
Exploiting Global View for Resilience (GVR)

Andrew A. Chien (PI), Hajime Fujita, Guoming Lu, and Zachary Rubenstein,

University of Chicago; Pavan Balaji (co-PI), Pete Beckman, James Dinan,

Jeff Hammond, Kamil Iskra, ANL; Robert Schreiber, Hewlett-Packard Labs

Detection and Recovery

Error Signalling
Error Recovery
Reliability Needs

Application

Hardware OS

Runtime (e.g. MPI…)

Traditional

Application

Runtime

Hardware

Scientist/Programmer

OS

Other
Runtimes

Global View
Resilience

Background

• Resilience: a critical exascale challenge
• Examples of resilient large-scale systems

• Scalable internet services
• Batch internet-scale data processing
• Internet

• Key features for reliable internet-scale systems
• A foundation of reliable data
• Programmer-managed, non-uniform reliability
• Application-managed consistency

Approach

GVR (Global View for Resilience)
• Exploits a global-view data model, which enables

irregular, adaptive algorithms and exascale
variability

• Provides an abstraction of data representation
which offers resilience and seamless integration of
various memory/storage hierarchy

• Adds reliability to globally visible distributed arrays

Global-view Distributed
Arrays

Processes

Reliability Priorities Specified by Applications
• Applications can specify which data are more

important to protect so that they can manage
reliability overheads

• Application-based error checking

Cross-layer Partnership (App, Runtime, OS, Architecture)

• Rich error check
• Efficient implementation

Multi-version Memory
• Computation phases form different “versions” of

data
• A program can obtain and recover from earlier

versions if needed

Goals

Research Challenges

Research Products and Artifacts

Impact

• Understand and create application-system
partnership for flexible resilience

• Explore efficient implementation of resilient and
multi-version data

• Create empirical understanding of GVR’s
effectiveness and performance requirements

• Incremental, portable approach to resilience for
large-scale applications

• Flexible, application-managed cost and coverage
for resilience

• Understand application needs for flexible,
portable resilience and performance

• Design of API suitable for use by
application/library developers and tools

• Achieve efficient GVR runtime implementation
for multi-version memory and flexible resilience

• Understand architecture support and its benefits
• Explore new opportunities created by GVR

abstractions and its implementation technologies

• Design of GVR API for flexible resilience and
multi-version global data

• Research prototype software developed as a
library; target of backend

• Assessment of opportunities and quantitative
benefits of architecture support for GVR

ASCR X-Stack Awards DE-SC0008603/57K68-00-145

Rollback & recompute
if uncorrected error

Parallel Computation
proceeds from phase
to phase

Phases create new
logical versions

App-semantics
based recovery

Applications Runtime OS

Programming
Abstractions

Architecture

Open Reliability

Efficient Implementation

Application-specified Reliability

O
ve

rh
ea

d

“Easy to reproduce” data “Hard to reproduce” data

?

