ARGOBOTS

A Lightweight Low-level Threading/Tasking Framework

https://collab.cels.anl.gov/display/ARGOBOTS/

Pavan Balaji (ANL) and L.V. (Sanjay) Kale (UIUC)

Q’“‘,\ U.S. DEPARTMENT OF
ENERGY

Argo Concurrency Team

 Argonne National Laboratory (ANL)
— Pavan Balaji (co-lead)
— Sangmin Seo
— Abdelhalim Amer
— Marc Snir
— Pete Beckman (PI)
e Universityoflllinois at Urbana-Champaign (UIUC)
— Laxmikant Kale (co-lead)
— Nitin Kundapur Bhat
— PrateeklJindal

e University of Tennessee, Knoxville (UTK)
— George Bosilca Past Team Members:

— Thomas Herault * Cyril Bordage (UIUC)
— Damien Genet * Esteban Meneses

* Pacific Northwest National Laboratory (PNNL) (University of Pittsburgh)

' ' Huiwei Lu (ANL
— Sriram Krishnamoorthy ° Y;rm/u; Sl:r(1 (UILC)

* Jonathan Lifflander (UIUC)

Massive On-node Parallelism

e Thenumberof coresis increasing
 Massiveon-node parallelismisinevitable

e Existing solutions do not effectively deal with such parallelism with
respect to on-node threading/tasking systems or with respect to
off-node communication in the presence of such tasks/threads

 How to exploit?

-
o =
.

Core-level Parallelism

core

Goal: Provide runtime systems utilizing massive on-node parallelism

v

Argo Concurrency: Approaches

High-level tasking models
(CilkBots, TASCEL,PaRSEC)

High-level dynamic execution
environments (Charm++,..)

« Explore high-level tasking
frameworks that will take advantage
of the low-level threading and
communication frameworks

« CilkBotsand TASCEL: PNNL &
UluC

« PaRSEC:UTK

Investigate high-level programming
models, e.g., Charm++, that are
specialized in dynamic execution
environments and can exploit the
low-level threading and
communication frameworks

UluC

Argobots interoperability
with a PUT/GET model

Argobots: A lightweight low-level

threading/tasking framework

« Design new communication libraries .
that work with such low-level
threading models

« Argonne

Develop a new low-level
threading/tasking model that will
allow us to expose the hardware
characteristics of exascale
computing systems more effectively
Argonne & UIUC

Argobots

A low-level lightweight threading and tasking framework

(http://collab.cels.anl.gov/display/argobots/)

Overview

Separation of mechanisms and policies
Massive parallelism

— Exec. Streams guarantee progress

— Work Units execute to completion
* User-level threads (ULTs) vs. Tasklet

Clearly defined memory semantics

— Consistency domains
* Provide Eventual Consistency

— Software can manage consistency

Argobots Innovations

Enabling technology, but not a policy maker

— High-level languages/libraries such as
OpenMP, Charm++ have more
information about the user application
(data locality, dependencies)

Explicit model:

— Enables dynamism, but always managed
by high-level systems

Programming Models
(MPI, OpenMP, Charm++, PaRSEC, ...)

I Argobots I

ﬂvate pool
—

=N

Shared pool Private pool

Execution
Stream

-

Execution

kStream

Execution
Stream

-

.

Processor core

Lightweight
Work Units

U

User-Level Thread <1> Tasklet

* Current team members: Pavan Balaji, Sangmin Seo, Halim Amer (ANL), L. Kale, Nitin Bhat, Prateek Jindal (UIUC)

Argobots Execution Model

 Execution Streams (ES)

— Sequential instruction stream ES, @ ES,
* (Can consist of one or more work units
— Mapped efficiently to a hardware ——

resource U _i@

— Implicitly managed progress semantics 3 e
— Independent execution units in user — @

<
e User-level Threads (ULTs) <U1> g

* One blocked ES cannot block other ESs
space

— Associated with an ES when running @ [] U @ e

— Yieldable and migratable scheduler Pool U el B

— C ke blocki Il
an make blocking calls Argobots Execution Model

* Tasklets
— Atomic units of work « Scheduler
— Asynchronous completion via — Stackable scheduler with pluggable
notifications strategies
— Not yieldable, migratable before * Synchronization primitives
execution — Mutex, condition variable, barrier, future
* Events

— Cannot make blocking calls o _
— Communication triggers

Explicit Mapping ULT/Tasklet to ES

* The user needs to map work units to ESs

 No smart scheduling, no work-stealing unless the user wants
to use

EZS e Benefits
? — Allow locality optimization

* Execute work unitsonthe same ES
? — No expensive lock is needed

! between ULTs on the same ES
* They donotrun concurrently

- * Aflagisenough

Optional Advanced features: shared and global workpools

Stackable Scheduler with Pluggable Strategies

e Associated with an ES
 Can handle ULTs and tasklets
* Can handle schedulers
— Allows to stack schedulers hierarchically
* Can handle asynchronousevents

e Users can write schedulers

— Provides mechanisms, not policies

— Replace the default scheduler
* E.g., FIFO, LIFO, Priority Queue, etc.
* ULT can explicitlyyield to another ULT
— Avoid scheduler overhead

& T -y

G@@cJ
<

yield() yield_to(target)

Some Capabilities of Argobots

e Shrinkingthe set of ESs used

— E.g. for power/energy optimization
 Expandingthe set of ESs used
* Migration of tasks and ULTs

— Load balancing

— Locality

— NUMA issues

Interfaces for Shrink/Expand Events

1
1
v

1 Charm++
I

-

g\

programming model runtimes and applications

. ABT _event_add callback()
callback functions ABT_event_del callback()

ES,

ES,

ES,

Argobots

ESn—l

()

000

M
socket

NRM

ABT_ENV_POWER_EVENT_HOSTNAME
ABT_ENV_POWER_EVENT_PORT

Hw N e

[Argobots] Connect to NRM using a socket on ABT _init()
[Runtimes/applications] Register callback functions for shrink/expand events
[Runtimes/applications] Deregister callback functions when they terminate

[Argobots] Disconnect from NRM on ABT _finalize()

Shrink/Expand Event Handling

e Shrinking
prog. model runtime/application

f 1
000} © i

- Any scheduler on any ES

1
\ 4 -
can check and handle events < Sched > :< Sched > /@

- ES, cannot be stopped

O

NRM = U

ES; picks an event, which requests ES, to be stopped

Ask the runtime using callbacks whether ES, can be stopped

If OK, mark ES, to need to stop so when the scheduler on ES, checks events,
it can be stopped

Notify the runtime that ES, will be stopped

Createa ULT on ES,

When the scheduler on ES, stops, ES, is terminated

After ES, is terminated, the ULT frees ES, and sends a response to NRM

N o v s

Shrink/Expand Event Handling

 Expanding

prog. model runtime/application

®

@00 © O

' I ES, ES,

1
1

NRM —————— :

ES, picks an event, which requests to create anES,

Ask the runtime using callbacks whether it can create ES,
If OK, invoke a callback function so the runtime creates ES,
Create ES,

Send a response to NRM

vk e

Memory Pool & Huge Pages

imization

Opt

Free

oin

Create

10,000

—8—MemPool
—8-—HugePages

—eo— Baseline

|
!
)

1,000

(sa]2A2) 171N 19d Aduajer

o

1

ANAT
TLOTET
9€5°S9
89L'CE
¥8€9T
7618
960t
8¥0°C
v2o'T
(4%
99¢
8¢l

¥9

179t
TLO'TET
9€5°S9
89L°C€E
¥8€°9T
z6T'8
960t
870°C
124"
(4%
99¢

8¢T

79

w179t
TLO'TET
9€5°99
89L'CE
¥8€°9T
z6T'8
960V
870°C
v20o'T
(4%
95¢

8¢T

¥9

Number of ULTs

Latency per ULT (cycles)

Optimization: Join Operation

Join Latency LLC Misses
400 6
—eo—Baseline
350 5 —o—LastCtxSkip
300 — —s—SchedBypass
= 4
2 JoinMany
250 9
3 3
200 e
S
Y2
150 =
100 1
50 0 O P P P P P P P P e e]
X D O D X D O D © AV WM S RS SR VR S N S A
S AP X N PP O° OV LB AR (P QYWY @ P N QI O O L
”’””@@@%\@Mﬂ@%@,@” MOV 9T RO A S ,\/b,,;{/\

Number of ULTs

Number of ULTs

Latency per ULT (cycles)

Optimization: Private Pool and Disabling Features

Create Join
600 250
—e8—SharedPool
500 —8-—PriavatePool 200
—e—NoMigration v
400 =
= 150
5
300 2
8
3100
200 5
5
100 >0
0 0
X D o0 O A% VYoo» (D Lo AV (& X D 0 N A D O D XD LAY (X
©" OV 7 N X OY B AQY 7 L\ N Q@ VAT N LY O° OY B ALY (T LV WX
VT OIS S N MV AR T N D
v NV
Number of ULTs Number of ULTs

Optimization: Putting It All Together

Create Join Free
10,000

—eo— Baseline

M“f»‘m —e—Optimized

A

< 1,000

>

L

L M‘f w
=

]

o

>

e

1] 100

2 u_.“‘_...-.n...n.n.-.n...nf

10
< 00 O N < 00N T 0O N <+ 00 O N < 00 O <G 00 O N < 0 O N T 0 O N
SRAZ338928053 vy ggageny 8484553893806 3
O N N 1 N ~ ~ =~ > N N O N In 1
Number of ULTs
e 64 ULTs : 2,443 cycles (c: 1,837, j:212, f: 394) -> 99 cycles (c: 42, : 34, f: 23) 24.7x speedup

* 262,144 ULTs:5,212 cycles (c: 3,921, j: 558, f: 733) -> 659 cycles (c: 446,j:159,f:54) 7.9x speedup

v

Performance: Create/Join Time

* Idealscalability

— If the ULT runtime is perfectly scalable, the time should be the same
regardless of the number of ESs

—e—(Qthreads —e—MassiveThreads (H) —e—MassiveThreads (W)
Argobots (ULT) —e—Argobots (Tasklet)
10000
1000

Create/Join Time per ULT (cycles)

10
1 2 4 8 16 24 32 36 40 48 56 64 72
Number of Execution Streams (Workers)

Argobots’ Position

Applications

High-Level Programming Models/Libraries
Domain Specific Languages (DSLs)

Comm. Lib.

!

Comm. Lib.

T

Node OS Node OS

Argobots is a low-level threading/tasking runtime!

Argobots Ecosystem

\
{ 1
1 1
1 1
1 (@) I
I i I
1 a [

cc I
1 ©
I a “
1
1 1
1 1
\ J
-

! ../
i \
1
1 R 1
1 z ~N - B 2 o
s 553 |3|z 2 &>
1| 2 222 |(8lx Gt o5
1 kS ? B = < O 1 m /l\/\
1 3 s 3 1
— (NN [N (N \-
\

" llllllllllllllll ‘\

A EESSEEaaaaE =N <<
i /B a\s \

I (@a i ["
A 2 | 0000
I \ 4 i y
“ ; £ [,
=
3 (@]
“ : i P
1 = 1 /
_z 8 s.

N — e ——— - ATVATV
s\\ |||||||||||||||| ../

— N\
! 1IE i iy [BI©CE
1 m =l m H “ = J
Pl 2]t E] E2| & te
NEIRE I B R
I sl S 2] EX| s
1 < 80 o o 1
I Z | © I
_ /
\

,' IIIIIIIIIIIIIIII ‘\

P—— . R —— -
\ \ \ \
1 " “ 1 > “
1 =) 1 >
! [fl 81 -l S
— I~ g — |v

c
| sz iTl-l=l-T i
I =1, + 1 I S !
||| EE | = i
I S 1 I —_— | — I
—I _ —I — s_
" IIIIIIIIIIIIIIII ‘\ ,' IIIIIIIIIIIIIIII ‘\

Argobots
e

(
I

External
Connections

GridFTP, Kokkos, RAJA, ROSE, TASCEL, XMP, etc.

1
1
J

Argobots-Aware MPI Runtime

* Problem

Traditional MPI implementations are only
aware of kernel threads

Thread-synchronization costly to ensure
thread-safety and progress requirement from
MPI

Wasted resources if a kernel thread blocks for
MPIl communication

e Solution

An MPI implementation aware of Argobots
threads

Lightweight context switching to overlap
costly blocking operations (communication,
locks, etc.)

Reduced thread-synchronization
opportunities (guaranteed consistency within
an ES without locks or memory barriers)

Contact:

- Pavan Balaji balaji@anl.gov

- Abdelhalim Amer aamer@anl.gov
- Sangmin Seo sseo@anl.gov

Recent results

Developed an MPICH+Argobots prototype

Demonstrated the ability to overlap blocking
communication with HPCG, SpMV, etc.

Deployed successfully a fully threaded
Graph500 benchmark implementation

Impact/Potential

The new MPI+Argobots model has the
potential to overcome the long lasting
multithreaded MPI communication challenge

ULT,

computation, starta
MPI send

1 Context switch to ULT,,
4 ULT, communication in
-1 background

ULT,

Context switch back to
ULT,, ULT,
communicatein
background

autjoully

<

MPI+Argobots Execution Model

Application: HPCG

* High Performance Conjugate internal _external
Gradient (HPCG) ' ' "

— Solves Ax=b, large and sparse | ¢

=
U

matrix ¢ L ey
* Hiding Global Collective i Ax =y
Communication —

— at end of each iteration, do
DDOT to calculate tolerance for k = [1: max_iter]: HPCG
(vector multiplication + MG(A, 1, 2);
MPI_Allreduce) ik =1

- _ _ ult join (thread);

— overlap communication and if (normr <= tolerance) break;
computation (overlapDDOT |
with MG in the next iteration) ult_fork(ult_ddot, ¶m, &thread)

— forka ULT to do ult_ddotand

joinin the nextiteration MG: preconditioner of CG

DDOT: dot product follow by MPI_Allreduce

Preliminary Results: HPCG

600

O MPI only
500 - . mmmmmmmmmmmmeoeeoeoeoeooooo oo

B MPI+Argobots
-- EAMPI+Pthreads (ppn=16) ------------------------o-oooom oy

MPI+Pthreads (ppn=8)

I

(@)

o
|

N
o
o

HPCG (GFlop/s)
w
o
o

100

16 32 64 128 256 512 1K 2K
#Cores

e 0On 2,048 cores, HPCG using MPIl+Argobots shows performance improvement
of 13.4% over MPI-only version, or 27.4% over MPI+Pthreads version.

— As core number increases, the benefit of communication hiding begins to
reveal. DDOT% increases from 0.62% on 16 cores to 36.8% on 2,048 cores.

OpenMP over Argobots

* Problem

OS thread-based OpenMP implementations
may not be efficient for massive dynamic
parallel applications

A blocking communication call makes an entire

execution stream (i.e., OS thread) blocked

Inefficient support of nested parallelism and
tasks

e Solution

Develop an OpenMP compiler that generates
Argobots ULTs and tasklets depending on the
existence of blocking call (e.g. MPI call) in the
code

Develop an OpenMP runtime that manages
created ULTs and tasklets over a fixed set of
computational resources

Contact:

- Pavan Balaji balaji@anl.gov

- Sangmin Seo sseo@anl.gov

- Mitsuhisa Sato msato@riken.jp
- Jinpil Lee jinpil.lee@riken.jp

Recent results

Developed an OpenMP compiler/runtime
prototype over Argobots based on Clang/LLVM
(ANL): BOLT compiler and runtime framework

Optimized Omni compiler framework
(collaboration with RIKEN)

Demonstrated better support of nested
parallelism

Impact/Potential

GFLOPS

The new OpenMP compiler/runtime developed
would improve the performance of applications
by leveraging lightweight threads/tasks

Intel Omni (Pthreads) Omni (Argobots)

14
12

10

0 50 100 150 200 250
NUMBER OF THREADS

Nested Parallel Loop: Performance

Execution time for 36 threadsin the outerloop

~——GCC/Pthreads —— GCC/Argobots ULTs GCC/Argobots tasks

10.00
1.00
— Lower is
Eo‘lo better
=
0.01 -
0.00

1 3 5 7 9111315171921 23252729313335
OMP Threads | Argobots ULTs/tasks (inner loop)

GCC OpenMP implementation does not
reuse idle threads in nested parallel
regions, all the teams of threads need to
be created in eachiteration

———|CC/Pthreads ——ICC/Argobots ULTs ICC/Argobots tasks
10.00
Lower is
1.00 better
0
°E’O.10 A
= _
0.01 P ———
|
0.00

1 3 5 7 9111315171921 23252729 313335
OMP Threads | Argobots ULTs/tasks (inner loop)

Some overhead is added by creating
ULTs instead of tasks

Application Study: ACME mini-app

* ACME (Accelerated Climate Modelingfor Energy)

— Implementingadditional levels of parallelism through OpenMP
nested parallelloops for upcoming many-core machines

* Preliminaryresults of testing the transport_se mini-app version
of HOMME (ACME’s CAM-SE dycore)

ACME mini-app (transport_se)

Lower is better
(up to 3.16x
I I faster)

H=16,V=1 H=8,V=2 H=4, V=4 H=4, V=8 H=8, V=4

120%
100%
80%
60%
40%
20%

0%

Normalized Execution Time (%)

M ICC + Intel OpenMP (15.0.0) M ICC + BOLT (Argobots)

Charm++ with Argobots

Problem

Charm++is a very rich parallel programming

Charm++ model

Intelligent runtime

Converse runtime Argobots
(threading, messaging, scheduler) (ULTs, Tasks, Scheduling, etc.)

Communication libraries (MPI, uGNI, PAMI, Verbs)

model and several important scientific applications e ShrinldExpand

(like NAMD, OpenAtom, ChaNGAetc.) have been

written using it.

In this project, our focus is to develop an Argobots

port for Charm++.
We also address the problem of dynamically

shrinking/expanding the number of cores for better

power management.

Argobots Port for Charm++

Converse is the active messaging layer in
Charm++.

We prepare the Argobots port for Charm++ by
instantiating Charm++ pthreads as Argobots
execution streams.

Instead of enqueing Charm++ messages in
Converse queues, we put them into appropriate
Argobots pools as Argobots tasks.

Finally, we implement Charm++ threads on top of
Argobots threads with condition variables to
implement suspend/resume.

Charm++ maintains a set of pools for each
scheduler, mapped to an xstream

Ranks in Charm++ are virtualized by saving
the mapping of pool to a xstream

— When an xstream is removed, the
associated pools are put into a global list

— To maintain correctness in Charm++, the
rank of any tasks/threads in the global list
are derived from the pool (ranks are
virtualized)

— Shrink: Other xstreams execute work units
from orphaned pools with some added
synchronization

— Expand: A new xstream is created and
takes over a set of orphaned pools
Contact:

- Laxmikant Kale kale@illinois.edu

- Jonathan Lifflander jliff2@lllinois.edu
- Prateek Jindal jindal2@illinois.edu

- Sangmin Seo sseo@anl.gov

CilkBots: Lightweight Threading-Based Cilk

Recent results

Problem

Massive on-node parallelism and memory
domains

Existing spawn-sync tasking frameworks are often
not inter-operable and do not account for data

locality

Solution

Cilk runtime that exploits Argobots low-level
threading/tasking model

Fused execution of user-level threads in a single
Cilk worker. Constrained interleaving to maximize *

cache locality

\
’

’
1\

4 \

! Fused ULT N :

I I

I I

1 1

: Fused ULT 1 :

' i

I .

1 RWS ULT 1 CilkBots

I 1

I I

1 1

1 1

I Argobots ES i

' /

\ Cilk “Worker” J

\~— ——————————————— -

CilkBots prototype using Argobots

Demonstrated cache locality optimization

for CilkBots programs

Demonstrated ability to dynamically change

the number of ESs to respond to external

events (e.g., power management)

— Dynamically rebalances and executes

to completion around changes in
available resources

Impact/Potential

CilkBots allows design of spawn-sync
programs that are responsive to external
events, inter-operate with other models,
and enable dynamic locality optimization

Contact:
- Sriram Krishnamoorthy
sriram@pnnl.gov

- Jonathan Lifflander jliffl2@illinois.edu
- Laxmikant Kale kale@illinois.edu

TASCEL with Argobots

Problem

So

P —

To maximize performance, distributed-memory
tasking runtimes require significant programmer
effort to expose all blocking operations

These runtimes also take over program control
and do not inter-operate with other runtimesin a
program’s execution

lution

Distributed-memory work stealing using
lightweight threads (ULTs)

Context switching between ULTs for performance
and inter-operability

/ Compute node with & cores/threads \
)) td < Worker thrsads

—>

Task delivery

J

|
/ N
Kcy \ |

' Local portion
<= Deques L] o P] !
. Private portion :
|
J |
|

v—v \ <—>Task theft

\ Helper thread _ /

g e —

Incoming/outgoing steal requests

Network interconnect

Recent results

TASCEL prototype using Argobots

Demonstrated ability to dynamically change
the number of ESs to respond to external
events (e.g., power management)

Impact/Potential

TASCEL over Argobots enables the design
of more performance portable and
composable task-parallel program phases

Contact:

- Sriram Krishnamoorthy
sriram@pnnl.gov

- Gokcen Kestor
gokcen.kestor@pnnl.gov

PaRSEC: A distributed runtime for domain specific languages

* Problem

Performance portability, a critical component of
HPC, is difficult to be guaranteed by programming
paradigms on Complex heterogeneous distributed

architectures
Algorithmic advances and architectural progress
are often disjoint

e Solution

separation of concerns: compiler optimizes tasks,
developer describes dependencies between tasks,
runtime orchestrates the dynamic execution
Interface with the application developers through
specialized domain specific languages

Separate algorithms from data distribution

H|W> =E|W>
CHEMISTRY, NUCLEAR PHYSICS, ...

1. . 1 .
> e —

1

for j = 1:M
for k = 1:L
T[j,k] = X[i][J1[k]* Y[k]|

!

> DATA DISTRIBUTION PARAMETRIC DAG

> SCHEDULING HINTS DYNAMIC TASK DISCOVERY

Recent results

Full integration of PaRSEC with Argobots
Full support for distributed executions
Initial support for marshaling resources
(e.g., accelerators) from NodeoOS

Add support for task stealing and migration
to adapt to dynamic condition (power
management, failure prediction)
Application support: Support for the
ScalLAPACK library, and initial integration
with NWCHEM

Impact/Potential

Remove all control flow from application,
resulting on completely data-driven
executions

Ease the user adoption by providing rich
and flexible domain specific languages

Contact:

- Damien Genet genet@icl.utk.edu
- Thomas Herault herault@icl.utk.edu
- George Bosilca bosilca@icl.utk.edu

Argo Concurrency: Recent Results & Impact

e Recent results

— Initial development of the “Argobots” threading/tasking
library

— Initial design of extending inter-node communicationin
the presence of user-level threads and tasks

— Prototype development of OpenMP, MPI, Charm++,
CilkBots, TASCEL, and PaRSEC over Argobots
* Impact

— The new models developed would impact both legacy and
new programming models that take advantage of massive
on-node parallelism

