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SST Simulation Project Overview

Technical Approach

Goals
•Become the standard architectural 
simulation framework for HPC 

•Be able to evaluate future systems 
on DOE/DOD workloads 

•Use supercomputers to design 
supercomputers

•Parallel 
•Parallel Discrete Event core with 
conservative optimization over MPI 

•Multiscale 
•Detailed and simple models for 
processor, network, and memory 

•Interoperability 
•gem5, DRAMSim, cache models 
•routers, NICs, schedulers, GPGPU 

•Open 
•Open Core, non viral, modular

Consortium
•“Best of Breed” simulation suite 
•Combine Lab, academic, & industry

Status
•Parallel Core, basic components 
•Current Release (3.1)  

•Improved set of components 
•Improved portability



SST Capabilities
•Memory Simulations 

–Extensive cache models 
• Snoopy and Directory-based coherency models 
• Multiple pre-fetcher models 

–Multiple Drivers 
• Execution driven (gem5, pintool, qsim) 
• Trace driven (ariel, oberon) 

–Accurate Memory Simulators 
• DRAMSim, VaultSim, HybridSim 

•Network Simulations 
–High-performance network topologies 

• N-dim Torus, Fat-tree, Dragonfly, etc. 
–Multi-scale 

• Network-on-chip 
• 100K+ nodes 

–Multiple Drivers 
• Traces 
• State-machines 
• Pattern-based stochastic 

•System-level Simulations 
• Job scheduling & Allocation
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MULTI-LEVEL MEMORY

 In-package memory necessary to
achieve exascale BW targets

 In-package memory does not
provide enough capacity

 Two-level memory (TLM) proposed
to address BW and capacity needs
‒ Could potentially be N levels of memory…

 Results in a heterogeneous memory

 Goal: make the TLM/NLM look, behave, and perform as if it were just one 
homogeneous, high-performance, conventional memory
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2nd-level memory
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2-level Memory Picture Courtesy AMD



SST	
  Recent	
  Results
▪ Examined	
  different	
  Job	
  

allocation	
  algorithms	
  
▪ Geometry-­‐,	
  cooling-­‐,	
  and	
  

power-­‐	
  aware	
  allocation	
  
algorithms	
  

▪ Timescale:	
  Months	
  
▪ Memory	
  Benchmarks	
  
▪ STREAMS	
  benchmark	
  to	
  

indicate	
  we	
  are	
  getting	
  
correct	
  memory	
  BW	
  

▪ Memory	
  contention	
  curves	
  
match	
  real	
  systems	
  

▪ Timescale:	
  Seconds

10

conducted in SST to accurately mimic the performance
and energy behavior of HPC data centers.

Figure 6 presents the runtime and cooling power
consumption of existing job allocation algorithms. We
use DAS � FS4 traces from the parallel workloads
archive as our workload, which include 32953 jobs in
total. The bars in Figure 6 represents the average runtime
and cooling power across the first 500 jobs in DAS

traces. We observe that the cooling power consumed
when running different job allocation algorithms varies
from each other. Among the five existing job allocation
algorithms, cooling-aware job allocation consumes the
least cooling power. MC1x1 job allocation algorithm con-
sumes 76.39% more cooling power than cooling-aware
algorithm and 32.05% more cooling power than random
allocation. On the other hand, MC1x1 provides better
performance than random and cooling-aware algorithm
allocation by reducing the communication cost between
different threads.

We conduct the same experiments using a differ-
ent workload from parallel workloads archive: NASA,
which includes 18239 jobs. As shown in Figure 7, we

Fig. 6: Performance and cooling power comparisons
between different job allocation algorithms for DAS-FS4
workload from parallel workloads archive.

Fig. 7: Performance and cooling power comparisons
between different job allocation algorithms for NASA
workload from the parallel workloads archive.

observe similar trends as in the results of DAS workload.
MC1x1 job allocation algorithm, in this case, causes
35.24% more cooling power consumption in comparison
to cooling-aware algorithm, and 20.39% more cooling
power than random allocation. The detailed simulation
results for both NASA and DAS workload are listed
in Table 1. From Table 1, we observe that cooling-aware
job allocation algorithm provides us much lower cooling
power consumption than the other job allocation algo-
rithms. For example, for NASA workloads, we spend
about 48.4% more cooling power by using Genalg job
allocation algorithm than using cooling-aware job allo-
cation algorithm. (Genalg is the center-based algorithm
of Krumke et al. [39].) While sometimes the performance
of data centers by using cooling-aware algorithm for
job allocation is not as good as using other job alloca-
tion algorithms. For example, for DAS workloads, the
job running time by using cooling-aware job allocation
algorithm is about 2.6% longer than using Genalg job
allocation algorithms, which is not ideal for performance
demand HPC data centers.

Fig. 8: Data center cooling power traces for job 101 to job
200 from NASA workload with different job allocation
algorithms.

In order to better understand the thermal behavior
of HPC data centers resulted by different job allocation
decisions, we select 100 jobs from NASA workload (job
number 101 to 200) and illustrate the cooling power
traces of the target data center running these jobs in
Figure 8. We observe that the cooling power of data
center varies when different job allocation algorithms
are used. For example, for the first seven jobs in the
selected job queue, using MC1x1 job allocation algorithm
(which only considers minimizing communication time),
the data center spends about 80KW on cooling power
while only spends around 20KW by using cooling-aware
job allocation algorithm. From these results, we see that
it is not enough to only consider performance in making
job allocation decisions. It is important to have a joint
optimization algorithm to consider cooling energy and
performance at the same time when allocating jobs in
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Interconnections

SST CODEX

System C 
Components

SST 
Components Other RTL 

Chisel 

▪ SST	
  is	
  generic	
  framework	
  
▪ Supports	
  many	
  other	
  

simulators	
  
▪ Planned	
  reuse	
  of	
  Chisel	
  &	
  

System	
  C	
  components	
  w/	
  
CODEX	
  

▪ Planned	
  integration	
  with	
  
“SST/Macro”	
  components
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