
Multi-Kernel OSes for Extreme-Scale
HPC
Rolf Riesen, Balazs Gerofi

17 November 2016

Copyright c© 2016 Intel Corporation. All rights reserved.

Welcome
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

The goals for this Birds of a Feather session:

■ Give a brief overview of the state of the art

■ Interact with the community to learn about the needs and wishes
of HPC developers and designers

◆ This is your chance to influence and contribute to these
projects!

Please use the “ask a question” button on the SC’16 page for this
BoF.

You can find it by clicking on the BoF title on the SC Program page.

You can also vote questions up or down.

Please participate!

Agenda
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

■ 12:15 - 12:17 Welcome (Rolf Riesen)

■ 12:17 - 12:23 Intro to multi-kernels (Robert W. Wisniewski)

■ 12:23 - 12:29 McKernel (Balazs Gerofi)

■ 12:29 - 12:35 FFMK (Carsten Weinhold)

■ 12:35 - 12:41 Kitten/Hobbes (Kevin Pedretti)

■ 12:41 - 12:47 mOS (Rolf Riesen)

■ 12:47 - 13:15 Discussion with audience

◆ Influence the work these teams are doing

◆ Submit requests and give feedback
◆ Ask questions

Introduction
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

■ 12:15 - 12:17 Welcome (Rolf Riesen)

■ 12:17 - 12:23 Intro to multi-kernels (Robert W. Wisniewski)

■ 12:23 - 12:29 McKernel (Balazs Gerofi)

■ 12:29 - 12:35 FFMK (Carsten Weinhold)

■ 12:35 - 12:41 Kitten/Hobbes (Kevin Pedretti)

■ 12:41 - 12:47 mOS (Rolf Riesen)

■ 12:47 - 13:15 Discussion with audience

◆ Influence the work these teams are doing

◆ Submit requests and give feedback

◆ Ask questions

Introduction to multi-kernels
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

Dr. Robert W. Wisniewski
Chief Software Architect Extreme Scale Computing

Senior Principal Engineer, Intel

McKernel
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

■ 12:15 - 12:17 Welcome (Rolf Riesen)

■ 12:17 - 12:23 Intro to multi-kernels (Robert W. Wisniewski)

■ 12:23 - 12:29 McKernel (Balazs Gerofi)

■ 12:29 - 12:35 FFMK (Carsten Weinhold)

■ 12:35 - 12:41 Kitten/Hobbes (Kevin Pedretti)

■ 12:41 - 12:47 mOS (Rolf Riesen)

■ 12:47 - 13:15 Discussion with audience

◆ Influence the work these teams are doing

◆ Submit requests and give feedback
◆ Ask questions

IHK/McKernel

Balazs Gerofi
RIKEN Advanced Institute for Computational Science,
JAPAN

2016/Dec/17 Multi-Kernel OSes for Extreme-Scale HPC BoF @ SC’16

		

2	

Motivation: what do we need?

§  Lightweight kernel performance/scalability for large scale parallel apps
§  Support for Linux APIs
§  Full control over HW resources
§  Ability to adapt to HW changes
§  Performance isolation
§  Dynamic reconfiguration
§  Transparent access to Linux device drivers
§  Avoid Linux modifications

		

3	

IHK/McKernel Architectural Overview

Memory	

	
	
	
	
	
	

	
	
	
	
	 IHK	Linux	

Delegator	
	module	

CPU	 CPU	CPU	 CPU	
…	 …	

McKernel	
Linux	

	
	

System	
daemon	

Kernel	
daemon	

Proxy	process	

IHK	Co-kernel	

HPC	ApplicaAon	

Interrupt	

System	
call	

System	
call	

ParAAon	 ParAAon	

O
S

jit
te

r
co

nt
ai

ne
d

in
 L

in
ux

, L
W

K
is

 is
ol

at
ed

§  Interface for Heterogeneous Kernels (IHK):
§  Allows dynamic partitioning of node resources (i.e., CPU cores, physical memory, etc.)
§  Enables management of multi-kernels (assign resources, load, boot, destroy, etc..)
§  Provides inter-kernel communication (IKC), messaging and notification

§  McKernel:
§  A lightweight kernel developed from scratch, boots from IHK
§  Designed for HPC, noiseless, simple, implements only performance sensitive system calls

(roughly process and memory management) and the rest are offloaded to Linux

		

McKernel and System Calls

Implemented� Planned �

Process	
Thread �

arch_prctl,	clone,	execve,	exit,	exit_group,	fork,	
futex,	getpid,	getrlimit,	kill,	pause,	ptrace,	

rt_sigac@on,	rt_sigpending,	rt_sigprocmask,	
rt_sigqueueinfo,	rt_sigreturn,	rt_sigsuspend,	

set_@d_address,	setpgid,	sigaltstack,	tgkill,	vfork,	
wait4,	signalfd,	signalfd4,	ptrace �

get_thread_area,	getrlimit,		
rt_sig@medwait,	set_thread_area,	

setrlimit�

Memory	
management�

brk,	geFd,	madvise,	mlock,	mmap,	mprotect,	
mremap,	munlock,	munmap,	remap_file_pages,	

shmat,	shmctl,	shmdt,	shmget,	mbind,	
set_mempolicy,	get_mempolicy�

get_robust_list,	mincore,	mlockall,	
modify_ldt,	munlockall,	

set_robust_list�

Scheduling� sched_getaffinity,	sched_setaffinity,	ge@@mer,	
geFmeofday,	nanosleep,	sched_yield,	

seFmeofday�

se@@mer,	@me,	@mes	�

Performance	
Counter �

Direct	PMC	interface:	pmc_init,	pmc_start,	
pmc_stop,	pmc_reset�

PAPI	Interface	(in	progress)�

•  McKernel	is	a	lightweight	(co-)kernel	designed	for	HPC	
•  Linux	ABI	compaAble	
•  McKernel	only	boots	from	IHK	(no	intenAon	to	boot	it	stand-alone)	
•  Noiseless,	simple,	with	a	minimal	set	of	features	implemented	and	the	rest	offloaded	to	Linux	

•  System	calls	not	listed	above	are	offloaded	to	Linux	
•  POSIX	compliance:	almost	the	en-re	LTP	test	suite	passes!	(2013	version:	100%,	2015:	99%)	 4	

		

5	

Memory	

	
	
	
	
	
	

	
	
	
	
	 IHK	Linux	

Delegator	
	module	

CPU	 CPU	CPU	 CPU	
…	 …	

McKernel	

Linux	

	
	

System	
daemon	

Kernel	
daemon	

Proxy	process	

IHK	Co-kernel	

HPC	ApplicaAon	

Interrupt	

System	
call	

System	
call	

ParAAon	 ParAAon	

O
S

jit
te

r
co

nt
ai

ne
d

in
 L

in
ux

, L
W

K
is

 is
ol

at
ed

§  For each application process a “proxy-process” resides on Linux
§  Proxy process:

§  Provides execution context on behalf of the application so that offloaded calls can be
directly invoked in Linux

§  Enables Linux to maintain certain state information that would have to be otherwise kept
track of in the LWK
§  (e.g., file descriptor table is maintained by Linux)

Proxy Process and System Call Offloading in IHK/McKernel

①	Applica@on	
makes	a	system	call	

②	McKernel	sends	
IKC	message	to	

Linux	

③	
Delegator	
wakes	up	
proxy	
process	

④		
Proxy	makes	
syscall	in	
Linux	

⑤	
Linux	

executes	
syscall	
and	

returns	

⑥	Proxy	request	
delegator	to	
forward	result	

⑦	IKC	from	Linux	
to	McKernel	

⑧	McKernel	
returns	to	
userspace	

		

6	

Outlook to 1000s of CPU cores?
§  How will cache-coherence for synchronization perform on 1000s of CPU cores?

§  Importance of topology awareness and exploitation of data locality for efficient
synchronization and communication (K42 EuroSys’06, Multikernel SOSP’09, Ramos et al.
HPDC’15, Kaestle et al. OSDI’16, etc.)

LWK0	
CPU	core	

LWK0	
CPU	core	

LWK0	
CPU	core	

Linux	
CPU	core	

LWK1	
CPU	core	

LWK1	
CPU	core	

LWK1	
CPU	core	

Linux	
CPU	core	

LWK2	
CPU	core	

LWK2	
CPU	core	

LWK2	
CPU	core	

Linux	
CPU	core	

LWK3	
CPU	core	

LWK3	
CPU	core	

LWK3	
CPU	core	

Linux	
CPU	core	

§  Single monolithic kernel? OR

§  Multiple, workload specialized,
independent co-kernels?
§  Laid out to suit HW topology, no

implicit sharing of kernel data
structures

§  Shared state is replicated and
synchronized with explicit
message passing?

§  Dynamic repartitioning in
response to workload
requirements?

FFMK
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

■ 12:15 - 12:17 Welcome (Rolf Riesen)

■ 12:17 - 12:23 Intro to multi-kernels (Robert W. Wisniewski)

■ 12:23 - 12:29 McKernel (Balazs Gerofi)

■ 12:29 - 12:35 FFMK (Carsten Weinhold)

■ 12:35 - 12:41 Kitten/Hobbes (Kevin Pedretti)

■ 12:41 - 12:47 mOS (Rolf Riesen)

■ 12:47 - 13:15 Discussion with audience

◆ Influence the work these teams are doing

◆ Submit requests and give feedback
◆ Ask questions

ADAM LACKORZYNSKI, CARSTEN WEINHOLD, HERMANN HÄRTIG
TU DRESDEN, GERMANY

FFMK: L4 MICROKERNEL + LINUX AS AN
HPC OPERATING SYSTEM

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC 2

L4 + L4LINUX

Core Core Core Core Core

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC 2

L4 + L4LINUX

L4 Microkernel / Hypervisor

Core Core Core Core Core

L4 microkernel controls the node

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC 2

L4 + L4LINUX

L4 Microkernel / Hypervisor

Core Core Core Core Core

L4 microkernel controls the node
Light-weight and low-noise

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

L4Linux

2

L4 + L4LINUX

L4 Microkernel / Hypervisor

Core Core Core Core Core

L4 microkernel controls the node
Light-weight and low-noise
Virtualization: L4Linux on L4 microkernel

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

L4Linux

2

L4 + L4LINUX

L4 Microkernel / Hypervisor

Core Core Core Core Core

Linux
App

L4 microkernel controls the node
Light-weight and low-noise
Virtualization: L4Linux on L4 microkernel
Unmodified Linux programs (MPI, …)

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

L4Linux

2

L4 + L4LINUX

L4 Microkernel / Hypervisor

Core Core Core Core Core

Linux
App

L4 microkernel controls the node
Light-weight and low-noise
Virtualization: L4Linux on L4 microkernel
Unmodified Linux programs (MPI, …)
Linux process = L4 task + L4 threads

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

L4Linux

2

L4 + L4LINUX

L4 Microkernel / Hypervisor

Core Core Core Core Core

Linux
App

L4 microkernel controls the node
Light-weight and low-noise
Virtualization: L4Linux on L4 microkernel
Unmodified Linux programs (MPI, …)
Linux process = L4 task + L4 threads
Linux syscalls / exceptions:  
generic forwarding to L4Linux kernel

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

L4Linux

2

L4 + L4LINUX

L4 Microkernel / Hypervisor

Core Core Core Core Core

Linux
App

L4 microkernel controls the node
Light-weight and low-noise
Virtualization: L4Linux on L4 microkernel
Unmodified Linux programs (MPI, …)
Linux process = L4 task + L4 threads
Linux syscalls / exceptions:  
generic forwarding to L4Linux kernel

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

L4Linux

3

DECOUPLED EXECUTION

L4 Microkernel / Hypervisor

Core Core Core Core Core

Linux
App

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

L4Linux

3

DECOUPLED EXECUTION

L4 Microkernel / Hypervisor

Core Core Core Core Core

Linux
App

Decoupling: move Linux thread
to new L4 thread on its own core

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

L4Linux

3

DECOUPLED EXECUTION

L4 Microkernel / Hypervisor

Core Core Core Core Core

Linux
App

Decoupling: move Linux thread
to new L4 thread on its own core

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

L4Linux

3

DECOUPLED EXECUTION

L4 Microkernel / Hypervisor

Core Core Core Core Core

Linux
App

Decoupling: move Linux thread
to new L4 thread on its own core

Linux syscall: Move back to Linux

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

L4Linux

3

DECOUPLED EXECUTION

L4 Microkernel / Hypervisor

Core Core Core Core Core

Linux
App

Decoupling: move Linux thread
to new L4 thread on its own core

Linux syscall: Move back to Linux

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

L4Linux

3

DECOUPLED EXECUTION

L4 Microkernel / Hypervisor

Core Core Core Core Core

Linux
App

Decoupling: move Linux thread
to new L4 thread on its own core

Linux syscall: Move back to Linux

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

L4Linux

3

DECOUPLED EXECUTION

L4 Microkernel / Hypervisor

Core Core Core Core Core

Linux
App

Decoupling: move Linux thread
to new L4 thread on its own core

Linux syscall: Move back to Linux

L4 syscalls:

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

L4Linux

3

DECOUPLED EXECUTION

L4 Microkernel / Hypervisor

Core Core Core Core Core

Linux
App

Decoupling: move Linux thread
to new L4 thread on its own core

Linux syscall: Move back to Linux

L4 syscalls:
Scheduling
Threads
Memory

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC 4

FFMK/L4 PLATFORM

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

Adapted existing building blocks:

4

FFMK/L4 PLATFORM

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

Adapted existing building blocks:
Made public in 1997, kept up-to-date since

4

FFMK/L4 PLATFORM

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

Adapted existing building blocks:
Made public in 1997, kept up-to-date since

Runs on x86, ARM, MIPS (all 32/64 bit)

4

FFMK/L4 PLATFORM

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

Adapted existing building blocks:
Made public in 1997, kept up-to-date since

Runs on x86, ARM, MIPS (all 32/64 bit)

Linux compatible + flexible L4 interfaces

4

FFMK/L4 PLATFORM

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

Adapted existing building blocks:
Made public in 1997, kept up-to-date since

Runs on x86, ARM, MIPS (all 32/64 bit)

Linux compatible + flexible L4 interfaces

Better support for your runtime system?

4

FFMK/L4 PLATFORM

L4 Microkernel + L4Linux: Decoupled Execution Model for HPC

Adapted existing building blocks:
Made public in 1997, kept up-to-date since

Runs on x86, ARM, MIPS (all 32/64 bit)

Linux compatible + flexible L4 interfaces

Better support for your runtime system?

Code + docs: ffmk.tudos.org and l4re.org

4

FFMK/L4 PLATFORM

Hobbes
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

■ 12:15 - 12:17 Welcome (Rolf Riesen)

■ 12:17 - 12:23 Intro to multi-kernels (Robert W. Wisniewski)

■ 12:23 - 12:29 McKernel (Balazs Gerofi)

■ 12:29 - 12:35 FFMK (Carsten Weinhold)

■ 12:35 - 12:41 Kitten/Hobbes (Kevin Pedretti)

■ 12:41 - 12:47 mOS (Rolf Riesen)

■ 12:47 - 13:15 Discussion with audience

◆ Influence the work these teams are doing

◆ Submit requests and give feedback
◆ Ask questions

Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

SC’16	Panel:
Multi-Kernel	OSes	for	
Extreme-Scale	HPC

November	17,	2016

Kevin	Pedretti
Center	for	Computing	Research
Sandia	National	Laboratories

Application	Workflows	are	Evolving
§ More	compositional	approach,	where	overall	application	is	a	

composition	of	coupled	simulation,	analysis,	and	tool	
components

§ Each	component	may	have	different	OS	and	Runtime	(OS/R)	
requirements,	in	general	there	is	no	“one-size-fits-all”	
solution

§ Co-locating	application	components	can	be	used	to	reduce	
data	movement,	but	may	introduce	cross	component	
performance	interference

§ Need	system	software	infrastructure	for	application	composition
§ Need	to	maintain	performance	isolation
§ Need	to	provide	cross-component	data	sharing	capabilities
§ Need	to	fit	into	vendor’s	production	system	software	stack

2

Hobbes:	Multi-Stack	Approach	for
Application	Composition

§ Key	Ideas
§ No	one-size-fits-all	OS/R
§ Partition	node-level	resources	

into	“enclaves”
§ Run	(potentially)	different

OS/R	stack	in	each	enclave
§ Challenges

§ Performance	isolation
§ Composition	mechanisms

§ Approach
§ Build	a	real,	working	system
§ Leverage	Kitten	LWK	OS	and	

Palacios	Hypervisor
§ Use	standard	Linux	host	for	

bootstrap	and	enclave	control
§ Develop	libhobbes for	use	by	

Apps/Tools/Services

3

Vendor’s	Linux	OS
(+	Palacios	VMM)

Compute	Node	Hardware

AD
IO
S

XE
M
EM

Hobbes	
Runtime

Application

Operating	
System

Analytics

Kitten	Co-Kernel
[+	Palacios	VMM]

XA
SM

XA
SM

AD
IO
S

XE
M
EM

Simulation

Node Virtualization Layer (NVL)

Team:
• Kevin Pedretti, Jay Lofstead,

Brian Gaines, Shyamali Mukherjee, Noah Evans (SNL)
• Jack Lange, Brian Kocoloski, Jiannan Ouyang (Pitt)
• Patrick Bridges, Oscar Mondragon (UNM)
• Peter Dinda, Kyle Hale (Northwestern)
• Mike Lang (LANL)
• David Bernholdt (Enclave lead), Hasan Abbasi (ORNL)
• Jai Dayal (GaTech)

http://github.com/hobbesosr/nvl

HPDC’15

Leviathan	Node	Manager	(Libhobbes,	HIO)

Leviathan	On-Node	Manager
Ties	Things	Together

4

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
E
M

E
M

X
E
M

E
M

X
E
M

E
M

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
E
M

E
M

X
E
M

E
M

X
E
M

E
M

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
E
M

E
M

X
E
M

E
M

X
E
M

E
M

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
E
M

E
M

X
E
M

E
M

X
E
M

E
M

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

State of all resources tracked in
in-memory NoSQL database

User-level has explicit control of physical
resources managed by Leviathan

The Leviathan shell provides commands to
form enclaves and launch applications

Built-in services for command queues,
discovery, global IDs, and generic RPC

Hobbes	Node	Virtualization	Layer	Status	
and	Plans:	Networking	is	Working
§ Host-IO	(HIO)	system	call	forwarding	layer	complete

§ Adopts	unified	address	space	approach	pioneered	by	McKernel
§ Applications	built	with	Cray’s	default	toolchain	run	on	Kitten

aprun -N 1 -n 2 -L 6,7 ./hobbes launch_app
kitten-enclave-0 -with-hio=stub IMB-MPI1.openmpi

5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 4 16 64 256 1K 4K

T
im

e
 (

µ
s)

Message Size (Bytes)

Cray Linux
Hobbes Kitten

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

M
B

yt
e

s/
s

Message Size (Bytes)

Cray Linux
Hobbes Kitten

MPI Small Message Latency on Gemini Bandwidth

Switchover from full
OS bypass to several
syscalls per message

LJ

Hobbes	Node	Virtualization	Layer	
Status	and	Plans:	Evaluation
§ Application	composition	examples

§ HPC	+	HPDA	examples
§ DTK/STKmesh multi-enclave	example	developed	by	Hobbes	enclave	team	

(Vallee,	Naughton,	Slattery,	Bernholdt)

§ Empirical	performance	experiments
§ Lots	of	multi-kernels,	no	large-scale	results	->	need	to	do	(!)
§ Evaluate	benefit	of	LWK	resource	management	policies
§ Understand	importance	of	OS	noise	on	modern	platforms	and	apps

6

DTK Driver
Enclave

App
Component A

Enclave

App
Component B

EnclaveXEMEM
Memory
Mapping

XEMEM
Memory
Mapping

Why	Virtualization	in	Large-Scale	HPC?
§ Support	multiple	system	software	stacks	in	same	platform

§ Vendor’s	stack	good	for	physics	simulations,	bad	for	data	analytics
§ Virtualization	adds	flexibility,	deploy	custom	images	on	demand
§ Not	just	user-space	containers,	need	ability	to	run	different	OS	kernels

§ Special-purpose	Lightweight	Kernels:	mOS,	McKernel,	FFMK,	Kitten
§ Large-scale	emulation	experiments,	networks	+	systems
§ Other	custom	OSes,	unikernels,	…

§ Leverage	industry	momentum,	student	mindshare

§ Virtualization	overhead	can	be	very	low
§ Don’t	oversubscribe,	space	share	nodes,	pin	everything,

use	large	pages,	physically	contiguous	virtual	memory
§ Demonstrated	<	5%	overhead	in	practice	on	4K	nodes		(VEE’11)

§ Challenges
§ Deployment:	getting	into	vendor’s	software	stack
§ Networking:	need	full	OS	bypass	and	hardware	with	virtualization	support
§ Complex	nodes:	heterogeneous	memory,	many-core,	SMT,	NUMA,	…	

7

Apps & Libraries

Runtime Systems

OS / VMM

Hardware

Compute Node
System Software Stack,

OS Bypass

mOS
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

■ 12:15 - 12:17 Welcome (Rolf Riesen)

■ 12:17 - 12:23 Intro to multi-kernels (Robert W. Wisniewski)

■ 12:23 - 12:29 McKernel (Balazs Gerofi)

■ 12:29 - 12:35 FFMK (Carsten Weinhold)

■ 12:35 - 12:41 Kitten/Hobbes (Kevin Pedretti)

■ 12:41 - 12:47 mOS (Rolf Riesen)

■ 12:47 - 13:15 Discussion with audience

◆ Influence the work these teams are doing

◆ Submit requests and give feedback
◆ Ask questions

High-level architecture
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

■ Dedicate a few cores in a many-core system to Linux

■ The remaining cores run compute intensive processes on LWK

■ Strong partitioning: Service versus compute side

■ The LWK manages memory, but Linux can access it

An embedded LWK
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

■ We’re neither trimming Linux to an LWK

■ Nor are we adding Linux functionality to an LWK

■ We are compiling our LWK into the Linux kernel

■ Then, for each logical CPU, decide which kernel has control

Code in memory Code running

System call locality
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

■ System calls can execute locally or “remote”

■ Can use Linux or LWK code

Call Linux remotely Call LWK directly Call Linux directly

Status
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

■ In the process of making mOS open source

■ Things like CORAL benchmarks run

■ In most cases beat Linux performance and run-to-run variability

◆ Working on the ones where we don’t yet

◆ Expect bigger performance gap at higher node counts

■ Starting to work with runtime system designers

◆ Can we do something in mOS that is difficult in Linux and
helps performance and scalability?

■ Starting to work with hardware designers

◆ mOS makes it easier to adapt to hardware features/quirks

Community interaction
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

■ 12:15 - 12:17 Welcome (Rolf Riesen)

■ 12:17 - 12:23 Intro to multi-kernels (Robert W. Wisniewski)

■ 12:23 - 12:29 McKernel (Balazs Gerofi)

■ 12:29 - 12:35 FFMK (Carsten Weinhold)

■ 12:35 - 12:41 Kitten/Hobbes (Kevin Pedretti)

■ 12:41 - 12:47 mOS (Rolf Riesen)

■ 12:47 - 13:15 Discussion with audience

◆ Influence the work these teams are doing

◆ Submit requests and give feedback

◆ Ask questions

Discussion
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

■ What feature / system call / tuning knob that Linux does not provide
would make your life easier?

■ Which applications should we support / optimize for?

■ What information should the OS make available to you?

◆ And how?

Discussion (cont.)
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

■ Would you be willing to try these kernels on your system with your
application?

■ How much performance gain does a multi-OS need to deliver be-
fore you would consider switching?

◆ 1990s LWKs were shunned due to lack of Linux compatibility

◆ That’s why we need multi-OSes!

◆ Given the higher level of Linux compatibility, is 10% perfor-
mance gain enough to convince you to switch?

Discussion (cont.)
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

■ Multi-OSes have other advantages too (not just performance and
scalability)

■ Which ones are of importance to you?

◆ Better defaults for HPC
◆ Better control of hardware resources
◆ Better handling of deep memory hierarchies

◆ ?

Discussion (cont.)
Welcome
Agenda
Introduction
McKernel
FFMK
Hobbes
mOS
Discussion

SC’16 BoF

■ Online and audience questions and comments

Thank you!

