
Applications Experience
with OCR

XStack PI Meeting

May 28, 2014

Roger Golliver

Legal

• Acknowledgment: This material is based upon work supported by the
Department of Energy [Office of Science] under Award Number DE-
SC0008717.

•

• Disclaimer: This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any
agency thereof.

Overview

• Motivation for Open Community Runtime (OCR)

• Strategy for translation to OCR

• Partial list of OCR Applications

• Experience with Lulesh

• Detailed Steps

• Development of Translation macros

• Current Status

• Next Steps

MPI + OpenMP, OpenCL, …

UPC / UPC++, CAF, Charm++, …

Storage System, …

Operating System

Communication
Systems
(MPI, GASNet, Portals, …)

Public
APIs

Need for Exascale Runtime
Mapping Framework to bridge
between Programming Systems

and System Software

OCR Motivation

Chapel, X10, CnC, Legion, DSLs, …Programming
Systems

System
Software

parallel iterators,
data distributions

task & data mapping,
adaptation, and
migration

thread creation,
thread binding,
memory pinning

System
APIs

Focus
of

OCR

Straw-man
Architecture

Simulation
Infrastructure

Tools
Infrastructure

Programming
System

Exascale Execution Model is embodied in OCR

Science Applications

OCR Context in Traleika Glacier
X-Stack project

OCR Building Blocks
• Event-driven tasks (EDTs)

– expresses task-level parallelism in which tasks may themselves contain
data/SIMT parallelism

– each EDT has a Globally Unique ID (GUID)
– example OCR API:

u8 ocrEdtCreate(ocrGuid_t * guid, ocrGuid_t templateGuid, u32 paramc, u64* paramv,
u32 depc, ocrGuid_t *depv, u16 properties, ocrGuid_t affinity, ocrGuid_t *outputEvent);

• Events (Dependences)
– specified explicitly as conditions that gate EDT enablement
– several types of dependences (control, data, resource, …)
– all events are also identified uniquely with GUIDs

• Memory Datablocks
– support for distributed global name space
– each datablock has a unique GUID
– interior pointers can only be reused within an EDT, not across EDTs
– datablocks are relocatable by runtime for power, reliability, ...
– allows exploitation of non-uniform memories in storage hierarchy

Current approaches to using OCR

• Direct use of OCR API subset
– Works for both FSIM and real hardware

– Full OCR API only supported on real hardware
and is exploited by tool chains listed below

• Habanero-C library (HClib)

• Habanero-C++ library

• CnC on OCR

• Hierarchically Tiled Arrays (HTA) on OCR

• Compiler generation of OCR calls (R-Stream)

• Habanero-C language on OCR (in progress)

Partial list of OCR Applications

• SCF from NWCHEM
– Jaime Arteaga (Univ. of Delaware)

– Identified need for improved transcendental functions on FSIM

• CoMD
– Peitro Cicotti (SDSC)

– Worked with ExMatEx scientist to understand algorithmic options

• HPCC and HPCG kernels
– Matthew Unrath, Kyung Hwan Pak, Grady Ellison (Oregon State Univ.)

– Use of HTA-style data management at each level of memory hierarchy

• NAS Parallel Benchmarks, BSF, SSSP
– Adam Smith (UIUC)

– Using HTA/PIL to map to OCR

• Lulesh multiple versions
– OCR - Roger Golliver (UIUC)

– HCLib/HC++lib - Vivek Kumar (Rice)

– CnC - Kath Knobe (Intel) and Ellen Porter (PNNL) John Feo (PNNL) and Rishi Khan

Lulesh 1.0.1 Benchmark

• Started with the C++/OpenMP version
– Collected other versions to experiment with and look for where

parallelism was previously exploited

• Good proxy app in my opinion
– Reasonable size, for all day edit sessions
– In C++ but modest use of C++ features, so easily translated down

to C
– Well organized access to data
– Stable results (gcc,icc)x(-O[0-1])x(Serial,OMP)
– Modest use of standard libraries and no additional packages

• NOTE: C++ version of LULESH is supported by Habanero-C++
library for real hardware, but not for FSIM

Strategy for translation to OCR

• Transition to C (Needed to run on FSIM)
– Methods to functions
– Data Classes to structures
– Overloaded functions to multiple versions

• Transition array and structs to datablocks.
– malloc to ocrDBCreate

• Transition high level function flow to EDTs.
– Function Signature to ocrEdt_t
– IN scalars and structs passed via paramv[]
– INOUT and OUT scalars, structs and arrays passed as datablocks via

depv[]

• Transition functions call/return organization to dynamically created
and scheduled EDTs

• Transition OMP loop level parallelism to using Finish EDTs

C++ to C Overview

• Single Object “Domain” made things simple
– Global edit to change access methods to direct

access to structure element

– domain.numElems()
• First define macros like domain_numElems()

• Then directly to structures domain->m_numElems

• OCR has limitations on use of nested data
structures
– Special care needed in designing and initializing

domain’s structure elements that were pointers

Macros for Datablock Support

• As part of the translation process I was making the
lulesh source more “abstract”
– DRAM_MALLOC() as malloc()

run withC99/Cilk
DRAM_MALLOC() as ocrDbCreate()
and run with OCR

– DRAM_MALLOC() as upc_global_alloc()/SHARED
and run with UPC
and check SHARED pointer usage

• This allowed typo and parallelization errors to be
caught in a familiar debug environment

Macros for Loop Parallelization

• For the parallel loops the same abstraction and the
refinement could be done.
– PAR_FOR for C-OMP is #pragma omp for / for(;;){}
– PAR_FOR for cilk is cilk_for(;;){}
– PAR_FOR for UPC is upc_forall(;;;){}
– PAR_FOR for Habanero C is

forasync IN() OUT() INOUT() POINT() SEQ() {}

• Habanero C is particularly nice step before
transitioning from arrays/functions to DBs/EDTs
– IN() scalars can go to paramv[]
– Arrays in IN() OUT() INOUT() get converted to DBs

and their ocrGuid_t’s go in depv[]

Final Steps to EDT

• Habanero C is close syntactically and semantically to DB/EDT.
• From initial Habanero-C version

– finish{ async IN(inList) OUT(outList){…}}
– finish { async IN(inList) OUT(outList) edt(inList,outList);
– finish { async IN() edt(paramc,paramv[],depc,depv[]) }}

• Then as OCR
– ocrEdtCreateTemplate()
– ocrEdtCreate()

• async{} as EDT with EDT_PROP_NONE
• finish{} as EDT with EDT_PPOP_FINISH

– ocrAddDependence()

• This translation from Habanero-C to OCR is in the process of
being automated

Lulesh 1.0 Status

• High level function flow translated to OCR

• Some low level leaf (OMP parallel loops)
translated to demonstrate methods

• Waiting for the new version of lulesh with
new physics (multiscale and plasticity) to
be release to return to lulesh

Next Steps

• miniGMG
– HClib on top of OCR

• New lulesh w/multiscale and plasticity (Lulesh-MP?)

• Updating some of the interesting UHPC Apps to OCR
– SAR, written to explicitly manage the memory hierarchy

– UTS, interesting load balancing test

• (CnC, HClib, Habanaro-C, etc.) on OCR
implementations of the applications as the tools
become available

