores that cross coherence domains might be provided by the hardware,

there are no guarantees that references are kept fully consistent with references within a domain—there may

be caching of the locations that will not be detectable from outside the coherence domain. Containers will

usually run within one coherence domain, but could contain multiple coherence domains.

An enclave consists of two or more containers that do not directly share memory, and thus communicate

via message passing or RDMA. The allocation of resources may be handled globally by a single operating

system, or hierarchically by nested enclave operating systems that allocate resources to successive sub-enclaves.

The low-level abstractions provided by the programming model will be restricted to a single enclave, but

extended with abstractions that make it convenient to support high-level and mid-level abstractions.

Within a container are entities to execute instructions, called execution units. These roughly correspond

to hardware threads or sets of threads executing a specific instruction stream. These units should have

some parameters, such as absolute performance (relative to time) and performance/energy. Performance

characteristics could also be expanded in various ways, e.g. floating point versus integer, vectorizable or not,

etc.
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Figure 4: The increasingly hierarchical nature of emerging exascale machines will make conventional manual
methods for expressing hierarchy, locality, and data movement very challenging to carry forward into the
next decade.

A storage abstraction is also present for storing data. To the first order, this consists of explicitly

addressable storage such as scratchpad or normal DRAM memory, but could also include various types

of cache storage used for optimization. This abstraction has parameters such as bandwidth, capacity,

and volatility. Latency could also be included. External storage is not considered here, since it is not

within the container. It is expected that some storage technologies will allow for configuration—for example

between scratchpad and caching style of operation—and this configurability may also need to be reflected.

Storage may also provide some additional semantics, such as full/empty or trap-on-reference. Note that

non-traditional processing elements should also be considered as part of storage. These could include concepts

such as atomic memory operations performed at the memory, more complicated processors-in-memory, and

processors-in-network.

Alongside the low-level programming model abstractions described in the previous section is a set of

low-level interfaces for interacting with the hardware/software platform that provides the actual runtime

environment for the program. These interfaces may be selectively used by programs that seek to adaptively

tune their behavior to different machines, but their use is not required—programs could just as easily choose

to ignore these interfaces.

Machine Representation and Introspection. The previously mentioned platform abstractions all

require a representation, often parameterized, for building the machine model. They provide information on
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the configuration of the platform, the topology of the resources and abstractions, and details on the specific

hardware capabilities.

The abstract machine representations supported by contemporary programming models such as OpenMP

and MPI are very simple, and can usually be specified by one or more integers (e.g., number of processes

or number of threads). However, we anticipate the machine abstractions for exascale platforms to be much

richer, largely due to increasing heterogeneity of processors and memory, increasing need to manage affinity

and data movement, and increasingly deep machine hierarchies.

In addition to providing interfaces to manage processor heterogeneity (i.e., different kinds of cores), these

abstractions should also provide facilities for managing performance heterogeneity. Ostensibly identical

components may perform quite differently due to issues such as thermal, power management, manufacturing

variation, wear and tear, and resiliency effects. Thus, part of the introspection interface is the capability to

report the potential variability that may be experienced.

Power Monitoring and Control Interfaces. Given the importance of managing power consumption

for exascale, interfaces will be required that provide detailed information regarding the power and/or energy

being consumed by different abstractions when performing different operations for an application. In

addition, some level of power control is expected (and is starting to appear today [66]), which will also

be accessible through platform interfaces. These controls might include concepts such as running execution

units more slowly for less power, or providing less bandwidth from storage for less power.

Resilience Interfaces. The low-level resilience interface starts by focusing on error detection and reporting.

In response, reconfiguration will often be possible to avoid faulty components. While low-level system

software (e.g. the OS) may perform automatic reconfiguration without the application’s knowledge, more

often some interaction will be needed with the application at run time to understand the effects of the

fault, and to decide and direct the subsequent machine changes. The reliance interfaces would enable the

application and/or higher levels of abstraction in the programming environment to reason about the needed

resilience of a particular computation must be and handling recovery from errors.

Data Collection Interfaces for Profiling and Autotuning. Profiling interfaces provide detailed information

regarding the performance of the various low-level abstractions. For example, they can report the number

of instructions issued or floating point operations retired in a given time interval. They can also report on
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the performance of various aspects of data movement. These interfaces are used for performance tuning and

potentially autotuning frameworks, which use the data automatically to generate and select from a set of

possible alternate implementations of an algorithm.

Note that if the goal is to tune for power consumption, or for performance at a given power level, then the

power monitoring interfaces must also be consulted in concert with the profiling and performance interfaces.

A.3.2 Programming Model Abstractions

This set of execution-level abstractions forms part of the programing model, and every parallel program

running on the system will use some portion of them, either directly or indirectly. They should provide

an explicit, low-level interface whose form is closely aligned with the underlying mechanisms provided by

the platform. The primary goals of these abstractions should be transparency and control, since they are

the fundamental requirements of performance-critical code and software layers that implement higher-level

abstractions.

Means of Creating Parallel/Concurrent Tasks. The first requirement for parallel programming is

the ability to create parallel work. In some systems, programs may be initiated in a pre-existing parallel

state. For example, distributed SPMD programming systems are often designed to create one or more

processes per node before the application code begins executing. However, applications that must both

exploit hierarchical heterogeneous machines and adapt to irregular computation patterns will often require

additional mechanisms to dynamically create new parallel tasks under program control.

Low-level constructs for dynamically creating new parallel work build directly upon the underlying

thread model provided by the platform. Therefore, they typically accept a body—specified as a code

block, function-valued expression, or similar form—and create one or more execution agents, each of which

executes the given body. An execution agent is a logical unit of work enumerated by the programming model

construct. The mapping of these logical units onto physical threads is handled by the programming language

environment in cooperation with the runtime system. The set of all execution agents created in a single

invocation is a task.

These constructs should also support the ability to configure the task being created. Two configuration

options are of particular importance. First, programs require the ability to specify the creation of an arbitrary

number of execution agents in a single task (rather than only one at a time) in order to scalably create the
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massive amount of parallelism necessary to fully exploit the underlying machine. Second, the program must

be able to specify what scheduling assumptions are required for the correct execution of the tasks being

created, e.g., whether it must be concurrent with its caller and whether its constituent execution agents must

be concurrent with each other. These scheduling assumptions may also address resilience requirements. For

example, a program might wish to indicate that a particular task can tolerate errors, thus indicating that

the runtime is free to use aggressive voltage/frequency scaling that might improve throughput at the cost

of higher error rates, or conversely that such scheduling policies would be undesirable because a given task

must be reliable.

Explicit Synchronization Operations. Once parallel tasks have been created, they require synchronization

primitives for correctly coordinating their activities. Programs require constructs for at least two fundamental

synchronization patterns. The first pattern has a group of two or more concurrent activities that must

synchronize with each other. Programming environments must efficiently support both the case where

individual pairs must synchronize (which is common in point-to-point communication patterns) and where

potentially large groups must synchronize at a barrier (which is common in bulk-synchronous programs). The

second pattern has signaling the occurrence of events, either directly via an event abstraction or indirectly

via mechanisms such as futures.

Synchronization constructs should also be integrated with the constructs for creating work, in order to

more clearly indicate the scheduling dependences between tasks. Run-time schedulers can more efficiently

utilize machine resources when scheduling dependences are made explicitly visible to them. For example,

abstractions for events can be integrated with the constructs for work creation to indicate which tasks must

be completed before the newly specified task is ready to run.

Explicit Data Movement / Communication Primitives. In addition to coordinating their activities

with synchronization primitives, parallel tasks must also be able to exchange data. Constructs for communication

must describe the movement of (potentially large) blocks of data in a way that the underlying implementation

can efficiently leverage hardware resources such as RDMA engines. They must also support message

passing in a way that can efficiently leverage high-performance Network Interface Controllers (NICs) and

interconnects.
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Means of Placing Data and Tasks. In order to efficiently utilize machines that are both deeply

hierarchical and heterogeneous, low-level code may require the ability to reason about the location of program

elements, especially data and tasks. This need is best addressed by providing an abstraction of the place

where data resides and where tasks are executed. Abstractions of place are important both for inspecting

and for controlling the location of program elements. For example, a program module may wish to learn the

location of the memory holding a given data structure, so that it may create a new task executing nearby

to create good locality.

Place abstractions provide an abstracted view of the available machine resources, specifically the memories

and processors available for holding program data and executing program tasks. To provide programs with

both flexibility and fine-grained control, place abstractions should be capable of representing machines at

different levels of granularity. For instance, a program may at different times wish to refer to the set of

all processors in a node, the set of all processors satisfying some criterion, or a specific processor. Place

abstractions must also be able to represent the relationship amongst processors and memories, such as

determining memory resources “near” a processor or set of processors. Finally, they must also be integrated

with constructs for work creation, storage allocation, and so forth. This allows the program to specify, if it so

chooses, the desired location for the storage being allocated or work being created. It also allows reasoning

about the capacities of the various memories and execution units.

A.4 Mappings Among Levels

As previously stated in Section 4, the mapping of code and data to physical resources is performed across

the high, middle, and low levels. To meet the productivity goal of Section 4, there should be a fully auto-

matic path to perform this mapping. In many cases, automatically mapped code will be high-performance,

embodying complex high-performance schedules that would be impractical to write “by hand.” In cases

where the automatic code does not meet performance goals, or the programmer wants more control, the

system must permit programmers to intervene at any of these levels to steer the mapping, which we call a

directed approach. The programmer should also be able to link in hand-optimized code at any location.

In theory, a programmer can always, given enough time, produce a hand optimization that matches or

beats automatically generated code; however it will not be practical at exascale to write more than a small

amount of such code by hand, since the number of hardware considerations for programmers to manage for

performance at exascale will be large. Also, hand-optimized code is not likely to be performance portable
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(and probably not even portable), since it will reflect close optimization for performance to specific hardware

structures. A mixed mapping strategy, in which portions of the mapping are automatic and others are

directed, allows human resources to be focused. It can also minimize production of non-portable code. Such

a system should be multi-resolution, targeting different user capabilities, as it is likely that the programmer

performing the directed mapping may be a computer scientist or computational scientist expert programmer

whose efforts are encapsulated in the system to benefit the domain scientists.

To meet the need for automated mapping, a programming system must address the unprecedented

complexity and diversity of future architectures. This can be addressed using a breadth of automatic mapping

technologies, relying on current and new capabilities to be developed.

Compilers are a key part of the mapping strategy. There is broad and advancing knowledge of parallel

program optimization to bring into practice, including advanced parallelization, explicit scratchpad memory

management generation, explicit communication generation, joint parallelization and locality optimization,

joint scheduling and data placement optimization, energy proportional scheduling, and so on. Optimization

techniques that were once restricted to narrow program forms are expanding to more general program forms.

Compilers can now optimize mathematical expressions in terms of reals so that, when they are implemented

in floating point, error is minimized. Compilers can generate optimized event-driven task programs for

exascale. Compilers can generate optimized OpenMP, MPI, CUDA, and OpenCL—in some cases generating

program schedules with complexity far beyond what a human could generate by hand.

Even with all this compiler technology to choose from, there is much to gain from investment in research

into new parallel optimizations, via new intermediate representations, analysis techniques, and optimization

algorithms.

Moore’s law helps with compilation—we have faster hardware and bigger memories on which to run our

compilers—and with optimization algorithm advances, compilation approaches are now practical which were

once considered infeasible “and then a miracle occurs” white board technology. The surplus of hardware

on which to run compilation opens other opportunities. For example, since it is long settled that no one

compilation heuristic applies to all input programs [2], modern compilers will often try many different

heuristics and simply choose the one that performs best, or use other advanced search procedures (e.g.,

genetic algorithms). Modern compilers also rely on advanced mathematical optimization libraries (e.g., Mixed

Integer Linear Programming (MILP) solvers like Gurobi or CPLEX); framing optimizations mathematically

allows for the employment of powerful algorithms (e.g., Gomory cut generation) to rapidly explore and prune
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vast spaces of potential mappings. There will be advantages to expanding compiler techniques to use new

modern optimization techniques (e.g., convex optimization).

All modern compilers also expose knobs beyond command line flags to allow them to be plugged into

autotuning frameworks. When the amount of time available for optimization is high or the kernel is

particularly critical, superoptimization can be applied.

With complex hardware, static machine models used to guide compiler optimization are approximate.

Mixed static/dynamic optimization techniques allow the compiler to make partial mapping choices, and

generate code that completes the mapping by itself (e.g., with a compiler-generated inspector-executor

form), or in concert with an advanced runtime (e.g., using compiler-generated dynamic dependences and

affinities).

Compilers often run into trouble when presented with overly optimized low-level code. Analyzing such

code that is overly “baked” to one hardware architecture, that uses impenetrable concurrent programming

constructs, or that omits critical semantics, can be impossible. Exascale programmers should be encouraged

to express their code using as high a level as possible, to avoid this pitfall. Compilers should be developed

with control interfaces that allow them to be plugged into DSLs, frameworks, and libraries (e.g., telescoping

libraries).

When compiler techniques fall short, or in order to get some more performance from the compiler,

empirical optimization (aka autotuning) can play a critical role in mapping. Because empirical optimization

can be very expensive and slow, recent research has used various techniques to explore a set of different

mapping decisions in a systematic way. These techniques and associated tools will be even more critical as

architectural complexity and diversity increase, and in consequence increase the cost of making a suboptimal

decision.

The following is a description of tools that may be involved in the mapping process.

• Compilers: Use advanced program representations, analyses, programming language technology, and

mathematical optimization technology, to rapidly generate correct optimized code variants.

• Autotuners: Autotuners perform empirical measurement of points from a search space of possible

implementations, arising from programmer specification, compiler optimization, or some combination.

• Heuristic Search and Machine Learning: Various techniques must be employed to prune the
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search space arising from autotuning so that only a manageable number of points in the search space

are considered. Most commonly, the search space is explored using some sort of heuristic search, such

as a simplex method or genetic algorithm. In some cases, machine learning is employed based on a

priori training; for example, in cases where the best solution relies on features of the architecture or

input program.

• Synthesis and Verification Synthesis is an emerging technology that can help derive code satisfying

both certain structural constraints (e.g., constraints requiring the use of vector operations) and a

functional specification. Recent work has shown how this can be applied both to support automatic [13]

and human-guided [82] optimization from a high-level implementation. Verification can also help

establish the correctness of transformations that cannot be proven correct using more traditional

analysis mechanisms.

• Architecture and Application Models: Using models of the architecture and of how the application

will map onto the architecture, the process of generating parallel code can be seeded with promising

starting points, and the search space for autotuning can be significantly pruned.

• Dynamic Runtime Systems: Many decisions, including selection of optimized code, can be deferred

to runtime when the execution context is fully known and information on the execution can be captured.

At all levels of the mapping process, the programmer should be permitted to intervene and direct the

mapping. The following interactions with the mapping process may be performed by the programmer to

provide direction or respond to feedback.

• DSL: The DSL can indicate to the programmer whether the constructs they are using are likely to

perform well on the target architecture, and ask for information that can enable more aggressive

optimization of the code. Programmers could also suggest algebraic equalities that can help the

compiler better optimize a given program in the DSL.

• Compiler: Similarly, the compiler can mark code that is likely to be inefficient, and ask for information

that can allow the compiler to rewrite the code to a form more amenable to optimization.

• Models: Models can predict the expected performance of the code on a target architecture, providing

upper bounds that capture inherent properties and indicate to other tools whether further optimization

is likely to be profitable.
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• Performance Monitoring Tools: Tools that detect or help pinpoint performance anomalies can

provide users with insights into performance bottlenecks in the code.

• Runtime: The runtime system can flag significant load imbalance, cache misses, power-hungry

computations, and other sources of inefficiency.

• Visualization and Interaction: Development environment (e.g., Eclipse) plugins provide the programmer

insight and control over program analyses and optimizations, and provide command line or scripting

control over the application of optimizations.

• Autotuner: The autotuner can mark which code variants and parameter ranges led to the best and

worst performance, in order to help the programmer understand this relationship.

In summary, the mapping process must rely on a collection of tools and interfaces to make intelligent

decisions, or guide the programmer to intelligent decisions.

B Glossary of Terms

bulk-synchronous A programming model where execution consists of a fixed number of threads, and all

synchronizations have barrier-like semantics: The computation proceeds in successive phases where

any operation by a thread at phase i appears to precede any operation by any thread at phase i + 1,

and is not ordered with respect to operations on other threads at phase i.. 26, 28

coherence domain The collection of processing elements in a node or system where reasonable expectations

of the visibility to one processing element of individual loads and stores from another processing element

apply. Often considered strongly or sequentially consistent. 68, 78

container A set of physical resources (for example, cores and memory) which are dedicated to one application

for a period of time. 68, 78

data tile a subset of the logical values of an array grouped into a block to improve locality. 19, 23

dependence graph A graph that describes the order in which instructions or tasks have to be executed

(or appear to be executed) for a correct execution. 26

DSL Domain specific language, say more. 20, 21, 29, 58–60, 62, 75
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enclave A collection of multiple containers, typically not part of the same coherence domain. As such they

normally communicate via message passing or RDMA. 68

Execution Model The lowermost parallel programming model that is exposed by the system hardware OS

and common run-time.. 21, 22

execution productivity A measure of the functionality that a programmer produces versus the cost or

effort of writing the code. 18

execution unit Hardware that executes a sequential stream of instructions. 19, 68

Field Programmable Gate Array An integrated circuit designed to be configured after manufacturing.

FPGAs are typically less dense and less fast than custom-designed logic, but can be customized to

better the needs of an application than a general-purpose CPU.. 44

fork-join A programming model that results in executions that are series-parallel graphs.. 26, 27

framework There are two common definitions of framework in the programming language community: (1)

in contrast to a library, where a user program calls the library for some service, a framework is a set

of templates and procedures that exerts more control over the user code and data structures, even to

the point of inverting control so that the user code plugs into the framework, and the framework is

calling the user code; and (2) as a means for interfacing and coordinating parts of programs written in

more than one programming language, as in Google Protocol Buffers. Scientific computing frameworks

bring both aspects—significant imposed functionality and structure, as well as multi-language support.

There is no clear separation between a framework and an embedded DSL—the term embedded DSL

is mostly used when the hosting language is more flexible, such as SmallTalk or Python, so that the

programmer is (almost) not exposed to the embedding language. 58

Hybrid Memory Cube A memory package that consists of multiple DRAM chips layered atop a logic

chip, connected with vertical vias.. 45

iteration tile a subset of the iterations of an algorithm grouped into a task for improved locality. 19, 23

parallel programming environment The collection of compilers, libraries and tools that implements one

or more parallel programming models. 18, 20, 21
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parallel programming model A programming model provides a set of abstractions that simplify and

structure the way the programmer thinks about and expresses a parallel algorithm. 18, 20, 22, 23, 78

Performance Model A model that provides an estimate fo the resources consumed by a program. 21, 22

programmer productivity A measure of the functionality that a programmer produces versus the cost

or effort of writing the code. 18

RDMA Remote Direct Memory Access. 18, 22, 30, 68, 78

serial semantics Said of a parallel language where the outcome of the execution of a parallel program

is equivalent to the execution of a sequential program that can be easily derived form the parallel

program. Sequential semantics facilitate debugging and testing.. 26

thread A software vehicle for the execution of a sequence of instructions. 68

work stealing A task scheduling algorithm whereby spawned tasks are queued locally and normally executed

by the local thread; threads that are idle “steal” tasks from remote queues. 30
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