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OCR Building Blocks
• Event-driven tasks (EDTs)

– expresses task-level parallelism in which tasks may themselves contain 
data/SIMT parallelism

– each EDT has a Globally Unique ID (GUID)
– example OCR API:

u8 ocrEdtCreate(ocrGuid_t * guid, ocrGuid_t templateGuid, u32 paramc, u64* paramv, 
u32 depc, ocrGuid_t *depv, u16 properties, ocrGuid_t affinity, ocrGuid_t *outputEvent);

• Events (Dependences)
– specified explicitly as conditions that gate EDT enablement
– several types of dependences (control, data, resource, …)
– all events are also identified uniquely with GUIDs 

• Memory Datablocks
– support for distributed global name space
– each datablock has a unique GUID
– interior pointers can only be reused within an EDT, not across EDTs
– datablocks are relocatable by runtime for power, reliability, ...
– allows exploitation of non-uniform memories in storage hierarchy



Current approaches to using OCR

• Direct use of OCR API subset
– Works for both FSIM and real hardware

– Full OCR API only supported on real hardware 
and is exploited by tool chains listed below

• Habanero-C library (HClib)

• Habanero-C++ library

• CnC on OCR

• Hierarchically Tiled Arrays (HTA) on OCR

• Compiler generation of OCR calls (R-Stream)

• Habanero-C language on OCR (in progress)



Partial list of OCR Applications

• SCF from NWCHEM
– Jaime Arteaga (Univ. of Delaware)

– Identified need for improved transcendental functions on FSIM

• CoMD
– Peitro Cicotti (SDSC)

– Worked with ExMatEx scientist to understand algorithmic options

• HPCC and HPCG kernels
– Matthew Unrath, Kyung Hwan Pak, Grady Ellison (Oregon State Univ.)

– Use of HTA-style data management at each level of memory hierarchy

• NAS Parallel Benchmarks, BSF, SSSP
– Adam Smith (UIUC)

– Using HTA/PIL to map to OCR

• Lulesh multiple versions
– OCR - Roger Golliver (UIUC)

– HCLib/HC++lib - Vivek Kumar (Rice)

– CnC - Kath Knobe (Intel) and Ellen Porter (PNNL) John Feo (PNNL) and Rishi Khan



Lulesh 1.0.1 Benchmark

• Started with the C++/OpenMP version
– Collected other versions to experiment with and look for where 

parallelism was previously exploited

• Good proxy app in my opinion
– Reasonable size, for all day edit sessions
– In C++ but modest use of C++ features, so easily translated down 

to C
– Well organized access to data
– Stable results (gcc,icc)x(-O[0-1])x(Serial,OMP)
– Modest use of standard libraries and no additional packages

• NOTE: C++ version of LULESH is supported by Habanero-C++ 
library for real hardware, but not for FSIM



Strategy for translation to OCR

• Transition to C (Needed to run on FSIM)
– Methods to functions
– Data Classes to structures
– Overloaded functions to multiple versions

• Transition array and structs to datablocks.
– malloc to ocrDBCreate

• Transition high level function flow to EDTs.
– Function Signature to ocrEdt_t
– IN scalars and structs passed via paramv[]
– INOUT and OUT scalars, structs and arrays passed as datablocks via 

depv[]

• Transition functions call/return organization to dynamically created 
and scheduled EDTs

• Transition OMP loop level parallelism to using Finish EDTs



C++ to C Overview

• Single Object “Domain” made things simple
– Global edit to change access methods to direct 

access to structure element

– domain.numElems()
• First define macros like domain_numElems()

• Then directly to structures domain->m_numElems

• OCR has limitations on use of nested data 
structures
– Special care needed in designing and initializing 

domain’s structure elements that were pointers



Macros for Datablock Support

• As part of the translation process I was making the 
lulesh source more “abstract”
– DRAM_MALLOC() as malloc()

run withC99/Cilk
DRAM_MALLOC() as ocrDbCreate() 
and run with OCR

– DRAM_MALLOC() as upc_global_alloc()/SHARED
and run with UPC
and check SHARED pointer usage

• This allowed typo and parallelization errors to be 
caught in a familiar debug environment



Macros for Loop Parallelization

• For the parallel loops the same abstraction and the 
refinement could be done.
– PAR_FOR for C-OMP is #pragma omp for  / for(;;){}
– PAR_FOR for cilk is cilk_for(;;){}
– PAR_FOR for UPC is upc_forall(;;;){}
– PAR_FOR for Habanero C is

forasync IN() OUT() INOUT() POINT() SEQ() {}

• Habanero C is particularly nice step before 
transitioning from arrays/functions to DBs/EDTs
– IN() scalars can go to paramv[]
– Arrays in IN() OUT() INOUT() get converted to DBs

and their ocrGuid_t’s go in depv[]



Final Steps to EDT

• Habanero C is close syntactically and semantically to DB/EDT.
• From initial Habanero-C version

– finish{ async IN(inList) OUT(outList){…}}
– finish { async IN(inList) OUT(outList) edt(inList,outList);
– finish { async IN() edt(paramc,paramv[],depc,depv[]) }}

• Then as OCR
– ocrEdtCreateTemplate()
– ocrEdtCreate()

• async{} as EDT with EDT_PROP_NONE
• finish{} as EDT with EDT_PPOP_FINISH

– ocrAddDependence()

• This translation from Habanero-C to OCR is in the process of 
being automated



Lulesh 1.0 Status

• High level function flow translated to OCR

• Some low level leaf (OMP parallel loops) 
translated to demonstrate methods

• Waiting for the new version of lulesh with 
new physics (multiscale and plasticity) to 
be release to return to lulesh



Next Steps

• miniGMG
– HClib on top of OCR

• New lulesh w/multiscale and plasticity (Lulesh-MP?)

• Updating some of the interesting UHPC Apps to OCR
– SAR, written to explicitly manage the memory hierarchy

– UTS, interesting load balancing test

• (CnC, HClib, Habanaro-C, etc.) on OCR 
implementations of the applications as the tools 
become available


