
The Open Community Runtime
Framework for Exascale Systems

Birds of a Feather Session, SC13, Denver
November 19, 2013

Organizers: Vivek Sarkar (Rice)
Rob Knauerhase (Intel)

Rich Lethin (Reservoir Labs)

SC13 Survey URL -- http://bit.ly/sc13-eval

OCR web site

2

Agenda

1.  Introduction & Motivation
–  Vivek Sarkar, Rice U.

2.  Lightning Talks
–  Roger Golliver, UIUC
–  Benoit Meister, Reservoir Labs

3.  OCR "state of the union”
–  Rob Knauerhase, Intel

4.  Live demo of OCR v0.8 & adaptability
–  Vincent Cave, Rice

5.  Next Steps
–  Rob Knauerhase

6.  Closing, Q&A/discussion, wrap-up
–  Vivek Sarkar

3

Challenges for Exascale & Extreme Scale Systems

•  Characteristics of Extreme Scale systems in the next decade
– Massively multi-core (~ 100’s of cores/chip)
– Performance driven by parallelism, constrained by energy & data

movement
– Subject to frequent faults and failures

•  Many Classes of Extreme Scale Systems

Embedded, 100’s of Watts,
O(103) concurrency Data Center

> 1 MW,
O(109) concurrency

Departmental,
100’s of KW,

O(106) concurrency
Key Challenges

Concurrency
Energy efficiency
Locality
Resiliency

References:
•  DARPA Exascale Study report, 2008
•  DARPA Exascale Software study report, 2009

Mobile, < 10 Watts,
O(101) concurrency

4

Performance Variability is on the rise

• Concurrency --- increased performance variability
with increased parallelism

• Energy efficiency --- increased performance
variability with increased non-uniformity and
heterogeneity in processors

• Locality --- increased performance variability with
increased memory hierarchy depths

• Resiliency --- increased performance variability with
fault tolerance adaptation (migration, rollback,
redundancy, …)

Increasing performance variability runtime becomes
the critical component of the exascale software stack

5

Evolutionary vs. Revolutionary Approaches
to Extreme Scale Runtime Systems

•  Wide agreement that execution models for extreme scale
systems will differ significantly from past execution models

•  Shoehorning a new execution model into an old runtime
system is counter-productive

•  Instead, make a fresh start but carry forward reusable
components from current runtime systems as appropriate

è Motivation for Open Community Runtime framework that …
–  is representative of future execution models
–  can be targeted by multiple high-level programming systems
–  can be mapped on to multiple extreme scale platforms
–  is available as an open-source testbed
–  reduces duplication of new infrastructure efforts
– enables us to address revolutionary challenges collaboratively

6

Summary of OCR Open Source Project

•  Hosted on 01.org since 2012 (details to follow)
•  Goals

– Modularity
– Support for multiple programming systems e.g., programming

languages, libraries, compilers, DSLs, …
– Support for hardware platforms e.g., homogeneous manycore,

heterogeneous accelerators, clusters, …
•  Development process

– Continuous integration
– Development plans driven by community milestones

•  Organization
– Steering Committee (SC) --- sets overall strategic directions

and technical plans
– Core Team (CT) --- executes technical plan and decides

actions to take for source code contributions
– Users and Contributors --- members of OCR community i.e.,

you!!

7

Current OCR Steering Committee and
Core Team Membership

Steering Committee
– Vivek Sarkar (Rice U.)

–  Inaugural Chair

– Barbara Chapman (UH)

– Guang Gao (UD)

– Bill Gropp (UIUC)

– Rishi Khan (ETI)

– Rob Knauerhase (Intel)

– Rich Lethin (Reservoir)

– Wilf Pinfold (Intel)

Core Team
– Zoran Budimlic (Rice)

– Vincent Cave (Rice)

– Sanjay Chatterjee (Rice)

– Romain Cledat (Intel)

– Mark Glines (ETI)

– Benoît Meister (Reservoir)

– Sagnak Tasirlar (Rice)

– Nicolas Vasilache (Reservoir)

8

OCR Acknowledgments

•  Design strongly influenced by
–  Intel Runnemede project (via DARPA UHPC program)

–  power efficiency, programmability, reliability, performance

– Codelet philosophy – Prof. Gao’s group at U. Delaware
–  implicit notions of dataflow

– Habanero project – Prof. Sarkar’s group at Rice U.
–  data-driven tasks, data-driven futures, hierarchical places

– Concurrent Collections model – Intel Software/Solutions Group
–  decomposition of algorithm into steps/items/tags, tuning

– Observation-based Scheduling – Intel Labs
– monitoring and dynamic adaptation to load and environment

•  Partial support for the OCR development was provided through the
X-Stack program funded by U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research (ASCR)

9

OCR Assumptions

•  A fine-grained, asynchronous event-driven runtime
framework with movable data blocks and sophisticated
observation enables the next wave of high-performance
computing

•  Fine-grained parallelism helps achieve concurrency levels
required for extreme scale

•  Asynchronous events and movable data blocks help cope
with performance variability, data movement, non-uniformity,
heterogeneity, and resilience in extreme scale systems

•  Sophisticated observation enables introspection into system

behavior, feedback to OCR client, and adaptation based on
algorithmic and performance tuning

10

OCR Vision

Hero

Programmer

Smart

Compiler

Higher-level

language

Higher-level

library

Open Community Runtime Framework

External Runtime Components

Extreme Scale Platforms

R-Stream CnC HClib

SWARM

11

Agenda

1.  Introduction & Motivation
–  Vivek Sarkar, Rice U.

2.  Lightning Talks
–  Roger Golliver, UIUC
–  Benoit Meister, Reservoir Labs

3.  OCR "state of the art”
–  Rob Knauerhase, Intel

4.  Live demo of OCR v0.8 & adaptability
–  Vincent Cave, Rice

5.  Next Steps
–  Rob Knauerhase

6.  Discussion and wrap-up
–  Vivek Sarkar

LULESH OCR Experience
Roger Golliver

LULESH 1.0.1 Benchmark
•  Proxy app for shock hydrodynamics from LLNL
•  Started with the C++/OpenMP version

–  Collected other versions to experiment with and look
for where parallelism was exploited

•  Perfect sample app for experimentation
–  Reasonable size, for all day edit sessions
–  In C++ but modest use of C++ features, so easily

translated down to C
–  Well organized access to data
–  Stable results (gcc,icc)x(-O[0-1])x(Serial,OMP)
–  Modest use of standard libraries

Requirements for OCR
•  Transition to C

–  Methods to functions
–  Data Classes to structures
–  Overloaded functions to multiple versions

•  Transition array and structures to DBs.
–  malloc, global

•  Transition functions to EDTs.
–  move return value to output parameter
–  Parameter Signature to ocrEdt_t

•  Transition functions call/return organization to dynamically
created and scheduled EDTs

•  Transition OMP loop level parallelism to fork/join EDTs
–  Lots of these

Macros for Translation Support
•  As part of the translation process I was making the

LULESH source more “abstract”
–  DRAM_MALLOC() as malloc()

run withC99/Cilk
DRAM_MALLOC() as ocrDbCreate
and run with OCR

–  DRAM_MALLOC() as upc_global_alloc()/SHARED
run with UPC and check SHARED pointer usage

•  This allowed my typo and parallelization errors to
be caught in a familiar debug environment

Macros for Loop Parallelization
•  For the parallel loops the same abstraction and the

refinement could be done.
–  PAR_FOR for C&OMP is #pragma omp for / for(;;){}
–  PAR_FOR for cilk is cilk_for(;;){}
–  PAR_FOR for UPC is upc_forall(;;;){}
–  PAR_FOR for Habanero C is

forasync IN() OUT() INOUT() POINT() SEQ() {}
•  Habanero C is particularly nice step before

transitioning from arrays/functions to DBs/EDTs
–  Scalars IN() can go to paramv[]
–  Arrays in in() out() inout() get converted to DBs

and their guids go in depv[]

Final Steps to EDT
•  Habanero C is close syntactically and semantically to

EDTs & data blocks.
•  From initial habanero version

–  finish{ async IN(list) {….}}
–  finish { async IN(list) edt(list);
–  finish { async IN() edt(paramc,paramv[],depc,depv[]) }}

•  Then as OCR
–  ocrEdtCreateTemplate()
–  ocrEdtCreate()
–  ocrAddDependence()

Status/Future Plans
•  Initially the parallel abstraction support was

done with C #define macros
•  But when attempting to do the many parallel

loops, there was to much reparative editing to
turn the OMP loop bodies into EDTs
– Compiler support for EDT extraction is critical

•  Working on a more powerful set of m4 macros
that minimize the source changes required

•  Waiting for a Habanero-C compiler that
translates directly to OCR.

Automatic Parallelization to OCR using
the R-Stream Compiler

Birds of a Feather Session, SC13, Denver

November 20, 2013

Reservoir Labs

http://www.reservoir.com

Reservoir Labs

20

R-Stream compiler: flow

•  Source-to-source compiler
•  Automatic parallelization of dense array loop codes
•  Generates code for a variety of programming models

– OpenMP, Pthreads, SWARM, CnC, CUDA and more

Sequential C

(textbook style)
SSA-based compiler

Tailored parallelization

Polyhedral mapper
Machine

Model

thin runtime

 layer

OCR
executable

Reservoir Labs

21

Mapping process to OCR

•  Model all iterations and their data access
– Polyhedral model

•  Partition iterations into tasks
– Data locality optimization (tasks must use caches well)
– Task size: load balancing vs reuse

•  Infer inter-task dependences from data accesses
– Builds a notional task graph
– Optimizations remove redundant & transitive dependences

•  Generate code
– Global or per-task knowledge of graph edges (events)

•  Variants
– Hierarchical code generation
– Memory-oblivious code generation

Reservoir Labs

22

R-Stream: High points
•  Fully automatic mapping path from textbook-style C

•  Good scaling
– OCR departs from bulk-synchronous models
– Point-to-point synchronizations enable scalable load balancing

•  Tuning options
– Push button, hand-tuning or w/ non-invasive auto-tuner (ARCC)

•  Commercial product with free academic licenses,
government SBIR rights.

•  https://www.reservoir.com/product/r-stream/
Reservoir Labs

23

Agenda

1.  Introduction & Motivation
–  Vivek Sarkar, Rice U.

2.  Lightning Talks
–  Roger Golliver, UIUC
–  Benoit Meister, Reservoir Labs

3.  OCR "state of the union”
–  Rob Knauerhase, Intel

4.  Live demo of OCR v0.8 & adaptability
–  Vincent Cave, Rice

5.  Next Steps
–  Rob Knauerhase

6.  Closing, Q&A/discussion, wrap-up
–  Vivek Sarkar

24

Open Community Runtime

•  Embodies a Fine-grained,
Event-driven execution model
–  application/algorithm decomposition

into fine-grained tasks activated by
satisfaction of dependences

–  exposes greater parallelism than
current thread/barrier models

•  Runtime manages tasks and
data blocks to adapt to
changes in platform behavior
& user policies, while obeying
all control and data
dependences

25

Recent Advances in OCR

•  Compiler generation of tasks
– R-Stream (mentioned above)
– Habanero-C HClib (upcoming demo)
–  Intel Concurrent Collections, others

•  Better work-stealing scheduler
•  Progress on adapting to policy
•  Progress on “tuning” language and APIs

–  Including initial dynamic adaptation code

•  New machine description features
•  Distribution
•  Use of hw power monitoring features
•  Bugfixes & optimization

26

Example Policies

•  Example of matrix multiply
–  changing tile size/shape changes performance and energy consumed

(# tasks available, size of each task, memory access, etc.)
•  Allows flexibility of policy choices, e.g.

– max performance
– minimum energy
–  best ratio
–  and others

•  Runtime schedules
differently based
on policy
– no changes to source

code, algorithm, etc.

Graph data from Cyclops machine,
source E. Garcia Ph.D. thesis, U. Del, (pub. 1/2014).

Highest
performance Lowest total

energy

Perf/E
“sweet spot”

Key: total energy,
performance

27

Example: Unbalanced Tree Search

•  What UTS is/does*
–  parallel benchmark: exhaustive search of a large unbalanced tree
–  parameterized generation of tree nodes, predefined benchmark

workloads
–  (we’re using standard config T3XXL, for those who care)

–  includes app-level work stealing

•  Started with thread-parallel benchmark, converted to HClib
and OCR
– we add alteration of chunk size to show differences

•  Developed on different machines with diff core counts
– Running live today on 32-hw-thread machine

*See also http://sourceforge.net/p/uts-benchmark/wiki/Home/
“UTS: An Unbalanced Tree Search Benchmark”, Olivier et al. LCPC’06

28

Agenda

1.  Introduction & Motivation
–  Vivek Sarkar, Rice U.

2.  Lightning Talks
–  Roger Golliver, UIUC
–  Benoit Meister, Reservoir Labs

3.  OCR "state of the union”
–  Rob Knauerhase, Intel

4.  Live demo of OCR v0.8 & adaptability
–  Vincent Cave, Rice

5.  Next Steps
–  Rob Knauerhase

6.  Closing, Q&A/discussion, wrap-up
–  Vivek Sarkar

29

Demo Explanation

•  OCR adapting to policy changes
– one instance of application (one run), automatic dynamic adaptation

within the run
–  adaptation is “free” from runtime,

no source code changes or
recompilation etc.

–  imagine a “policy engine”
(ours is simple) that translates
goals into runtime parameters

•  What you’ll see
–  blue bar == chunksize
–  red lines == per-core throughput

–  nodes processed per second

30

Live
demonstration

31

Agenda

1.  Introduction & Motivation
–  Vivek Sarkar, Rice U.

2.  Lightning Talks
–  Roger Golliver, UIUC
–  Benoit Meister, Reservoir Labs

3.  OCR "state of the union”
–  Rob Knauerhase, Intel

4.  Live demo of OCR v0.8 & adaptability
–  Vincent Cave, Rice

5.  Next Steps
–  Rob Knauerhase

6.  Closing, Q&A/discussion, wrap-up
–  Vivek Sarkar

32

Who Should Look Into OCR

•  Application researchers
– New decomposition for extreme-scale machines, up to 10^18

•  Hardware researchers
– Exploration of chip/platform support for future workloads
–  Ideas of what PMUs will be useful for future environments

•  System-software researchers
– Compilers: how to decompose, offer hints
– Runtimes: FGED approach, optimizations, ...
– Operating systems: interaction with runtime + storage, memory, ...

ETI’s	 involvement	 in	 OCR	
•  Par$cipa$ng	 in	 OCR	 steering	 commi5ee	 and	 core	
team	

•  Contribu$ng	 to	 OCR:	
–  Sta:s:cs	 Framework	
–  Energy	 Visualiza:on	
– Memory	 Management	
– Networking	

•  Will	 supplement	 standard	 OCR	 support	 with	
commercial	 levels	 of	 support	
–  Bug	 Fixes,	 Support,	 Training,	 Documenta:on,	
Consulta:on	

Energy	 Visualiza:on	

34	

Hierarchical	
system	 view	

of	 energy	 usage	

Time	 series	
view	 of	
energy	

Energy	 usage	
per	 individual	

EDT	

Energy	
usage	 per	
component	

35

OCR resources (see flyer)

•  Project homepage at
http://01.org/open-community-runtime

•  Public repository on github
http://github.com/01org/ocr

•  Mailing lists
– ocr-announce
– ocr-devel
– ocr-discuss
– ocr-build

•  Upcoming OCR white paper

http://01.org/open-community-runtime

36

Agenda

1.  Introduction & Motivation
–  Vivek Sarkar, Rice U.

2.  Lightning Talks
–  Benoit Meister, Reservoir Labs
–  Roger Golliver, UIUC

3.  OCR "state of the union”
–  Rob Knauerhase, Intel

4.  Live demo of OCR v0.8 & adaptability
–  Vincent Cave, Rice

5.  Next Steps
–  Rob Knauerhase

6.  Closing, Q&A/discussion, wrap-up
–  Vivek Sarkar

37

OCR Roadmap for 2014
Core team
•  Integration with communication runtimes (MPI, GASNet) for

distributed clusters
•  Extension of programmer-directed hints with automated

movement of data and tasks
•  Extensions for GPUs and accelerators
•  Extensions to machine descriptions
•  Support for new policies and tuning annotations
•  Extensions to introspection and adaptation including

locality-aware scheduling
Related efforts
•  CnC on OCR with checkpoint-restart support
•  Proxy applications on OCR using HClib, CnC, and R-stream
•  Hierarchically Tiled Arrays (HTA) on OCR

38

OCR Vision

Extreme Scale Platforms

SC13 Survey URL -- http://bit.ly/sc13-eval

OCR web site

Hero

Programmer

Smart

Compiler

Higher-level

language

Higher-level

library

Open Community Runtime Framework

External Runtime Components

Your compiler
here

Your language
here

Your library
here

Your runtime
components

here

