
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

The	 Structural	 Simula.on	 Toolkit	
(SST)

Arun	 Rodrigues

SST Simulation Project Overview

Technical Approach

Goals
•Become the standard architectural
simulation framework for HPC

•Be able to evaluate future systems
on DOE/DOD workloads

•Use supercomputers to design
supercomputers

•Parallel
•Parallel Discrete Event core with
conservative optimization over MPI

•Multiscale
•Detailed and simple models for
processor, network, and memory

•Interoperability
•gem5, DRAMSim, cache models
•routers, NICs, schedulers, GPGPU

•Open
•Open Core, non viral, modular

Consortium
•“Best of Breed” simulation suite
•Combine Lab, academic, & industry

Status
•Parallel Core, basic components
•Current Release (3.1)

•Improved set of components
•Improved portability

SST Capabilities
•Memory Simulations

–Extensive cache models
• Snoopy and Directory-based coherency models
• Multiple pre-fetcher models

–Multiple Drivers
• Execution driven (gem5, pintool, qsim)
• Trace driven (ariel, oberon)

–Accurate Memory Simulators
• DRAMSim, VaultSim, HybridSim

•Network Simulations
–High-performance network topologies

• N-dim Torus, Fat-tree, Dragonfly, etc.
–Multi-scale

• Network-on-chip
• 100K+ nodes

–Multiple Drivers
• Traces
• State-machines
• Pattern-based stochastic

•System-level Simulations
• Job scheduling & Allocation

Oberon
SM

Zodiac
Traces Hades

Messaging
Firefly

Byte Transfer Merlin

Portals
NIC

gem5

memHierarchyQSim

NMSU

MacSim
DRAM

Sim VaultSim

High-Level
Models

Medium-Level
Models Low-Level

Model
| N-LEVEL MEMORY | FEBRUARY 9, 2014 | CONFIDENTIAL2

MULTI-LEVEL MEMORY

 In-package memory necessary to
achieve exascale BW targets

 In-package memory does not
provide enough capacity

 Two-level memory (TLM) proposed
to address BW and capacity needs
‒ Could potentially be N levels of memory…

 Results in a heterogeneous memory

 Goal: make the TLM/NLM look, behave, and perform as if it were just one
homogeneous, high-performance, conventional memory

1st-level memory

2nd-level memory

One dimension
of the torus

Add links
between all

routers

Encapsulate
group and add

global links

2-level Memory Picture Courtesy AMD

SST	 Recent	 Results
▪ Examined	 different	 Job	

allocation	 algorithms	
▪ Geometry-‐,	 cooling-‐,	 and	

power-‐	 aware	 allocation	
algorithms	

▪ Timescale:	 Months	
▪ Memory	 Benchmarks	
▪ STREAMS	 benchmark	 to	

indicate	 we	 are	 getting	
correct	 memory	 BW	

▪ Memory	 contention	 curves	
match	 real	 systems	

▪ Timescale:	 Seconds

10

conducted in SST to accurately mimic the performance
and energy behavior of HPC data centers.

Figure 6 presents the runtime and cooling power
consumption of existing job allocation algorithms. We
use DAS � FS4 traces from the parallel workloads
archive as our workload, which include 32953 jobs in
total. The bars in Figure 6 represents the average runtime
and cooling power across the first 500 jobs in DAS

traces. We observe that the cooling power consumed
when running different job allocation algorithms varies
from each other. Among the five existing job allocation
algorithms, cooling-aware job allocation consumes the
least cooling power. MC1x1 job allocation algorithm con-
sumes 76.39% more cooling power than cooling-aware
algorithm and 32.05% more cooling power than random
allocation. On the other hand, MC1x1 provides better
performance than random and cooling-aware algorithm
allocation by reducing the communication cost between
different threads.

We conduct the same experiments using a differ-
ent workload from parallel workloads archive: NASA,
which includes 18239 jobs. As shown in Figure 7, we

Fig. 6: Performance and cooling power comparisons
between different job allocation algorithms for DAS-FS4
workload from parallel workloads archive.

Fig. 7: Performance and cooling power comparisons
between different job allocation algorithms for NASA
workload from the parallel workloads archive.

observe similar trends as in the results of DAS workload.
MC1x1 job allocation algorithm, in this case, causes
35.24% more cooling power consumption in comparison
to cooling-aware algorithm, and 20.39% more cooling
power than random allocation. The detailed simulation
results for both NASA and DAS workload are listed
in Table 1. From Table 1, we observe that cooling-aware
job allocation algorithm provides us much lower cooling
power consumption than the other job allocation algo-
rithms. For example, for NASA workloads, we spend
about 48.4% more cooling power by using Genalg job
allocation algorithm than using cooling-aware job allo-
cation algorithm. (Genalg is the center-based algorithm
of Krumke et al. [39].) While sometimes the performance
of data centers by using cooling-aware algorithm for
job allocation is not as good as using other job alloca-
tion algorithms. For example, for DAS workloads, the
job running time by using cooling-aware job allocation
algorithm is about 2.6% longer than using Genalg job
allocation algorithms, which is not ideal for performance
demand HPC data centers.

Fig. 8: Data center cooling power traces for job 101 to job
200 from NASA workload with different job allocation
algorithms.

In order to better understand the thermal behavior
of HPC data centers resulted by different job allocation
decisions, we select 100 jobs from NASA workload (job
number 101 to 200) and illustrate the cooling power
traces of the target data center running these jobs in
Figure 8. We observe that the cooling power of data
center varies when different job allocation algorithms
are used. For example, for the first seven jobs in the
selected job queue, using MC1x1 job allocation algorithm
(which only considers minimizing communication time),
the data center spends about 80KW on cooling power
while only spends around 20KW by using cooling-aware
job allocation algorithm. From these results, we see that
it is not enough to only consider performance in making
job allocation decisions. It is important to have a joint
optimization algorithm to consider cooling energy and
performance at the same time when allocating jobs in

Stream Runtime vs # Cores

Ti
m

e
(m

s)

0

57.143

114.286

171.429

228.571

285.714

342.857

400

Cores
8 12 16 24 32 48 64 72 96 128

0.25x BW 0.50x BW 0.75x BW 1x BW 2x BW 4x BW 8x BW

Stream Bandwidth vs # Cores

Ba
nd

w
id

th
 (G

B/
s)

0.000

20.000

40.000

60.000

80.000

100.000

120.000

140.000

Cores
8 12 16 24 32 48 64 72 96 128

0.25x BW 0.50x BW 0.75x BW 1x BW 2x BW 4x BW 8x BW

% Theoretical Peak BW

%
 P

ea
k

Ba
nd

w
id

th

0%

10%

20%

30%

40%

50%

60%

70%

Cores
8 12 16 24 32 48 64 72 96 128

0.25x BW 0.50x BW 0.75x BW 1x BW 2x BW 4x BW 8x BW

�1

Interconnections

SST CODEX

System C
Components

SST
Components Other RTL

Chisel

▪ SST	 is	 generic	 framework	
▪ Supports	 many	 other	

simulators	
▪ Planned	 reuse	 of	 Chisel	 &	

System	 C	 components	 w/	
CODEX	

▪ Planned	 integration	 with	
“SST/Macro”	 components

SST Core

DES
Macro

Algorithm

DES
Micro

Algorithm

Macro
Components

Micro
Components

Evolved Interface

Stats

Debug

Serialization

Threading

Config

Micro

Macro

New

