Exceptional service in the national interest

The Structural Simulation Toolkit (SST)

Arun Rodrigues

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

SST Simulation Project Overview

Goals Become the standard architectural simulation framework for HPC Be able to evaluate future systems on DOE/DOD workloads Use supercomputers to design supercomputers 	Status •Parallel Core, basic components •Current Release (3.1) •Improved set of components •Improved portability
Technical Approach •Parallel •Parallel Discrete Event core with conservative optimization over MPI •Multiscale •Detailed and simple models for	Consortium • "Best of Breed" simulation suite • Combine Lab, academic, & industry
 processor, network, and memory Interoperability gem5, DRAMSim, cache models routers, NICs, schedulers, GPGPU 	COLUMBIA National Laboratory ACTION (IDDE)
•Open •Open Core, non viral, modular	Mellanox TECHNOLOGIES SOSTON NIVERSITY

SST Capabilities

Memory Simulations

- -Extensive cache models
 - Snoopy and Directory-based coherency models
 - Multiple pre-fetcher models
- -Multiple Drivers
 - Execution driven (gem5, pintool, qsim)
 - Trace driven (ariel, oberon)
- **–Accurate Memory Simulators**
 - DRAMSim, VaultSim, HybridSim

Network Simulations

- -High-performance network topologies
 - N-dim Torus, Fat-tree, Dragonfly, etc.
- -Multi-scale
 - Network-on-chip
 - 100K+ nodes
- -Multiple Drivers
 - Traces
 - State-machines
 - Pattern-based stochastic

System-level Simulations

Job scheduling & Allocation

SST Recent Results

- Examined different Job allocation algorithms
 - Geometry-, cooling-, and power- aware allocation algorithms
 - Timescale: Months
- Memory Benchmarks
 - STREAMS benchmark to indicate we are getting correct memory BW
 - Memory contention curves match real systems
 - Timescale: Seconds

Interconnections

- SST is generic framework
- Supports many other simulators
- Planned reuse of Chisel & System C components w/ CODEX
- Planned integration with "SST/Macro" components