DEGAS

Dynamic Exascale Global
Address Space

Katherine Yelick, LBNL PI
Vivek Sarkar & John Mellor-Crummey, Rice
James Demmel, Krste Asanovi¢c UC Berkeley
Mattan Erez, UT Austin
Dan Quinlan, LLNL
Paul Hargrove, Steven Hofmeyr, Costin lancu, Khaled
Ibrahim, Leonid Oliker, Eric Roman, John Shalf, Erich
Strohmaier, Samuel Williams, Yili Zheng, LBNL
+ Several postdocs and students!

DEGAS Overview

DYNAMIC EXASCALE GLOBAL ADDRESS SPACE

DEGAS: Dynamic Exascale Global Address Space

(. . - N\ ()
Hierarchical Programmin
J w
c </ Models)
2 _8 4)
S © Communication-Avoiding Q
o .~ . . .
t E\ Libraries and Compilers)| §
5) N —
i 8— Adaptive Interoperable 7
> Runtimes o
5 S i
c = Lightweight One-Sided
L ..
L Communication)L)

Communication-avoiding algorithms generalized to
compilers, and communication optimizations in PGAS

DEGAS Overview 2

Making PGAS more Dynamic;

DAG Programming more Locality-Aware

PGAS DAGS

- Asynchronous remote put/get - Asynchronous invocation

for random access - Good for dynamic load balancing

- Good locality control and scaling and event-driven execution
Eg. *p=..0r ..=ali; finish { ... async f (x)...}

// threads 1,3,5,.. \S
upcxx::range tg(l, THREADS, 2);
// invocation on a group of threads yVidelsidge]
upcxx: :async(tg)(print_num, 123);
upcxx: twait(); t and atomics

(2) Remoteginvacation
BN Phasers for hierarchical
IR distributed synchronization

DEGAS Overview 3

DEGAS: Dynamic Exascale Global Address Space

. . A C h
o . [Hierarchical Programming J
c C MOdEIS
wc O
S E Communication-Avoiding v
£ ¢ Libraries and Compilers S
= : N
& = Adaptive Interoperable T
> [Runtimes)| =
o O
2 > Lightweight One-Sided
. Communication J\

Communication-avoiding algorithms generalized to
compilers, and communication optimizations in PGAS

DEGAS Overview 4

Communication-Avoiding Compilers:

Theory to Practice

* Goal: Compilers to generate communication optimal code
* Theory

— Thm (Christ,Demmel,Knight,Scanlon,Yelick): For any program that
“smells like” nested loops, accessing arrays with subscripts that are
linear functions of the loop indices

#words_moved = Q (#iterations/M€)

for some e we can determine

— Thm (C/D/K/S/Y): Under some assumptions, we can determine the
optimal tiles sizes up to constant factors

* Practice
— dHPF compiler at Rice to generate communication-optimal code
— Series of challenge problems: matmul, n-body, “complex code”,...
— Several hand-analyzed CA algorithms

DEGAS Overview 5

DEGAS: Dynamic Exascale Global Address Space

(. . . N N
v Hierarchical Programming
c < Models)
© O~ Y
= E Communication-Avoiding @
1= c | Librariesand Compilers || §
VB : =
& = Adaptive Interoperable %
> O Runtimes -
o O
2 3 [Lightweight One-Sided J

Communication N)

Communication-avoiding algorithms generalized to
compilers, and communication optimizations in PGAS

DEGAS Overview 6

DEGAS Adaptive Interoperable Runtime

< 2 o© L
IS o © (=)
I

Performance Ratio

o©
N

0.0

DEGAS combines global address/name space in tasking
« Retains locality control essential for scalability

Unifies view of tasking with communication

* Not orthogonal: Remote “async” generalized PGAS put/get and
creates a remote task invocation (not two-sided)

* Exploring overlap using tasking vs non-blocking operations
Integrated UPC and HCLib (Habanero), better than MPI+OpenMP
Highlight: Locality aware Ahead-Of-Time task scheduling

Pencil

| | | i I | I
0 32 64 96 128 160 192 224
Threads

OpenMP: tasking up to
5X slower than for

AOT task scheduling:
Tasking 50% faster than for

»

Performance Ratio
e e s
=

15

=
n

W

N

o

vs OMP for plane

§ : i ; | 256

N Va4 S (O PR A e 75127
tbeyer T\ .

\eNEl/oY

fcr better¢

| {! L | L l |
0 32 64 96 128 160 192 224
Threads

DEGAS Overview

7

DEGAS: Dynamic Exascale Global Address Space

Hierarchical Programming
Models

Communication-Avoiding
Libraries and Compilers

f

/ \u

\

Y 4
J \u

Adaptive Interoperable
L Runtimes)

Lightweight One-Sided
Communication | |

Communication-avoiding algorithms generalized to
compilers, and communication optimizations in PGAS

Resilience

Energy / Performance
Node Optimizations

DEGAS Overview 8

DEGAS One-Sided Communications R&D

Problem

—GASNEet is ~ubiquitous for

PGAS programming

Berkeley
uPC

GCC UPC

Chapel

OpenSHM
EM

XcalableMP

Titanium

Rice
Coarray

Fortran 2.0

Others

Cray
U(F:’ :F& Open UH
UPC &CAF
for
Seastar

GASNet

—Does not address full

IBM I Cray I SGI I
Intel I AMD I SUN I

 GASNet-EX specification is nearly complete

InfiniBand Il Ethernet I

GPU I

asynchrony of emerging
models and machines

Shared
memory

Others I

UpPC after two rounds of review
1601 _ o~ uPC (pthreads) N .
140" 4. .UPC (Funneled to main)| _ -~ ° Several new features (prototyped in GASNet
2201 e ypc (processes) g 1.22, released Oct. 2013)
‘5;108' 2K bytes i R
9 807 7 — Enables async functions in Habanero-UPC
S 601 - .-
240 " UL and UPC++
= o0] PR
23_—,.4 S —a— —= — Improved performance for both Berkeley
e e N N B S B N A UPC and Rice CAF-2.0.
2 4 6 8 10 12 14 16 18 20 22 24

Core count — Additional improvements in performance

and functionality underway

DEGAS Overview

DEGAS: Dynamic Exascale Global Address Space

O " Hierarchical Programming \
e < | Models)
(C 8 p Y
= © Communication-Avoiding @
1= c | Librariesand Compilers J| §
VB - : Y =
& = Adaptive Interoperable %
@% L Runtimes : o
22 Lightweight One-Sided
LIJ 0 .

L Communication)

Communication-avoiding algorithms generalized to
compilers, and communication optimizations in PGAS

DEGAS Overview 10

Resilience in a Distributed Exascale GAS

* Resilience strategy: System to Application, GAS-specific
— Affinity-aware BLCR at NODE-level
- Consistency coordination at RUNTIME-level
— Containment domains at APP/LIB-level

 Recent progress
— GAS-specific CDs (semantics and interfaces, e.g UPC++ API)
— Affinity-aware BLCR prototyped - 50% speedup!

— Consistency coordination designed containment domains GAS semantics

« Sane, scalable resilience! * Strict vs Relaxed .
. Benchmark run time after restart ¢ Relaxed S L o B
e trict Least-Common
& ool T @ | hetatRICR mm— -Comm. Logs aucestorcp
£ 700 F Affinity-Aware BLCR =3 _ - ;
= 600 |- | - Dependencies
.§ 500 |- . : £ L
g oo - - Data exchange vii __=—<_ P
E 200 |- . Actual comm. B (;zlgE;f: PG r H
hd 100 - n a Replay \/
e 0 H "« (3) Upon Replay,
< BT SP FT MG LU CG UA IS) Init;l ngu:lg:lication Commurication !

NAS Benchmarks (CLASS = C) (Td SaDdig)

11

DEGAS: Dynamic Exascale Global Address Space

Hierarchical Programming
Models

Communication-Avoiding
Libraries and Compilers

/ \u

n
-
O
=
O
N
&
=
o

J \u

Adaptive Interoperable
Runtimes)

Lightweight One-Sided
Communication)L)

Resilience

Q
O
c
(qv)
&
. -
@)
—
o
Q
(ol
S~
>
o] 0)
o
(D)
c
L

Communication-avoiding algorithms generalized to
compilers, and communication optimizations in PGAS

DEGAS Overview 12

Performance and Energy Node Optimizations

* Roofline modeling to measure limits
— New benchmark (joint with Super) for “roof”

* Automatic performance tuning to reach limits (uses OpenTuner)

* Code generation options: compiler, DSL, annotations,...
— DEGAS ctree uses Python introspection on ASTs (joint with ASPIRE)

3500 ee e Energy-optimized |]

Application or kernel DGEMM eos Time-optimized

9 C 2nnn °
|. 100 trials (~2 sec/each): .
Best Energy: 1.41 sec, 38.3 joules

cc/ld . .
T Best Time: 1.16 sec, 73.8 joules
I ———] S .o % o
cache = . & . -
3 SEJITS 15001 -
o Framework . o ¥
o 1000} o8 0% P
£ | DSELCompiler > ‘f' -
c P .SO .
- A 500 |
{ Hardware / Operating System J l . l
10 15 20 25 30 35 40 45

seconds

DEGAS Overview 13

DEGAS: Dynamic Exascale Global Address Space

N\ N

Hierarchical Programming
Models

Communication-Avoiding
Libraries and Compilers

/ \u

V)
-
)
=
O
N
&
=
o

J \u

Adaptive Interoperable
Runtimes)
Lightweight One-Sided
Communication)L)

Resilience

Q
O
c
(O
&
S
@)
—
o
Q
(ol
S~
>
o] 0)
o
Q
c
L

Applications that use DEGAS features in non-trivial ways

DEGAS Overview 14

Algorithms, Programming Models, and Parallelism
Help Solve Extreme Data Challenge in Genomics

reads MAPPING
eppeas Seeeees =eeeess Sla—— markers
[Il m il gy
EEEmiea. IEEEE—— e EE— = | . -

New fast I/O using SeqDB over HDF5 Optimized marker ID & genotype matrix generation

k-mers

— clusters

New analysis filters errors using

New O(m log(m)) algorithm vs original O(m?)

probabilistic “Bloom Filter”

contigs

Wheat: weeks to ~1 hour
Graph algorithm scales to 15K cores on
Edison using DEGAS language rather than ordering
shared memory hardware

Human: 44 hours to 20 secs

Wheat: “doesn’t run” to 32 secs chromosomes

Scaffolds (with DEGAS) Wheat: Anchored 92%
ASSEMBLY —— Ep— of chromosome

(Meraculous)

Evangelos Georganas, Aydin Buluc, Jarrod Chapman. Leonid Oliker, Daniel Rokhsar, Katherine Yelick
Funding of various pieces from DEGAS, Mantissa, Early Career, LDRD, JGI

Seismic Waveform Imaging: Data Fusion in UPC++

—_—

>

~—
-
[=]
[=]

Relative Parallel

Merge measurement data into simulation and evaluate fit
Matrix is too large for single shared memory; strided writes in global array
PGAS+Async for previously non-scalable part of MPI / ScaLAPACK, code

(A) Model SEMum2 (Central Pacific view)

& Hotspot volcanic islands

Efficiency (%)
® v ©
(Y, } o (%}

[+
o

N
u

-1l
g

\
low-velocit
L
[0=0 UPC++ |
AAMPI-3RMA| Y 4
1
i i 0 i i
16 64 254 1024 16 64 254 1024

NUMA Domains NUMA Domains (64 updates each)

(C) 250

Time in cm::update (s)

200

@m binning

@m upcxx::allocate
@l upcxx::copy
@m other

150}

100 |

50t

16 64 254 1024
NUMA Domains (64 updates each)

DEGAS Overview 16

DEGAS in NWChem

* High-performance computational
chemistry code

— Flagship DOE chemistry software
* 60K downloads world wide

e 200-250 scientific application
publications per year

* Over 6M LoC, 25K files

* Scales to 100K+ processors

credit:nwchem-sw.org

NWChem
Internal tasking, memory management, and

application checkpoint/restart
e DEGAS work on new GA over GASNet (-EX) H
e DEGAS personnel (Rice, LBNL) on other

i : . MPI + {portals, ofa, d
projects: performance analysis and tuning {portals, ofa, dmapp}

17

Performance Feedback from Applications

Speedup relative to OMP(1)

Benchmarks and proxy apps: * Libraries abstractions:

— Smith-Waterman (Habanero-UPC) — Distributed Matrices

— miniGMG ExaCT (Habanero-UPC, ...) — Multi-dim arrays (AMR)
— Stencil from ExaCT etc. (UPC++) — Distributed hash table

Full (possibly production) applications: — .5D Array library
— NWChem (GASnet)

— Contig construction in Meraculous Genome Assembly (UPC)

— Matrix assembly for using observational data in simulations (UPC++)

T T ! 36F o

= OMP + no mmap : — QMPorlglnaI :

T WG 30l 77 OMP +initialization . T
UPC contig. upC ‘

— UPC contig. + casts = UPC + nosharing -

N
N

=
N
T

[2)]
T

Speedup relative to OMP(1)
=
00}

OO
(o)}

6 12 18 24 30 36 42 48 12 18 _24 30 36 42 48

DEGAS Overview 18

DEGAS Vision

* Static load balance SPMD

Predictable work

Parallel All

e Semi-Static load balance Graph partition

Regular task * Dynamic load balance | Task Queue

graph structure

e Data parallel

Predict-abl.e e Hierarchical data parallel Phasers
communication .
e Tree (out-tree) Asynch
Regular g
L e General DAG (or in-tree) Desiﬂf;:jlgree
_ Key data * Two-sided OK Send/Receive
Sf s | e, structures e One-sided desirable
LF Lo = 87y Lo | + (87'F |oos = . PUt/GEt
= 2 G FeK) Lo+ 2 67FeK) | Very hierarchical * Neighbor + Collectives Collectives
machine? e Any-to-any Collectives Vertical PGAS

Unpredictable

Tachine? e Comm Avoid Compiler DS Code Gen

Interoperability is
built into DEGAS

€€k

e Hierarchical parallelism Hierarchical Ctl

Faulty machine?

e Over-partition work J Annealing sched

Yes

\. J \. J . J . J

¢ Hierarchical Domains]D Contain Doms

«

DEGAS: The Rest of the Vision and Status

(b = : SPMD
Parallel All Multl_-DlmensmnaI []
\ / Grids (arrays)
4)\
Hash Tables
\ /
” | e
.) only objects
; \
.5D Arrays for Deadlock free
L) Comm Avoidance scheduler
Key data :
-_}“‘”VIF‘)\ dx;‘}’ﬁ(g’lﬁ)‘ . Bloom Fllters []
| - \ Put/Get

= =2 (g7'FkK) | o) + 2 (87'FkKo) | o

~
S

M)
-

~
J

~
J
e
N\

Vertical PGAS
DS Code Gen

e N Oct Trees

-
-

~
J

\ p Everything else

Hierarchical Ctl

Annealing sched

 Contain Doms

DEGAS Software Stack

Habanero-UPC++

UPC++ ROSE

Energy / Performance - CTree, Roofline

Resilience Support - Containment Domains + BLCR

Not
DEGAS
funding

Comments

 Dynamic decisions are easiest to implement within a node, but probably
most useful between nodes

* A “bad” machine can turn easy problems to a hard ones (back edges)

— It has to bad enough (unpredictable, faulty) to overcome the locality
advantages of a static/semi-static

* Challenge of designing and selling X-Stack projects today

— Most DOE applications get by with static and semi-static load balancing on
today’s machines; Mini-apps are the worst case for us (too easy)

— A few have divide and conquer parallelism that encourage dynamic runtimes
— Some have high compute to communicate ratios tolerate dynamic runtimes
Two reasonable approaches:

* Provide dynamic communication, scheduling, load balancing,
synchronization, data structures as options

 Make dynamicism the default and infer locality structure

DEGAS Overview 22

Habanero-UPC++ vs. MP1+QpenMP

Implementation
approach

Locality management

Support Languages

Internode parallelism

Intranode parallelism

Habanero-UPC++

C++ template, prototype
work on LLVM-based code

generation on node

Data layout, abstraction of
machine hierarchy

C and C++, with strong
emphasis on modern C++

Remote read/write and
invocation. Plans for team
(mixed parallelism) and
load balancing libraries

Multidimensional arrays,
async tasks, work stealing

MPI+OpenMP

MPI — library;
OpenMP -- compiler pragmas

MPI: Processes + messages
OpenMP: affinity control

C, C++, FORTRAN,... (C++ APl is
the same as the C API)

Message passing, collective
operations, Communicators
(teams) for hierarchy

Fork-join work sharing,
parallel for loops

Remark: Interoperability is goal; it is fine to use Habanero-UPC++ plus MPI+OpenMP,
e.g., our seismic imaging app.

Highlights of Future Plans

Programming Models
— Report on arrays; additional irregular data structures
— Finalize hierarchy abstractions,
Communication-avoiding compilers and adaptive runtimes
— CA final theory; implementation (dHPF), hierarchy (HCAF, UPC++)
— Integrate HClib with UPC++
— Experiment on degrees of dynamicism with various task graph structures
GASnet-EX and Resilience
— Spec and implementation for emerging architectures
Performance and energy optimizations
— Complete CTree code gen;
Demonstrations and reports
— ExaCT Chemistry application (PGAS, .5D,...) from collaborathon
— Genome contig generation integrated in assembly pipeline

DEGAS Overview 24

Collaborations with Co-Design Centers

* ExMatEx:

— “Collaborathon” in March 2014 focused on UPC++, DAG-scheduling,
Resilience, and communication-avoiding algorithms

* Follow-up visit by Yelick to LANL and others in the ExMatEx team to discuss a
particular problem in CA Sparse MatMul in chemistry

— Use of Lulesh throughout DEGAS (resilience, languages, runtimes,...)
* ExaCT:
— Shared personnel (Sam Williams);
* Proxy-App MiniGMG developed by Williams used throughout DEGAS

— Co-Design/X-Stack postdocs Cy Chan & Didem Unat (Shalf supervised):

* Participate in all DEGAS meetings, retreats, etc. with special interest on
hierarchical data structures and DAG scheduling

* CESAR:

— Planned visit by Andrew Seigel to Berkeley Lab to discuss particular “PGAS”
related algorithmic challenge

DEGAS Overview 25

Collaborations with Other Applications

* NWChem
— NWChem ported to run on GASNet (had been only ARMCI)
— Performance tuning work ongoing
» Bioinformatics (with D. Rokhsar, J. Chapman, Aydin Buluc, JGI/LBNL)
— “Contig” construction phase of assembly pipeline parallelized
— Uses PGAS (UPC) rather than shared memory (prior art)
— Rest of pipeline also being optimized by other projects (LDRD, Buluc’s
ASCR-Graph, etc.)
* Seismic modeling (with Barbara Romanowicz, Scott French, UCB)

— Full interior earth model as seen by seismic waves for basic science,
energy production, carbon sequestration, and policy verification
(Comprehensive Nuclear-Test-Ban Treaty).

— PGAS used in building large distributed matrix from observational and
simulation data. Interoperates with MPIl and ScaLAPACK.

DEGAS Overview 26

Collaboration with Other X-Stack Projects

Corvette

— Shared personnel (Demmel and lancu) and use of PGAS as target
for their analyses

X-Tune

— Common personnel (Williams, Oliker); closely tied to code
generation approach for novel node architectures (X-Tune uses
annotated general purpose languages; DEGAS has domain-specific
code generators; latter also with ASPIRE DARPA project at UCB)

Resilience collaboration plans with GVR, Argo and Hobbes

— Through Frank Mueller, Costin lancu, Steve Hofmeyer, etc.

OCR

— Common personnel (at Rice) and use of OCR under Habanero
— Ongoing work to understand relative strengths of approaches

DEGAS Overview 27

