
CJ Newburn, Sean Treichler, Max Grossman,
Vincent Cave, Stephen Jones, James Beyer

Version 170515.1800

HiHAT: A New Way Forward
for Hierarchical Heterogeneous Asynchronous Tasking
A retargetable interface for tasking & language runtimes

2

MOTIVATION FOR RETARGETABLE INFRASTRUCTURE

• “We haven’t agreed on a user-level interface for tasking”

• It’s unlikely that we will anytime soon. But we can agree on infrastructure.

• “We’re done with science experiments and want something we can use”

• Gather usage models and requirements  architect a durable, robust solution

• “We don’t want another academic endeavor”

• Create something driven and supported by vendors

Build it right, for lasting impact

3

WHAT’S IN IT FOR THE COMMUNITY?

• App developers

• Common SW architecture across multiple targets

• Runtime developers

• Better performance and robustness, less effort

• Tasking runtimes and language runtimes that don’t necessarily use tasking

• Vendors

• Expose HW features to a larger market, i.e. SW that spans multiple targets

Seeking a win-win-win

4

COMMON SW ARCHITECTURE FOR
HETEROGENEOUS SYSTEMS

CPU1

ACC/GPU1

CPU2

ACC/GPU2

Accelerators

CPUs

CPU + accelerators

CPU only

Offload only

Retargetable:

each task graph

may span

CPU+accelerator

Enables SW portability, broadens market for each vendor

5

WHERE DO WE START?

• In order to make life easier for the largest set of people, start at the bottom

• Extremely performant APIs that span targets, plus an easier-to-use set of APIs

• Strive for inclusiveness and extensibility

• Progress from low-level plumbing to runtime building blocks

• Building blocks or anything higher are useless until you have underlying plumbing layer

• Foster collaboration once we have something to work off of

• Make it easy to create new or improved user interfaces

• But don’t start by convincing anything to quit using their and use a new user interface

Bottom up

6

WHAT WOULD IT NEED FOR BROAD ADOPTION?

• Has to meet all provisioning constraints – see list below

• Has to be performant and robust and extensible – see design below

• Has to be the easiest way to get what people want – incremental, meeting needs

• Has to be driven by vendors, who are incentivized to be successful

Top down and bottom up: hihat

Play the constructive skeptic today, and make your own evaluation

7

HW VENDORS AT MINI-SUMMIT

• Varying degrees of involvement. Some part of each company has expressed interest.

• AMD – Ashwin Aji, Mike Chu

• ARM – Pasha Shamis, Geraint North

• Cray – Adrian Tate (posted, was unavailable)

• IBM – Wang Chen, Kathryn O’Brien, Sean Nijjar

• Intel – Vincent Cave, Josh Fryman, Bala Seshasayee

• NVIDIA – CJ Newburn, Sean Treichler, Stephen Jones, James Beyer

• Host: Wilf Pinfold, Modelado.org, a neutral party funded by vendors and others

8

LANGUAGE OR TASKING FRAMEWORKS
• Varying degrees of involvement. Those in bold posted presentation materials.

• Some part of each has expressed interest.

• C++ (CodePlay, IBM)

• CHARM++ (UIUC)

• Darma (Sandia)

• Exa-Tensor (ORNL)

• Fortran (IBM)

• Gridtools (CSCS, Titech)

• HAGGLE (PNNL/HIVE)

• HPX (CSCS)

• Kokkos, Task-DAG (SNL)

• Similarly with implementations

• Argobots (ANL)

• OpenCL (CodePlay)

• Qthreads, NoRMa (SNL)

• UCX/UCS (ARM)

• And a sampling of end users

• ANL, ANSYS, Blue Brain
(EPFL), CSCS, ECP, GROMACS
(KTH), ICIS.PCZ.PL, Lattice
Microbes (UIUC),LANL, LBL,
LLNL, NEMO5 (Purdue), ORNL

• Legion/Realm (Stanford/NV)

• OCR (Intel, Rice, GA Tech)

• PaRSEC (UTK)

• Raja (LLNL)

• Rambutan, UPC++ (LBL)

• R-Stream (Reservoir Labs)

• SyCL (CodePlay)

• SWIFT (Durham)

• TensorRT (NVIDIA)

• VMD (UIUC)

9

AGENDA FOR MINI-SUMMIT

• Overview, motivation, status of HiHAT  common ground of understanding

• Review of vendor interest  growing level of support, more to go

• Review of runtime client interest  first set of viable customers

• Design principles and directions  deeper understanding

• Gather feedback  direction check

10

WHAT IS HiHAT?

Community-wide requirements gathering effort

• Leads to solid architecture that’s durable, extensible, robust

Architect user layer and common layer API and implementation

Implementation beneath user and common layers

• Vendor-maintained and user-supplemented

Integrate with OSS project: pluggable, conformant building blocks

• Built on user and common layers

• Language and tasking runtimes are built out of these

4 faces

Language

runtimes

High-level

runtimes

Low-level

runtimes

HiHAT user and

common layers

Libs/glue,

target 1

Libs/glue,

target n
…

Applications

HiHAT-conformant

building blocks

11

HiHAT CLIENTS

• HiHAT’s primary clients are existing language and tasking runtimes (e.g. C++, Kokkos)

• Already have an interface to 1 or more targets, want a better interface/implementation

• HiHAT’s secondary clients are runtimes that are being designed (e.g. HIVE/HAGGLE)

• Open to influencing their design to be amenable to integration with/building on HiHAT

• HiHAT provides a target-neutral interface, used whole or in part by clients

• Identify what’s of greatest value, e.g. for future proofing, ease, robustness

• Incrementally adopt those parts of HiHAT, and build up and out from there

• HiHAT does not have a near-term goal of providing a complete user-facing runtime

Start incrementally, build from there

Language

runtimes

High-

level

runtimes

Low-level

runtimes

HiHAT user and

common layers

Libs/glue

,

target 1

Libs/glue

,

target n

…

Applications

HiHAT-conformant

building blocks

12

HiHAT’S OSS BUILDING BLOCKS

• The HiHAT interfaces will define types and a machine model

• This HiHAT definition defines an architecture to which clients built on it conform

• Clients sharing a need for common functionality contribute/use building blocks

• This would be an open source project

• Examples: schedulers, cost models, visualization, dependence analysis, transformation

• Suppose 4 orgs have needs in common; each can contribute a couple, consume others

• Contributors can share tests (unit, functional, longevity)

• Consumers can customize and contribute back, beef up testing, etc.

Accelerating communal progress

Language

runtimes

High-

level

runtimes

Low-level

runtimes

HiHAT user and

common layers

Libs/glue

,

target 1

Libs/glue

,

target n

…

Applications

HiHAT-conformant

building blocks

13

HiHAT’S IMPLEMENTATION LAYER

• HiHAT enables vendors/implementation providers to plug in functionality from below

• Functionality behind the HiHAT APIs

• Vendors may have the strongest incentive to provide access to their platform features

• Others may offer alternate/improvements implementations

Vendor-driven performance and completeness

Language

runtimes

High-

level

runtimes

Low-level

runtimes

HiHAT user and

common layers

Libs/glue

,

target 1

Libs/glue

,

target n

…

Applications

HiHAT-conformant

building blocks

O
p

en
 s

o
u

rc
e

Target 1 Target 2 Target 3 Target 4

HiHAT User Layer

Services

…

Moni-
toring

Functional building blocks

…
Comms

costs

Compute
costs

SchedViz

Transformations

…Aggre-
gate

Decom
-pose

Special-
ize

Applications and
frameworks: compilers, runtime libraries, …

Compute/Threading RTs

Data Movt Planning Data Mgt

HiHAT Thin Common Layer

Other

Data Movt Sync Enum

https://wiki.modelado.org/HiHAT_SW_Stack

Many frameworks

Shared,
contributed
utilities

Target agnostic
Target specific

Targets

Many hats

Accelerate coding
Share technology
Increase robustness

Increase robustness
More portable, tunable

Future proofing

Layer Value

15

VALUE

• Common interface to vendor-specific features

• Modular design, separation of concerns

• What’s above user/common layer can use target-agnostic heuristics on target-specific parameters

• Future proofing

• Retargetable across vendors, implementations, generations

• Underlying implementations can chase changes and improvements

• Performance and robustness

• Vendors are incentivized to provide 1st-class support; others can supplement

Providing the easiest path toward what you already want

16

STATUS
• Gather

• Usage models, applications, user requirements – modestly-broad participation, need more

• Architect

• Design principles – good progress, much more to come; need more concrete requirements

• Implement

• Implementation plan – POC this summer, anticipating partial implementation end of 2017

• Integrate

• Proof of concept  early adopters  broaden

Gradual start, but on firm footing

Opt Timing 2016 | 2017 | 2018

Gather Community input Community review Community feedback

Architect Design principles API proposal Refined API Updated API

Implement Proof of concept Initial subset More complete

Integrate Proof of concept First/partial clients Broader, more complete

17

MOMENTUM
Building interest, firming up investment

• Modelado.org – neutral zone, posting of usages, requirements, apps; monthly mtgs

• Active bottom-up discussions with vendors  initial POC with glue code

• Existence proofs and past learning: hetero streams, REALM, ~OCR, CodePlay

• ECP – ATDM funding, PathForward2 SW, CORAL/APEX/ECP app owners from ORNL,
ANL, LBL, LANL

• PASC – interest from Platform for Advanced Scientific Computing, Switzerland

• Workshop on Exascale SW Technologies (WEST) – panelist, Feb. 22

• Workshop at GPU Tech Conference – May 9 am, share progress, deepen investment

• Talk @ IWOCL workshop, Distributed and Hetero Programming for C/C++17, May 16

• Performance portability workshop – August 21

18

A RETARGETABLE FRAMEWORK
Interfaces are common across multiple targets

Action / service Description Example

Computation Target-specific code isolated in tasks, different

implementation for each target, layout

Invoke task named FOO on target X

Data layout Multiple data layouts, with implementations

specialized for each

Data layout Y (vs. Z) is used to select
which implemention of FOO to execute

Data movement Bring input data for task T to where it executes,

send output data to where it’s needed

Fetch FOO’s data from wherever it was
produced, send its outputs to consumers
Optionally re-layout data on the way

Coordination Observe and enforce data and control

dependences

FOO doesn’t execute until its predecessors
complete, the data is sent and formatted

Scheduling Select best resources to bind computes and data

to and ordering, based on cost models

Trade-off across multiple targets, data layouts

FOO doesn’t execute until its predecessors
complete, the data is sent and formatted

19

SCOPE OF FUNCTIONALITY

• Cover key platform-specific actions and services

• Data movement – target-optimized copies, DMA, networking

• Data management – support many kinds and layers of memory, specialized pools

• Coordination – completion events, locks, queues, collectives, iterative patterns

• Compute – target-optimized tasks, including remote invocation

• Enumeration – kinds and number of resources (compute, memory), topologies

• Feedback – profiling, load

• Tools – tracing, callbacks, pausing, … {debugging}

20

O
p

en
 s

o
u

rc
e

Target 1 Target 2 Target 3 Target 4

HiHAT User Layer

Services

…

Moni-
toring

Functional building blocks

…
Comms

costs

Compute
costs

SchedViz

Transformations

…Aggre-
gate

Decom
-pose

Special-
ize

Applications and
frameworks: compilers, runtime libraries, …

Compute/Threading RTs

Data Movt Planning Data Mgt

HiHAT Thin Common Layer

Other

Data Movt Sync Enum

https://wiki.modelado.org/HiHAT_SW_Stack

Many frameworks

Shared,
contributed
utilities

Target agnostic
Target specific

Targets

Many hats

Accelerate coding
Share technology
Increase robustness

Increase robustness
More portable, tunable

Future proofing

Layer Value

21

Max

SAMPLE APPLICATIONS

• HiHAT is driven to solve real problems for real users (not a research project)

• Key early goal of this effort is to identify concrete applications and parallel patterns

• Small subset presented here:

• Unbalanced Tree Search

• Smith Waterman for genome alignment

• Deep Learning kernels

• Multipole

• Monte Carlo Transport

• ANSYS solvers on retargetable framework

• DMRG++ nanomaterials

Usages that could benefit from HiHAT

22

Developer

Schedule, Transform

Services

Dependence Graph Services
Task deps

Resource Services

Developer

SAMPLE FLOW
Mapping of what developer and services perform on top of HiHAT

! Fragment 1 z=f(x,y)
loopA

loopB
loopC

! Fragment 2 u=f(v,z)
loopD

loopE

! Fragment 3 w=f(t)
loopF

loopG

function frag1(x, y) result(z)

loopA

loopB

loopC

end function frag1

function frag2(v, z) result(u)

loopD

loopE

end function frag2

function frag3(t) result(w)

loopF

loopG

end function frag3

Task 1

frag1

Task 2

frag2

Task 3

frag3
frag2

frag3taskifyrefactor Dep analysis

program xfunc

z=frag1(x,y)

u=frag2(v,z)

w=frag3(t)

end program

Task 0

xfunc

Task 2

frag2

frag1

Resource

Info
Cost

models

Enumeration

Build Selected

Resources
Analysis

Task

Schedule Action

Sequence

Bind, order

ComputeData management CoordinationData movement

Data, sync

Action Sequence

X
fo

rm

Record

Vincent

23

SCHEDULING AND INVOCATION EXAMPLE

XeonXeon Phi

Nervana

FPGAs

3D XPoint

DDR / MCDRAM

HiHAT

Compute/Coord. Data Mgt/Movement

Xeon

Nerv

Phi

FPGA
Phi

Xeon

Compiler / Libraries

Dependence

Task

+

HiHAT task graph
mapped to resources

Vincent

24

HiHAT

SCHEDULING AND INVOCATION EXAMPLE

T0

T3

T1 T2

Xeon

NervPhi

Xeon+

3DXp

FPGA

Phi+MC

DRAM

Xeon||
||

Dep analysis Scheduler Expansion

function frag1(x, y)

result(z)

loopA

loopB

loopC

end function frag1

function frag2(v, z)

result(u)

loopD

loopE

end function frag2

function frag3(t) result(w)

loopF

loopG

end function frag3

Program Dep Analysis

Resources/Model Sched/Trans

Execution

||

Task

Dependence

Alternative

Data transfer

Vincent

25

DATA MANAGEMENT AND MOVEMENT

Compute
• Task that used temporary buffer as scratch area completes

Free
• Free up a temporary buffer in MCDRAM

Alloc
• Grab newly-available temporary buffer, assign operand pointer

Move
• Stage data from DDR or 3D XPoint into MCDRAM

Compute
• Operate on data in MCDRAM using newly-assigned pointer

Move
• Stage temporary buffer back out to DDR

These are all actions that depend on one another

Vincent

Novel use of

temp buffers

Free, alloc, move,

fill are all just

actions in common

dependence

framework

Tasks have

dependences on

actions which manage

data, even if address

wasn’t know at

enqueue time

26

DATA MOVEMENT EXAMPLE

• Input: Move a collection of 5K blocks of various sizes from {CPU, GPUs} to {CPU, GPUs}

• Aggregate: Bundle contiguous chunks to same target  fewer, larger chunks

• User layer <source, target, size>

• Instance resolution*: find closest, latest copy of source; find target affinity

• Alias detection*: nop-ify when source & target are aliased, but maintain transitive deps

• Pick transport type: above size threshold  DMA ops, below threshold  memcpy ops

• Pick transport type: best RDMA implementation for end points

• Address mapping: adjust source/target addresses by appropriate offsets for their domain

• Common layer <source domain, source adr, target domain, target adr, size, type>

• DMA: Invoke DMA on CPU or GPU, or RDMA to remote CPU/GPU

• Memcpy: T-threaded memcpy for T-thread targets, cudaMemcpy

• *May be done above user layer

Resolving the abstraction as you get close to the metal

27

VENDOR INTEREST

• Intel – Vincent Cave, Josh Fryman, Bala Seshasayee

• NVIDIA – Stephen Jones, CJ Newburn, Sean Treichler, James Beyer

• AMD –Ashwin Aji, Mike Chu

• IBM – Wang Chen (spoke, didn’t present), Kathryn O’Brien

• Cray – Adrian Tate (remote  wasn’t available)

• ARM – David Lacomber (didn’t present)

Some part of each institution has expressed technical interest,

not necessarily business commitment.

28

IMPLEMENTATION LAYER INTEREST

• Argobots: Halim Amer, ANL

• Qthreads, NoRMa: Stephen Olivier, Sandia

• UCX/UCS: Pasha Sharmis, ARM (remote)

• SYCL/ComputeCPP: Michael Wong, Codeplay, Khronos, HSA (remote)

• C++: Michael Wong, ISOCPP (remote)

Some part of each institution has expressed technical interest,

not necessarily business commitment.

29

LANGUAGE OR TASKING FRAMEWORKS

• C++ (CodePlay, IBM) Michael Wong

• Charm++ (UIUC) Ronak Buch,
(Charmworks) Phil Miller

• Darma (Sandia) Janine Bennett

• Exa-Tensor (ORNL) Wayne Joubert

• Fortran (IBM)

• Gridtools (CSCS, Titech) Mauro Bianco

• HAGGLE (PNNL/HIVE) Antonino Tomeo

• HPX (CSCS)

• Kokkos, Task-DAG (SNL) Carter Edwards

• Legion (Stanford/NV) Mike Bauer

• OmpSs (BSC) Jesus Labarta

• Realm (Stanford/NV) Sean Treichler

• OCR (Intel, Rice, GA Tech) Vincent Cave

• PaRSEC (UTK) George Bosilca

• Raja (LLNL) Rich Hornung

• Rambutan, UPC++ (LBL) Cy Chan

• R-Stream (Reservoir Labs) Rich Lethin

• SyCL (CodePlay) Michael Wong

• SWIFT (Durham) Matthieu Schaller

• TensorRT (NVIDIA) Dilip Sequeira

• VMD (UIUC) John Stone

Some part of each institution has expressed technical interest,

not necessarily business commitment.

30

TABULATED RESULTS
Strong interest, modestly amenable; focus on data first

Type of functionality Level of

interest

Amenability

to

refactoring

H M L H M L

Data movement – target-optimized copies, DMA, networking 15 0 1 8 3 1

Data management – kinds and layers of memory, specialized pools 10 4 2 8 2 2

Coordination – completion events, locks, queues, collectives, iteration 9 7 0 6 4 1

Compute – local or remote invocation 7 2 4 4 5 3

Enumeration – kinds/# of resources, topologies 11 3 2 4 4 2

Feedback – profiling, utilization 6 5 3 4 6 1

Tools – tracing, callbacks, pausing, debugging 3 10 3 2 6 2

31

DESIGN PRINCIPLES

• Key provisioning constraints

• Architecture

• HiHAT common and user layer only dispatch

• Common layer for minimal overhead, user layer for ease of use

• Interaction with network, memory models

• API design

32

PROVISIONING CONSTRAINTS

• Must be options for very fast and reasonably usable

• Library that’s applicable to runtimes or static compilation

• C ABI that supports layering of C++, Fortran, Python on top

• Does not have to own main

• Incremental, does not have to own all memory allocation

• Composable and interoperable, e.g. with OpenMP, Kokkos, MPI, HDF5

• Can target heterogeneous systems, e.g. Xeon, Xeon Phi, GPUs, FPGAs, TPUs, ARM

• Tasks are spawnable and can sleep, e.g. can stall on IO, deschedule and resume

• Data movement should be extensible for network and relaxed memory

• Well-defined thread safety model (work through implications for user-level threads)

• Enough control to provide numerical reproducibility

If the interface doesn’t support these, it may not be useful

https://xstackwiki.modelado.org/User_stories

33

COMMON AND USER LAYER: DISPATCH ONLY

• Primary Common Layer and User Layer APIs only do dispatch

• HiHAT implementation is thin and light, easy to code, robust

• Performant (TBD whether it’s inlinable)

• Target-kind descriptor will be used to select target function to invoke

• Register target-specific implementation under each API

• Suppliers can be a mix of vendors and other implementation providers

Open, pluggable, low-overhead

34

LAYERING

Layer Examples Target

handling

Implemente

d by

Functionality

Runtime TensorRT, Legion, Kokkos,

PaRSEC, Raja, C++ runtime,

offload runtime

Target-

agnostic

implementat

ion that may

use target-

specific info

Tuners Make decisions, apply

transformations, call services

Reusable

modules

Dependence analysis, cost

models, scheduler

Tuners, open

sourced

Any kind of service that is

commonly used and/or

sharable

User layer Configuration, data

movem’t(logical source, log

dest, size, layout), data mgt,

invocation, sync

Map from

target-

neutral API

to target-

specific

implementat

ion

Target ninjas Some decisions, can take

longer, some overhead

Common

layer

Data movem’t (source virtual

address, dest VA, DMA/memcpy),

data mgt, invocation, sync

Target ninjas No decisions, absolutely

minimal overhead

35

COMMON LAYER VS. USER LAYER

• HiHAT User Layer – logical to low-level mapping

• Sample inputs for higher-level and configuration actions

• < logical source, logical target, size, [descriptor,] completion event> or

• <func_name, logical operands, input deps, completion event, flavor>

• Action: Low-level operands: domain, low-level addresses

• Characteristics: lookups, decisions

• HiHAT Thin Common Layer - function mapping only

• Sample inputs for low-level operational actions

• < Low-level operands, size, type, completion event> or

• <func_name, low-level operands, input deps, completion event, flavor>

• Action: invoke best-available implementation for that source [and target] domain

• Characteristics: Razor thin, minimal overhead, no decisions

• Provide completion events

36

COMMON LAYER – THIN AND LIGHT

Function CPU GPU FPGA, …

Compute,

threading

pthreads, OpenMP,

Argobots, Qthreads

cu* library calls, CUDA kernels,

OpenACC kernels

Data movement MPI, SHMEM, UCX,

memcpy, DMA, GASnet

MPI/GPUDirect, nvSHMEM, cudaMemcpy,

DMA, GASnet

Synchronization

and

communication

MPI wait, MPI collectives MPI collectives, NCCL, cudaEvent, …

Data

management

malloc, TBBmalloc, new,

sbrk, mmap

cudaMalloc, cudaMallocManaged,

{special pools}

Enumeration # cores, threads/core, ISA

versions, hwloc, …

devices, #SMs, compute version,

topology, …

Feedback PAPI PAPI, cupti

Tools Tracing? Callbacks? Tracing? Callbacks?

Many possible 3rd-party implementations to select from

37

USER LAYER – THICKER AND RICHER

Function CPU GPU FPGA, …

Compute, threading Create OpenMP hot team,

affinitize threads

Set default device

Data movement Choose transport mechanism,

given endpoints and size

Choose transport mechanism,

given endpoints and size

Synchronization and

communication

Data management Choose mem kind, allocator Choose whether managed

memory or not, choose

cudaMemAdvise parameters

Enumeration

Feedback Load indication Load indication

Tools Debugging Debugging, pause?

Some of these may set up later calls to the user or common layer

38

Cluster

Sub-cluster

TOPOLOGY
Domain (MPI rank/PE/process) managed by HiHAT  node/sub-cluster

Network may stretch within (sub-cluster) or among (nodes) domains

Sub-cluster

39

DATA MOVEMENT: NETWORK, MEM MODELS

• Composability with networking APIs, weak memory models is design criterion

• Split phase, e.g. set up RDMA and use it

• Split phase, e.g. write, fence/quiet

• HiHAT domain encapsulates some set of resources across which data movement can
be expressed using only HiHAT APIs

• Inter-domain compatibility with third-party communication libraries (e.g. MPI, SHMEM)
beyond scope – support would have to be implementation dependent

• HiHAT domain does not necessarily equal MPI rank (i.e. multi-node domains for
neighborhood work-stealing)

• Inter-domain data movement is the responsibility of higher layers

• Compose with these external actions through externally triggerable events

• Consider composability for both relaxed models (SHMEM, UPC) and message passing

• Separation of inter- and intra-domain communications doesn’t necessarily avoid all
resource contention

Intra- and inter-domain data movement

Feedback item

40

API DESIGN

• Varying levels of support: core, extended, metadata

• C ABI

• User function argument marshaling

• Granularity assumptions

• Inlining

41

VARYING LEVELS OF SUPPORT

• Core - essential

• Must support to be conformant, goal for all targets

• May have suboptimal performance, may map to a bundle of target-specific calls

• Extension - enhancements

• May be supported by a subset of targets

• Formalize the definition so that API captures most all semantics

• Could extend core with performance, functionality, or ease of use

• Metadata – enable lower implementation layer

• May be used for experimental purposes

• May be target-specific blob

API extensibility scheme supports a range from minimal to futuristic

Feedback item

42

C ABI

• Generality: Fortran, C++, Python, …

• Ease of use: Easy to make fast, doesn’t require C++ expertise

• Provisioning constraint: Some customers prohibit the use of C++

43

USER FUNCTION ARGUMENT MARSHALING

• HiHAT client responsible for de/marshaling, including how to capture closure

• Closure includes function and data environment (C/C++arguments and C++ data members)

• Client may be compiler or programmer or library

• Client can pass in demarshaling function or use some demarshaling convention

• What HiHAT has to support and deal with

• No: considerations of operand size, type (type casting)

• Yes: Accept pointer to function and pointer to data blob

• Yes: Provide functions to convert pointers across domains, as needed

This solution is applicable for C++, tasks, offloading (e.g. OpenMP)

Feedback itemJames

44

GRANULARITY ASSUMPTIONS

• Overhead determines supportable granularity

• Argument/environment marshaling is the client’s responsibility

• Could be largest cost be far, e.g. for multi-D, but could potentially be off of the critical
path

• Length of code path

• function calls to setup task – dependency setup/resolution, enqueue

• target-based selection – this could include extra code marshaling

• Call to start task – cost varies greatly depending on selection

• Execution speedup

• Achieved parallelism/concurrency

Feedback itemJames

45

INLINING

• Motivation

• Specialization – C++ templates

• Simplification

• Suitable for compiler

• Plausibility

• 2 header versions: definition with “inline” or declaration only with definition in library

• OpenACC: device_type specializes directive for different devices

• Implementation is simple enough to effectively inline

Feedback itemJames

46

ARCHITECTURAL CONFORMANCE IDEAS

• Tracing

• State

• Bound: binding, bound, unbinding, unbound

• Ready: not, partial, full

• Execution: Pending, executing, completed successfully, error, canceled

• Debugging

Open: What are the key conformance requirements of building blocks?

Feedback item

47

MINI-SUMMIT FEEDBACK SUMMARY AND POLL

Question Proposed Alternative Alternative 2

HiHAT spans domains (processes/ranks/PEs)? In-domain only

Ratified

Cross-domain

also

User but not common is

cross-domain

HiHAT supports networking Yes

Ratified

No Restricted

implementation, at 1st

HiHAT supports weak memory model Yes

Ratified

No Restricted

implementation, at 1st

Essential/universal in core,

enhancements/specialized in extension

Yes

One exception

No Piotr: could

splinter for $

Support metadata for experimentation Yes Ratified No

User is responsible for de/marshaling Yes Ratified No

Granularity of work and communication 5us Ratified 10us 1us

Consider inlinable headers Not at 1st Ratified From the start Never

Discuss, then show of hands

48

SUPPLEMENTAL MATERIAL

• Features

• Resilience

• Static or dynamic

• Portability, retargetability

• Explanatory

• Services, transformations, building blocks

• Potential interoperability conflicts

• Hierarchy

• Actions and resources

• Motivation

• Motivation for dynamic scheduling

• Motivation for uniform hetero interface

• Motivation for task scheduling

• Trends

• Following the example of MPI

• Details

• Marshaling detail

• Granularity analysis detail

49

RESILIENCE

• Sample goals: Know that a task failed, restart it on available resources

• Requirements of HiHAT

• Be able to submit tasks asynchronously, get a handle back

• Be able to kill a task

• Requirements of higher layers

• Be able to ask for a task that experienced a fault to be killed off and cleaned up

• Be able to associate code and data addresses that fail with handle of task that failed

• Be able to buffer side effects and not commit them unless task is successful

• Restarting a failed task

Separation of concerns between low-level infrastructure, high-level framework

50

STATIC OR DYNAMIC

• Commonalities between static and dynamic

• Same actions: cost models, binding, ordering, allocation, data copies

• Either can be greedy, look at a limited scope, or buffer to maximize the scope

• Similar principles, slightly different approach

• Static vs. dynamic: make decisions, either record them for later or execute immediately

• The same (library) primitives are applicable to both

• In order to be applicable to dynamic runtimes, can’t be only a compiler

• But library interfaces need to be vetted to address compiler effectiveness and efficiency

Both need a common infrastructure

51

PORTABILITY, RETARGETABILITY

• Portable: code doesn’t have to change across targets

• Retargetable: equivalent functionality is available; transformations may be applied
by human tuner, or auto-tuning or automated machine-model-based heuristics

• Functional portability is achieved by expressing semantics (the “what”) cleanly

• Performance portability is achieved by abstracting the how to a target-agnostic level

 Separate SW into

• Above HiHAT

• what’s not target specific, even if it’s informed by target parameters  perf portability

• what’s responsible for functionality

• Below HiHAT

• what’s target specific

• what’s responsible for target-specific performance

52

SERVICES

• Build dependences

• Convert sequence of functions into dependent tasks, or

• Accept DAG spec

• Monitoring

• Insert timing primitives, insert primitives that trace where & when things happen

• Visualization

• Use enumeration to build time vs. resource matrix

• Post-process monitoring primitive results to build event timelines

• Show the annotated results

Target-agnostic pluggable services

53

TRANSFORMATIONS

• Aggregation

• M < N, e.g. contiguous data movement, sub-sequence of tasks on same resources

• Decomposition

• M > N, e.g. tiling, apply hierarchical refinement

• Specialization

• Specialize the task implementation for a given memory kind or data layout

• Manage temporary buffers: task  moved input operands  allocated temp buffer 
free space for move  completed task

Pluggable operators that substitute M new actions for N old actions

54

FUNCTIONAL BUILDING BLOCKS

• Compute costs

• Simple: based on operand sizes, floating point arithmetic intensity factor

• Richer: O() complexity in operand size, may depend on data layout

• Communication costs

• Simple: based on operand size, model of bandwidth and latency for topology

• Richer: based on data layout, e.g. contiguity, non-unit stride, whether blocked

• Scheduler

• Simple: Earliest completion time, given data movement and compute

• Richer: Trade off among implementations on different computing resources and with
different data layouts, considering the extra costs of data re-layout

Pluggable modules

55

POTENTIAL INTEROPERABILITY CONFLICTS

• Multiple communications libraries

• Spec may not require interoperability or thread safety, implementations may vary

• May hold and wait a common set of resources, leading to deadlock (portals?)

• Unlikely to have performance isolation

• Separating inter-rank/process/PE and intra-rank/process/PE may be insufficient

• Third-party libraries

• Could be unexpectedly used in common by different targets

Some challenges for interoperability

56

HIERARCHICAL INVOCATION EXAMPLE
• Input: sequence of function calls with operands and operand descriptors

• Root layer of hierarchy: distribute work across nodes in sub-cluster

• Dependence analysis: discover deps among function calls; allow multiple granularities

• Model costs: each function on each node, each data xfer between nodes

• Convert: func  <sync on preds, move input opnds, alloc output buf, task, trigger sync>

• Schedule: bind to nodes and preliminary order based on cost models

• Pass down hierarchy to nodes

• Leaf layer of hierarchy: distribute work across {CPU, GPUs} resources in node

• Configure: potentially partition resources, define # of streams

• Model costs: each function on each {CPU, GPU}, data to/from {CPUs, GPUs}

• Model parallelism: consider available resources and available parallelism

• Transform: decompose appropriately, compute  <data re-layout, spcl compute>

• Schedule: bind to {CPU, GPUs} streams, order within each stream, add alloc & sync

• Pass sequence of {compute, data movem’t, data alloc, sync} actions to HiHAT User Layer

57

KINDS OF ACTIONS

• Compute – invoke task

• Data management – {alloc/free}x{mem kinds}, materialize, pin,
marshall/demarshall

• Data movement – set up, move, fence/quiet

• Coordination – sync {wait, induce} x {data, control} x
{futures} x {local, remote} x {all, any}

Actions are the basic ingredient of asynchrony

58

RESOURCES

• Logical – abstract, unbound / physical – concrete, bound

• Domains – collection of associated computation and memory resources

• Hierarchy

• Physical domain – has shared address space

• Coherence domain – has coherence

• NUMA domain – has locality, could still have multiple levels, e.g. L1$, L2$, device, node

• Compute: Stream – dependences implicitly managed within, explicitly across streams

• Resources could be semi-static or dynamically bound

• Resources that perform enqueuing could be distinct from resources that perform execution

• Data: Buffer – collection of data elements

• Could be pre-allocated and wrapped with metadata, or allocated on demand

• Could have many instances, e.g. multiple shared or one that’s dirty

• Immutable properties of whole buffer: alias able

• Mutable properties per instance: materialized, hierarchical affiliation, pinned, layout

59

REQUIREMENTS OF ACTIONS

• All are asynchronous and return a future

• Killable – redundant, speculative, faulty

• State is pollable

• Tracable – maybe with inferior performance

• Debuggable – not sure what this means yet

60

DYNAMIC SCHEDULING AND DEFERRED EXECUTION

Unpredictability

• Latency of data movement from memory and across network

Portability

• Capabilities for computer and fabric vary

Requires

• Asynchronous execution

• Dynamic scheduling

• Integrated dependence management

• Platform tuning

Enable latency tolerance, performance portability

61

AVOID OVER-CONSTRAINING THE SOLUTION

Bulk synchronous programming – the old way

• Strict phase boundaries separated by barriers

• In-order messages, all sent at the same time

• Exposure to network latency

Asynchronous multi-tasking – the way forward

• Data flow execution among tasks

• Many in-flight messages, handled out of order

• Emphasis on throughput instead of latency

Separation of concerns through abstraction to the rescue

MPI

Rank

MPI

Rank

Messages arrive in order

Logical Node Logical Node

Messages arrive in any order

62

DYNAMIC SCHEDULING OR PURELY STATIC SCHEDULE

Problem

• Increasingly difficult to create a portable and effective static schedule, given variances
and uncertainties from DVFS, network congestion, multiple memory kinds,
unpredictable load imbalance, and the need for fault tolerance

Solution

• Statically schedule where you can, dynamically schedule tasks and data movement
where needed. Data movement among MPI ranks and to/from various memory kinds is
all integrated into a unified framework

• Locality the scope of dependence analysis and scheduling to promote efficiency

• Open-sources code with pluggable interfaces enables customization

• An optional hierarchy for the scope of binding and scheduling, that can help facilitate
localization and fault tolerance

Let the runtime help manage unpredictability

63

UNIFORM HETERO INTERFACE OR COLLECTION OF INTERFACES

Problem

• Disjoint interfaces for each target can be confusing and inefficient

• Best allocators may vary by kind and over time

Solution

• Offer a uniform interface for all computing targets

• Offer a unified, declarative interface for all memory kinds to complement imperative
interfaces

Let the platform ninjas do the hard work

64

PARALLEL TASKS REQUIRES… TASKS

! Fragment 1 z=f(x,y)
loopA

loopB
loopC

! Fragment 2 u=f(v,z)
loopD

loopE

! Fragment 3 w=f(t)
loopF

loopG

Dusty-deck Fortran loop nests become a sequence of task invocations

{

{

{

function frag1(x, y) result(z)
loopA

loopB
loopC

end function frag1
function frag2(v, z) result(u)
loopD

loopE
end function frag2
function frag3(t) result(w)
loopF

loopG
end function frag3

program xfunc
z=frag1(x,y)
u=frag2(v,z)
w=frag3(t)
end program

65

TASKS + LOOPS OR JUST ONE OR THE OTHER

Problem

• Modern platforms may support a high degree of heterogeneous parallelism

• Task parallelism and thread parallelism within tasks may both be moderate

• Computing and memory components may be distributed enough that data movement
latencies may become a bottleneck

Solution

• Support task parallelism across nodes and within computing elements of nodes

• Enable overlapping of communication and computation

• Platform-tuned primitives offer best performance

Comparison

• OpenMP: while task parallelism within a node is possible, it requires expertise

• OpenMP enables async, but doesn’t yet support offloading to multiple node types

Seamlessly support task and loop-level parallelism

66

TASK SCHEDULING IS TRIVIAL IF

67

ADDITIONAL REASONS TO USE FEWER TASKS

68

TASK SCHEDULING IS MORE INTERESTING
WHEN

69

PARALLEL SMALL TASKS IMPROVE EFFICIENCY

70

TRENDS

• Scale  Hierarchical

• Differentiation for efficiency  Heterogeneity

• Unpredictability  Asynchronous

• Functional and data parallelism  Tasking

Relevant to small or large scale HPC, AI

71

• Scale  Hierarchical

• Locality: higher effective bandwidth, lower latency, better TLBs

• Abstractions that are repeatable at various levels and granularities

TRENDS
Relevant to small or large scale HPC, AI

72

TRENDS

• Differentiation for efficiency  Heterogeneity

• Throughput and latency cores

• Power efficiency

• Higher aggregate bandwidth

Relevant to small or large scale HPC, AI

73

TRENDS

• Unpredictability  Asynchronous

• Varied progress: dynamic load imbalance, DVFS

• Network congestion

• Depth in memory hierarchy

➢ Bind and order actions from a queue onto resources with dynamic scheduling

Relevant to small or large scale HPC, AI

74

TRENDS

• Functional and data parallelism  Tasking

• Enqueue(Name, <Operands>, <Optional descriptors>)

• Transformations: decompose, aggregate, substitute

Relevant to small or large scale HPC, AI

75

TRENDS

• Scale  Hierarchical

• Differentiation for efficiency  Heterogeneity

• Unpredictability  Asynchronous

• Functional and data parallelism  Tasking

Relevant to small or large scale HPC, AI

HiHAT

76

GOALS, FROM SECTION 1.1 OF MPI SPEC

• Fundamental to the environment

• API: library, not a language

• Heterogeneous environment: portable, easy to use

• Retargetable to many vendor platforms: clear and common interface

• Convenient C and Fortran bindings, language-independent semantics

• Part of the soul of MPI, also relevant to HiHAT

• Efficient communication: enable distributed systems

• Reliable communications interface

• Thread safe

Inspired by a success story

77

USER FUNCTION ARGUMENT MARSHALING

Operationally, a closure is a record storing a function together with an environment: a
mapping associating each free variable of the function (variables that are used locally,
but defined in an enclosing scope) with the value or reference to which the name was
bound when the closure was created.1

A free variable is a notation that specifies places in an expression where substitution
may take place1.

Software constructs: callbacks, lambda functions, nested functions, contained
functions(?), function objects

Similar implementation constructs: task, OpenACC/OpenMP “kernels” – with
marshalling

Closure 101

Feedback item

1. wikipedia

78

USER FUNCTION ARGUMENT MARSHALING

#pragma omp task default(firstprivate) shared(a,b,c)
{ … }

User responsible for ensure a,b,c remain in “scope” until task completes.

void ompTask_foo$1(void *args)
{ <copyout firstprivate values>;
ptr_a = args[a_location];
ptr_b = args[b_location];
ptr_c = args[c_location];

… }

foo$1_args = {firstprivate values, shared object addresses}

Task_struct task1 = {ompTask_foo$1, foo$1_args};

enqueue(&task1);

OpenMP task implementation case study

Feedback item

79

USER FUNCTION ARGUMENT MARSHALING

#pragma omp target map(a,b,c)
{ … }

User responsible for ensure a,b,c remain in “scope” until target completes.

map_a_addr = omp_target_alloc(sizeof(a), <device id>); //using user exposed functions for compiler generated work

map_b_addr = omp_target_alloc(sizeof(b), <device id>);
map_c_addr = omp_target_alloc(sizeof(c), <device id>);
omp_target_memcpy(map_a_addr, &a, sizeof(a), 0, 0, <device id>, <host id>);
…
omp_target_associate_ptr(&a, map_a_addr, sizeof(a), 0, <device id>);
…
foo$1_args = {firstprivate values, map_a_addr, map_b_addr, map_c_addr};
target_struct target1 = {ompTarget_foo$1, foo$1_args,<device id>};
target_enqueue(&task1);
<copy out>
<disassociate>
<free>

OpenMP target implementation case study

Feedback item

80

USER FUNCTION ARGUMENT MARSHALING

Avoided OpenCL because it is extremely lowlevel, however, it provides its own data marshalling
tools

Compilers use marshalling to implement both OpenMP and OpenACC directives

Data marshalling does not mean closures are provided since a closure is both a functor and data.

OpenMP and OpenACC both marshall directly to device memory

Why? “performance”

What is wrong with this? “computation must follow data if memory is not ‘shared’”

Case study summary

Feedback item

81

USER FUNCTION ARGUMENT MARSHALING

Marshall direct to device memory?

Faster launch of work once resource becomes available

Allocation: size and device as input, void* as output

Data transfers source, destination, size, device id if memory addresses do not care info

Marshall via a buffer?

Launch slower because it must move “buffers”

Launch not tied to a single device

Allocation, size as input, identifier as output

Data Transfer, source pointer buffer id and size as inputs

No need for types only sources “addresses”,

Memory marshalling

Feedback item

82

USER FUNCTION ARGUMENT MARSHALING

Function pointer

Needs to be something the underlying support libraries can invoke

How does programmer get value?

How does runtime find callee?

Arguments

Kernel arguments can be free or nearly so for some architectures

Variadic functions not the nicest thing to program to.

Push a blob of data or gather blobs as kernel arguments

As single blob is easer for the runtime

Function pointer plus argument blob => closure

Task marshalling

Feedback item

83

USER FUNCTION ARGUMENT MARSHALING

Closure – good way to think about tasks and “off-loading”

User is responsible for marshaling and de-marshaling

Compiler could do marshalling but that means compiler involvement!

Avoid considerations of operand size, type (type casting)

As seen on previous slides if caller handles sizes and types than runtime only needs a small
number of interfaces and no need to handle arbitrary user types

Existing accelerator programming models provide data marshalling APIs only

Summary

Feedback item

84

GRANULARITY ASSUMPTIONS

Marshall data (0us to 100ms or more) User responsible for optimizing this

Build data + function closure – get the task ready – (4 – 100 cycles per item)

Setup dependency info for closure – ensure new task will run at the right time – (STA)

Enqueue closure – hand task over to the runtime for dispatch – (11 cycles)

Resolve dependencies – move tasks from waiting to runnable state – (0us to ?)

Dispatch closure

Data movement – move the data section of the closure to the device – (4 cycles ?)

Call closure function on data – (1us to 10us)

Return status – (1 cycle)

Hi-level Job Flow cost – open for debate

85

GRANULARITY ASSUMPTIONS

Assume data marshalling is optimized by client so cost approaches zero

Assume 5 control words, found in L, plus function pointer in closure

Assume no dependencies—fastest path

Estimated cost of launch

24 cycles to build closure

11 cycles to enqueue closure

10us to start working – assuming offloading to device other than enqueuing device

Any kernel running for less than 10us will spend more time getting ready to run than
running on some machines

86

GRANULARITY ASSUMPTIONS

What specializations would an inlinable header help with?

Device type, device selection

How can they co-exist?

Of course the library just has to provide more APIs to short circuit some control flow

Is there sufficient gain for the maintenance cost?

OpenACC has device_type(type) clause

Allows directive to be tailored for a given target, important when optimizing something like gangs, workers, and vector length.

Allows a single compile to target multiple devices “optimally”

OpenMP is talking about similar idea

Expected savings likely in the order of 100’s of cycles at best, well below the 10us of launch overhead assumed on previous
slide!

inlinable header or lib-embedded function call

