
Ensuring Correctness for
Exascale and Beyond

Breakout session
DoE X-Stack PI meeting 4/7/2016

Aggravated problems at Exascale
Goals

Need to maximize parallelism and minimize data transfers while being accurate and correct

Need to reuse code and components to promote rapid development

Approaches:

Non-determinism (e.g. 2.5D communication-avoiding algorithms exploit reduction parallelism)

Approximations (e.g. fast multipole methods [2], -ffast-math)

Modular design: multiple runtimes (e.g. MPI, OpenMP, GasNet) and languages (e.g. Fortran, C)

Tradeoffs:

Inaccuracies	from	non-determinism	(“non-reproducibility”)		

Inefficiencies	from	overly	conserva9ve	data	sharing	(too	many	“barriers”)	

Inaccuracies	and	Instabili.es	from	using	too	li<le	FP	precision	and	non-determinism	

Inefficiencies	from	using	high	precision	floa9ng	point	everywhere	

2

Detect and Eliminate Inaccuracies and Inefficiencies

Approaches:

Theorem proving (e.g. coq)

Semi-automated

Full correctness

Static analysis, abstract-interpretation, symbolic execution, model-checking

False positives

Partial correctness guarantees

Dynamic analysis

Run program, collect data, learn from data, recommend modifications

False negatives -> no guarantees

New algorithms

3

Accuracy & reproducibility: Some approaches
Why we need reproducibility and accuracy

Debuggability

Contractual obligations

Determine worst-case accuracy statically (e.g., Coq [4])

Guarantees, conservative bounds. No runtime overhead. Not fully automatic.

Maximize accuracy by dynamically adapting computations (e.g., Herbie [5], In situ
UQ)

Better average accuracy. May improve worst-case. Runtime overhead.

Minimize precision while guaranteeing good-enough accuracy (e.g. Precimonious)

Maximize reproducibility while staying within worst-case accuracy boundaries (e.g.,
reproBLAS [6])

Reproducibility. Low runtime overhead. Might decrease average-case accuracy

4

Questions
Which specific properties of scientific codes do need verification and

analysis?

Are there tools to address these challenges, or some of them ?

Can we use dynamic analysis to optimize performance and to avoid bugs?

Can we build a easy-to-use tool to perform dynamic analysis and optimization?

Error prevention vs. detection

Mirrors detection and recommendation of optimization opportunities

What kind of guarantees can we get ?

Strength, coverage in code types, volume (locs) and diversity (languages)

Maintenance & portability

Evolution of proofs and analysis results as code evolves and gets ported

Automation: semi-automated, with automatic advice, automatic ?

5

References
1.  Solomonik, Demmel - Communication-optimal 2.5D matrix multiply and LU factorization algorithms.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-72.pdf, 2011.

2.  Beatson, Greengard - A short course on Fast Multipole Methods. https://web.njit.edu/~jiang/math614/
beatson-greengard.pdf

3.  Leroy and team - CompCert http://compcert.inria.fr, 2009.

4.  Ramananandro et al- A unified Coq framework for verifying C programs with floating-point
computations. CPP 2016.

5.  Pavel Panchekha et al- Herbie: Automatically Improving Floating-Point Accuracy. http://
herbie.uwplse.org/

6.  Demmel et al - ReproBLAS: Reproducible BLAS. http://bebop.cs.berkeley.edu/reproblas/

7.  Rubio-Gonzalez, Sen, Demmel, Iancu et al.- Precimonious: Precision tuning of floating point programs

8.  Park, Sen, Iancu et al.- Scalable data race detection

6

