AAAAAAAAAAAAAAAAAA

Evolving MPI to Address the
Challenges of Exascale Systems

Rajeev Thakur
Deputy Director
Mathematics and Computer Science Division
Argonne National Laboratory

Joint work with Pavan Balaji, Darius Buntinas, Jim Dinan,
Dave Goodell, Bill Gropp, Rusty Lusk, Marc Snir

,'_ % U.S. DEPARTMENT OF
2/ ENERGY

Current Situation with Production Applications (1)

= The vast majority of DOE’s production parallel scientific applications today
use MPI

— Increasing number use (MPIl + OpenMP) hybrid
— Some exploring (MPI + accelerator) hybrid

= Today’s largest systems in terms of number of regular cores (excluding
GPU cores)

Sequoia (LLNL) 1,572,864 cores

Mira (ANL) 786,432 cores
K computer 705,024 cores
Julich BG/Q 393,216 cores
Blue Waters 386,816 cores
Titan (ORNL) 299,008 cores

= MPI already runs in production on systems with up to 1.6 million cores

Rajeev Thakur 2

Current Situation with Production Applications (2)

= |BM has successfully scaled the LAMMPS application to over 3 million MPI
ranks

= Applications are running at scale on LLNL’s Sequoia and achieving 12 to 14
petaflops sustained performance

= HACC cosmology code from Argonne (Salman Habib) achieved

14 petaflops on Sequoia
— Ran on full Sequoia system using MPI + OpenMP hybrid

— Used 16 MPI ranks * 4 OpenMP threads on each node, which matches the
hardware architecture: 16 cores per node with 4 hardware threads each

— ~ 6.3 million way concurrency: 1,572,864 MPI ranks * 4 threads/rank
— http://www.hpcwire.com/hpcwire/2012-11-29/

sequoia supercomputer runs cosmology code at 14 petaflops.html
— SC12 Gordon Bell prize finalist

Rajeev Thakur

Current Situation with Production Applications (3)

= Cardioid cardiac modeling code (IBM & LLNL) achieved 12 petaflops on
Sequoia
— Models a beating human heart at near-cellular resolution
— Ran at scale on full system (96 racks)
— Used MPI + threads hybrid: 1 MPI rank per node and 64 threads

— OpenMP was used for thread creation only; all other thread choreography and
synchronization used custom code, not OpenMP pragmas

— http://nnsa.energy.gov/mediaroom/pressreleases/sequoiall2812
— SC12 Gordon Bell Prize finalist

= And there are other applications running at similar scales...

Rajeev Thakur

High-Level Goals of this Project

= Existing MPI applications developed over several years represent billions
of dollars worth of investment

= As we progress from today’s petascale to future exascale systems, MPI
must evolve to run as efficiently as possible on these systems so that
applications can continue to gain the performance benefits

= This requires that both the MPI standard as well as MPI implementations
address the challenges posed by the architectural features, limitations,
and constraints expected in future extreme-scale systems

— E.g., lower memory per core, higher thread concurrency, power constraints,
performance scalability, resilience to failures, ...

Rajeev Thakur

Specific Goals of this Project (1)

= MPI Standardization

— Work with the MPI Forum to ensure that the MPI specification evolves to
meet the needs of future systems and of applications, libraries, and higher-
level languages

= MPI Implementation

— Continued enhancement of the MPICH implementation of MPI to support the
new features in the MPI standard (MPI-3 and beyond) and to address the
implementation challenges posed by exascale systems

= Transfer Technology to Vendors

— Continue to collaborate with our vendor partners (IBM, Cray, Intel, ...) to
enable them to make the latest MPI features available to users on production
systems

Rajeev Thakur 6

Specific Goals of this Project (2)

= Going Beyond Current MPI

— Investigate new programming approaches for potential inclusion in future
versions of the MPI standard

e E.g., generalized user-defined callbacks, lightweight tasking, extensions for
heterogeneous computing systems and accelerators, ...

= Efficient Runtime for Implementing Higher-level Programming Models
— Dynamic execution environments (e.g., Charm++, ADLB)
— Global communication models (e.g., PGAS models, Global Arrays, GVR)

= Interoperability with other Programming Models

— We are interested in working with you to ensure that the new models you
are developing can interoperate with MPI

Rajeev Thakur 7

Project Accomplishments

Rajeev Thakur

MPI Standardization

= The MPI Forum released the MPI-3 standard in Sept 2012 after about
three years of effort

= Several of us played leading roles in the definition of MPI-3

Rajeev Thakur: Co-chair of RMA working group

Pavan Balaji: Chair of hybrid programming working group
Marc Snir: Author of the main proposal in hybrid programming
Darius Buntinas: Active role in fault tolerance working group

Dave Goodell: Active role in defining the new tools interface in the tools
working group

Jim Dinan: Active in hybrid and RMA working groups

= The MPI Forum continues to meet every three months to define future
versions of MPIl (MPI 3.x, MPI 4.0), and we continue to be actively involved
in those efforts

Rajeev Thakur

MPI Implementation

The MPI implementation that we develop, MPICH, has always closely
tracked the evolving MPI standard since the beginning of MPI

= For MPI-3, we set an aggressive goal of implementing all of MPI-3 by SC12,
i.e., barely a month and a half after the standard was released

= Thanks to the heroic efforts of our project members, we were successful
in releasing at the MPICH BoF at SC12 an all-new version of MPICH (3.0)
that supports all of MPI-3

= We also unveiled a new, redesigned web site for MPICH, www.mpich.org

= Although this version of MPICH supports all of MPI-3, performance tuning
is needed in many parts, which we continually work on

Rajeev Thakur 10

Vendor Interactions

Continue to collaborate with our vendor partners to give them a running
start toward supporting the latest MPI features on their platforms

IBM has merged its separate MPIl implementation efforts for the Blue
Gene and POWER platforms into a single implementation based on MPICH

— We have been working with them closely and share a common code base.
They send us code patches that we incorporate.

Similar interactions with Cray on MPI for the Cray systems and with Intel
for MPI on Intel platforms

As a result, the majority of the largest machines in the Top500 run MPICH

— Seven of the top ten machines in the Nov. 2012 Top500 list use MPICH
exclusively

— One machine uses MPICH together with other MPIl implementations

— We are working with Fujitsu and the University of Tokyo to port MPICH to the
K computer

Rajeev Thakur

11

One-Sided Communication

= MPI-3 has added significant new features for one-sided communication,
which make it useful for implementing high-level programming models,
libraries, and applications
— (Details later in this talk)

= |n addition to supporting all these new features in MPICH 3.0, we have
published papers on how to implement them efficiently and on using MPI

for shared memory programming within a node (MPI+MPI)
“Leveraging MPI’s One-Sided Communication Interface for Shared-Memory
Programming”, EuroMPI 2012
— “MPI+MPI: A New, Hybrid Approach to Parallel Programming with MPI Plus Shared
Memory Computing”, Computing (journal), to appear

— “An Implementation and Evaluation of the MPI 3.0 One-Sided Communication
Interface,” submitted to Concurrency and Computation: Practice and Experience

Rajeev Thakur 12

Active Messages in MPI

= MPI does not directly support active messages

= Nonetheless, they are useful for implementing higher-level programming
models, such as PGAS and Charm++

= Together with Xin Zhao and Bill Gropp at UIUC, we investigated
approaches for supporting active messages within the context of MPI

= This work was accepted for publication at CCGrid 2013
— “Towards Asynchronous, MPI-Interoperable Active Messages”, CCGrid 2013

Rajeev Thakur 13

Tools Interface

The new MPI-3 tools interface, commonly known as the “MPI_T”
interface, has been completely implemented in MPICH

= All internal configuration in MPICH that was previously controlled
exclusively by UNIX environment variables is now also accessible
programmatically through MPI_T control variables

— E.g., thresholds for selecting different algorithms for collective communication
as well as options for runtime debugging

= Through MPI_T, we have also exposed several new performance variables,
primarily vending statistics from MPI message-matching queues and low-
level communication data structures

= We have used these new performance variables to great effect for
studying the performance of NAMD/Charm++ implemented over MPI

— a publication on this work is under preparation

Rajeev Thakur 14

\ |
Some Success Stories with Applications

Terabase Assembly on Cray XE6 e Terascale Genome Assembly

" 5952 cores

— Graph assembly problem that deals with

§ finding an Hamiltonian path in a fuzzy graph
. with erroneous edges (or non-edges)

A — Highly communication intensive, with
(seemingly) random global communication

billion reads

— Genome assembly at this scale (2.3TB on Cray
XE6) has, for the first time, allowed scientists
to study multiorganism genome colonies of
completely or partially unknown species

f 1 1 1 1 1 ' L '
o 10 20 30 40 S0 60 JO 30 30 100

* Cyclops Tensor Framework (Chemistry)
CCSD weak scaling on Mira (BG/Q) — Fundamental component of quantum

600 Cyclops TF —— chemistry for coupled-cluster methods

500 ‘ ‘ — Supersedes existing algorithms and software
o 400 - for parallel tensor contractions
§ 300 - — Enabled quantum simulations of 250 electrons
T 200 i in 1000 orbitals (no point-group symmetry) on

0 b Argonne Mira

. L i i * Order of magnitude larger scale problem than
512 1024 2048 4096 8192

#nodes anything that has been previously done

S Rajeev Thakur 15

What’s New in MPI-3

Rajeev Thakur

MPI Standard Timeline

= MPI-1(1994), presented at SC’'93
— Basic point-to-point communication, collectives, datatypes, etc
= MPI-2(1997)
— Added parallel I/0, RMA, dynamic processes, thread support, C++ bindings, ...

= -—-Stable for 10 years ----

= MPI-2.1 (2008)

— Minor clarifications and bug fixes to MPI-2
= MPI-2.2 (2009)

— Small updates and additions to MPI 2.1
= MPI-3(2012)

— Major new features and additions to MPI

Rajeev Thakur

17

Overview of New Features in MPI-3

= Major new features
— Nonblocking collectives
— Neighborhood collectives
— Improved one-sided communication interface
— Tools interface
— Fortran 2008 bindings
Other new features
— Matching Probe and Recv for thread-safe probe and receive

— Noncollective communicator creation function
— “const” correct C bindings

— Comm_split_type function

— Nonblocking Comm_dup

— Type_create_hindexed_block function

C++ bindings removed

Previously deprecated functions removed

Rajeev Thakur 18

Nonblocking Collectives

Nonblocking versions of all collective communication functions have been
added

— MPI_Ibcast, MPI_Ireduce, MPI_lallreduce, etc.
— There is even a nonblocking barrier, MPI_lbarrier

= They return an MPIl_Request object, similar to nonblocking point-to-point
operations

= The user must call MPI_Test/MPI_Wait or their variants to complete the
operation

= Multiple nonblocking collectives may be outstanding, but they must be
called in the same order on all processes

Rajeev Thakur 19

Neighborhood Collectives

= New functions MPI_Neighbor_allgather, MPI_Neighbor_alltoall, and their
variants define collective operations among a process and its neighbors

= Neighbors are defined by an MPI Cartesian or graph virtual process
topology that must be previously set

= These functions are useful, for example, in stencil computations that
require nearest-neighbor exchanges

= They also represent sparse all-to-many communication concisely, which is
essential when running on many thousands of processes.

— Do not require passing long vector arguments as in MPI_Alltoallv

Rajeev Thakur 20

Improved RMA Interface

= Substantial extensions to the MPI-2 RMA interface

= New window creation routines:

— MPI_Win_allocate: MPI allocates the memory associated with the window
(instead of the user passing allocated memory)

— MPI_Win_create_dynamic: Creates a window without memory attached. User
can dynamically attach and detach memory to/from the window by calling
MPI_Win_attach and MPI_Win_detach

— MPI_Win_allocate_shared: Creates a window of shared memory (within a
node) that can be can be accessed simultaneously by direct load/store
accesses as well as RMA ops

= New atomic read-modify-write operations
— MPI_Get_accumulate
— MPI_Fetch_and_op (simplified version of Get_accumulate)
— MPI_Compare_and_swap

Rajeev Thakur 21

Improved RMA Interface contd.

= A new “unified memory model” in addition to the existing memory model,
which is now called “separate memory model”

= The user can query (via MPl_Win_get_attr) if the implementation
supports a unified memory model (e.g., on a cache-coherent system), and
if so, the memory consistency semantics that the user must follow are
greatly simplified.

= New versions of put, get, and accumulate that return an MPI_Request
object (MPI_Rput, MPI_Rget, ...)

= User can use any of the MPI_Test/Wait functions to check for local
completion, without having to wait until the next RMA sync call

Rajeev Thakur 22

Tools Interface

An extensive interface to allow tools (debuggers, performance analyzers,
etc.) to portably extract information about MPI processes

Enables the setting of various control variables within an MPI
implementation, such as algorithmic cutoff parameters
— e.g, eager v/s rendezvous thresholds

— Switching between different algorithms for a collective communication
operation

Provides portable access to performance variables that can provide insight
into internal performance information of the MPIl implementation

— e.g., length of unexpected message queue

Note that each implementation defines its own performance and control
variables; MPI does not define them

Rajeev Thakur

23

Fortran 2008 Bindings

= An additional set of bindings for the latest Fortran specification

= Supports full and better quality argument checking with individual handles
= Support for choice arguments, similar to (void *) in C

= Enables passing array subsections to nonblocking functions

= QOptional ierr argument

= Fixes many other issues with the old Fortran 90 bindings

Rajeev Thakur 24

What did not make it into MPI-3

= There were some evolving proposals that did not make it into MPI-3
— e.g., fault tolerance and improved support for hybrid programming

= This was because the Forum felt the proposals were not ready for
inclusion in MPI-3

= These topics may be included in a future version of MPI

= Current activities of the MPI Forum (for MPI 3.x and MPI 4) can be tracked
at http://meetings.mpi-forum.org/

Rajeev Thakur 25

Summary

= Different programming models have picked different tradeoffs in the
space of portability, performance, expressiveness, and ease of use

= MPI as a runtime system has chosen to be highly feature rich and
portable, and has enabled high-level libraries to be built on top of it to
provide domain-specific algorithms and simplistic use of a subset of the
features (e.g., PETSc, Trilinos, FFTW, ADLB, ...)

= This model has been extremely successful and has resulted in a wide and
rich ecosystem built around MPI that includes high-level domain-specific
libraries, performance and debugging tools, and applications in almost
every domain of science

= We are interested in working with you to enable interoperability of your
programming models with MPI

Rajeev Thakur 26

Thanks! WINRIA

= MPICH Leads
= Argonne National Laboratory
= University of lllinois, Urbana-

(intel)'

Microsoft

.|l|

Champaign
= Core MPICH developers
- IBM EPERCOMPUTER COMPANY MJ"_v".
= |INRIA
= Microsoft -‘\ \'?/
= Intel = — MVAPICH Pacific Northwest _

= University of British Columbia

e i Sandia
= Queen’s University
L : ft National
= Derivative implementations abs. @ Laboratories
= Cray

o My.ricom | | n Q LOGIC g

= Ohio State University
= Other Collaborators Ql,een§
= Absoft, Pacific Northwest National r r r THE
Laboratory, Qlogic, Sandia, Totalview ToTALVIEW u 8?1 {JVTEAR&”Y

TECHNOLOGIES

Technologies, University of Utah

Rajeev Thakur 27

