
1

APPS on HPX

Alice E. Koniges
Berkeley Lab / NERSC

Representing XPRESS/XSTACK Effort

 XSTACK PI Meeting, Boston MA
May 27-28 2014

2

Applications using the HPX runtime system with active
global address space are spreading rapidly

•  Application-centric team members and contributors include:
–  Mike Heroux, et al. – XPRESS Application lead, SNL

engineering apps.
–  Matt Anderson, et al. – IU HPX implementations including AMR,

GTC, Several others
–  Tom Evans, ORNL, nuclear engineering apps
–  Alice Koniges, et al. LBL, plasma, PIC, accelerator
–  Hartmut Kaiser, et al. LSU, HPX development/implementations
–  Yonghong Yan, et al. UH OpenMP/HPX integration
–  Collaborators in Europe

•  Important component of XPRESS (Ron Brightwell, SNL,
Coordinating PI and Thomas Sterling, IU, Chief Scientist)

3

•  Exascale Challenges for Applications
•  Fundamentals of HPX from an application perspective
•  Legacy Demonstrations
•  Tools Analysis
•  Building Directly on the Runtime with OpenMP
•  Creating New Applications with Lightweight Threading

Concepts, New ideas
–  Porting Kernels
–  Adopting new paradigms

Concepts and Ideas

4

 New algorithms should work in concert with new exascale
operating systems: ParalleX Execution Model

•  Lightweight	 mul,-‐threading	
–  Divides	 work	 into	 smaller	 tasks	
–  Increases	 concurrency	

•  Message-‐driven	 computa,on	
–  Move	 work	 to	 data	
–  Keeps	 work	 local,	 stops	 blocking	

•  Constraint-‐based	 synchroniza,on	
–  Declara<ve	 criteria	 for	 work	
–  Event	 driven	
–  Eliminates	 global	 barriers	

•  Data-‐directed	 execu,on	
–  Merger	 of	 flow	 control	 &	 data	 structure	

•  Shared	 name	 space	
–  Global	 address	 space	
–  Simplifies	 random	 gathers	

 Thomas Sterling, et al. IU and XPRESS

5

HPX and Related Application Development

–  Explore app development alternative to “traditional MPI+X”.
–  Question: Can a qualitatively different approach (Parallex-based):

§  Exploit untapped and new parallelism?
§  Improve expressability?
§  Improve productivity?
§  Get us to Exascale and beyond?

–  Broad sampling of app domains & algorithms:
§  Plasma physics, Many-body & particle-in-cell (PIC)
§  Nuclear engineering & finite volume/eigensolvers.
§  Shock physics & finite element/explicit time integration.
§  Computational mechanics & implicit sparse solvers.

–  Full team effort involving app designers, XPRESS team, HPX and
ParalleX developers, and compiler and tools developers

6

Application Perspective

•  Use of Futures:
–  Exploit previously inaccessible, fine-grain dynamic parallelism.
–  Natural framework for expressing data-driven parallelism.

•  Better than MPI:
–  Beyond functional mimic of MPI.
–  Really use Active Global Address Space (AGAS)
–  Take advantage of fine-grained parallelism using a generalized concept

of threads
•  Overarching Application Team goal:

–  Demonstrate that Parallex-based approaches work
–  Superior to MPI+X in one or more metric:

§  Performance: Extracting latent parallelism.
§  Portability: Performance obtained from system’s underlying runtime.
§  Productivity: Easier to write, understand, maintain.

7

The Ideal HPX Model from an Application Perspective

•  Functionalize – figure out what is a quantum of work
•  Determine data dependencies
•  Create a data flow structure
•  Feed into data task manager
•  Some interesting early results from Matt Anderson, Hartmut Kaiser,

Thomas Sterling:
–  Sweet spot between grain sizes for various task granularities.
–  Specific example with HPX AMR.
–  Strong scaling improves as you added extra levels of refinement.

Opposite of what you see with MPI.
–  Giving more usable work to the simulation.

8

XSTACK XPRESS Team is Building on Early
Successes of HPX

•  ParalleX-based programming and execution models and environments
provide the promise of a new exascale environment. XPRESS Apps
explore and demonstrate the potential and challenges of Parallex-based
approaches

•  Plasma and Astrophysics (LBL, IU, LSU): PIC and Many Body, New
asychronous formulations, new field solvers Legacy MPI, OpenMP
comparisons

•  Nuclear engineering (ORNL): Simplified Spherical Harmonics, fine-grain
cooperative parallelism. Monte Carlo Transport: Already highly parallel,
but want head-to-head XPI vs OpenMP, and vectorization capabilities.

•  Unstructured PDEs (SNL): HPCG benchmark in XPI. Includes a
futurized version of the symmetric Gauss-Seidel kernel to exploit data-
driven parallelism. Trilinos data classes: Selected studies of
implementing core Trilinos kernels in XPI.

9

GTC Results

•  Default input deck
–  3.2 million particles
–  Toroidal grid with 3.6 million points
–  150 simulation steps

•  Six communication operations
–  allreduce, bcast, comm split,

gather, reduce, send/recv

field

pushi

diagnosis

shifti

err_check

collision

poisson

pushe

poisson_initial

shifte

chargee

locate_tracked_particles

snapshot

write_tracked_particles

timer setup

read_input_params

set_particle_decomp

load

broadcast_input_params

rand_num_gen_init

restart_read

tag_particles

set_random_zion

chargei

rng_print_seed

rng_init

rng_step_seed

smooth fftr1d

fftc1d

}  Experimental setup
}  16 node cluster of Intel Xeon E5-2670 2.60 GHz
}  InfiniBand interconnect, 32GB memory per node

GTC and GTCX Results from Matt Anderson (now at Indiana University)

10

11

Context Switches

12

Phase diagrams
for GTC and GTCX

}  Default
parameters, 16-
core run

}  No synthetic
load imbalance

}  HPX-3 overlaps

phases
}  This result is

even more
pronounced with
load imbalance
(not shown here)

13

N-Body Code based on LibGeoDecomp

•  Single Xeon/Phi results

N-Body Results from Hartmut Kaiser, et al. Louisiana State University

–  Achieve 89% of peak
or an overhead of 11%

–  2–4 threads/core give
similar results

–  Use all 244 available
hardware threads

14

N-Body Code based on LibGeoDecomp

•  Heterogeneous run on all host cores and a full Xeon/Phi

0"

5"

10"

15"

20"

25"

30"

0" 2" 4" 6" 8" 10" 12" 14" 16"

Pe
rf
or
m
an
ce
"in
"T
FL
O
PS
"

Number"of"Nodes,"16"Cores"on"Host,"Full"Xeon"Phi"

Weak"Scaling"Results"for"HPX"NIBody"Codes"
(Host"Cores"and"Xeon"Phi"Accelerator)"

HPX"

Peak"

15

N-Body Code based on LibGeoDecomp

•  Host cores only, 1024 nodes (16k cores overall)

–  HPX out perfoms MPI
by a factor of 1.4

–  Parallel efficiency of
~87% at 1024 nodes

–  Result of optimizing
communication layer

16

Mini-Ghost (SMP)

•  Single node run

MiniGhost Results from Hartmut Kaiser, et al. Louisiana State University

–  At 8 cores HPX is 7X
faster than OpenMP

–  Able to improve overlap
of computation and
communication

–  Turnover above 8
cores due to NUMA
related effects

17

Mini-Ghost (distributed runs)

•  Host cores only, 128 nodes, 2 localities 8 cores each per node

–  For 256 localities (128
node) use 45.5 million
HPX threads

–  HPX outperforms MPI/
OpenMP by 1.13X

–  Uses asynchronous
method for global sum

18

Comments on Mini-Ghost

•  ‘mini-Ghost’ - a mini-app for exploring boundary exchange
strategies using stencil (see NERSC 8 / Trinity Benchmarks)

•  verify assumptions of the advantages of finer grain parallelization
and future’s based, constraint-based synchronization for reducing
overheads pertinent to the widely used programming models like
OpenMP and MPI.

•  Speedup primarily attributed to efficient overlapping of
communication and computation due to fine grained constraints.

•  Fine grained constraints also benefit from the ability to write a
completely asynchronous reduction needed for the global sum of
10% of the used variables

•  Note that the 128 node run used a total of 45.5 million HPX threads
which translates to around 22 thousand threads executed per core.
At a runtime of 9 seconds, this results in 5 million threads
executed per seconds.

19

OpenMP on top of HPX
Jeremy Kemp, Yonghong Yan, Barbara Chapman, University of Houston

•  Goal 1: Support legacy OpenMP code
–  OpenMP runtime lib using HPX, no need to change compiler

•  Goal 2: Provide migration path from OpenMP code to HPX
–  Allow the combination of OpenMP code with HPX during migration

•  Goal 3: Explore new parallel execution model for legacy program
–  Convert global-barrier oriented synchronization into data-driven tasking

model

0.001$ 0.01$ 0.1$ 1$ 10$ 100$ 1000$

PARALLEL$TASK$

MASTER$TASK$

MASTER$TASK$BUSY$SLAVES$

CONDITIONAL$TASK$

TASK$WAIT$

TASK$BARRIER$

NESTED$TASK$

NESTED$MASTER$TASK$

BRANCH$TASK$TREE$

LEAF$TASK$TREE$

PARALLEL$

FOR$

PARALLELFOR

BARRIER$

SINGLE$

CRITICAL$

LOCK/UNLOCK$

ATOMIC$

REDUCTION$

EPCC$Syncbench$and$Taskbench:$<1$means$hpxMPisbeLer$than$libopenmp$$

OpenMP Application

OpenUH OpenMP Compiler

OS/system

OpenUH libopenmp
Runtime HPX XPI

hpxMP xpiMP

20

LU factorization Benchmark: taskwait sync è task dependency
replaced global barrier synchronization with data-driven

asynchronous tasks to improve performance
Priyanka Ghosh, Yonghong Yan, and Barbara Chapman

20

41. LU Decomposition with task extensions

1 #pragma omp p a r a l l e l
2 {
3 #pragma omp master
4 {
5 f o r (i =0; i<mat r i x s i ze ; i ++) {
6
7 /∗∗∗∗ Processing Diagonal b lock ∗∗∗∗ /
8 ProcessDiagonalBlock (.) ;
9
10 f o r (i =1; i<M; i ++){
11
12 #pragma omp task out(2*i) /∗∗ Processing block on column ∗∗ /
13 ProcessBlockOnColumn (.) ;
14
15 #pragma omp task out(2*i+1) /∗∗ Processing block on row ∗∗ /
16 ProcessBlockOnRow (.) ;
17 }
18
19 /*** Elimination of Global Synchronization point ********/
20
21 /∗∗∗∗ Processing remaining inner b lock ∗∗∗∗ /
22 f o r (i =1; i<M; i ++)
23 f o r (j =1; j<M; j ++){
24 #pragma omp task in(2*i) in(2*j+1)
25 ProcessInnerBlock (.) ;
26 }
27 #pragma omp taskwa i t
28 }
29 }
30 }

Y. Yan, S. Chatterjee, D. Orozco, E. Garcia, V. Sarkar, and G. Gao. Synchronization for dynamic task parallelism on manycore
architectures. 2010

49. Speedup: LU Matrix 4096 - O3 optimization

Performance comparison with respect to similar dataflow models

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

1 2 4 8 16 24 32 48

Sp
ee

du
p

Vs
. 1

 th
re

ad

Number of threads

OpenUH-with ext
BSC

QUARK

Performance in seconds for matrix size 4096 X 4096, with 16 blocks per dimension
Size:4096, block:16 OpenUH ext OmpSs dep Quark

1 58.90 69.80 59.57
2 31.51 37.06 34.01
4 16.10 20.31 18.67
8 8.90 11.97 11.20
16 5.30 8.05 8.17
24 4.00 6.99 7.64
32 3.41 6.67 7.44
48 2.46 6.84 7.69

OpenUH with task extensions outperforms OmpSs and QUARK by 2.3X and 3X respectively
OmpSs and QUARK scale only upto 32 threads

OpenUH with extensions - performance benefit of 32%, OmpSs with extensions - performance degradation of 20%

48. Speedup: LU Matrix 4096 - O3 optimization

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

1 2 4 8 16 24 32 48

Sp
ee

du
p

Vs
 1

 th
re

ad

Number of threads

GNU
Intel

OpenUH-without ext
OpenUH-with ext

SUN-Oracle
PGI

OmpSs

Performance in seconds for matrix size 4096 X 4096 with 16 blocks per dimension
Threads GNU Intel OpenUH noext OpenUH ext Sun PGI OmpSs

1 58.94 52.49 58.84 58.9 50.22 71.56 93.24
2 29.57 26.24 30.28 31.51 25.06 47.93 39.2
4 19.77 17.05 19.14 16.1 18.22 27.2 21.5
8 11.69 10.41 11.3 8.9 11.73 14.94 12.72
16 7.13 6.28 6.93 5.3 7.76 8.26 8.61
24 5.41 4.77 5.42 4 6.38 6.07 8.61
32 4.6 3.99 4.52 3.41 5.79 4.9 7.85
48 4.05 3.34 3.62 2.46 5.11 3.8 5.45
OpenUH with task extensions outperforms OpenUH without task extensions by a margin 1.47X

OpenUH compiler outperforms GNU, Intel, Oracle, PGI and OmpSs by 1.64X, 1.35X, 2X, 1.5X and 2.21X respectively

11. Motivation

Considering a blocked LU Decomposition basic linear algebra problem:

An N X N matrix is divided into M X M equal blocks where
M << N

1. Computation of the top-left corner (blue) block
2. Computation of the first row and column blocks

(green) only after step 1
3. Computation of the rest of the blocks (yellow) based

on the results obtained from step 2
4. Next iteration, blocks processed in step 3 become

the target of calculation
5. Each arrow illustrates an existent data dependence

across neighbouring blocks

Y. Yan, S. Chatterjee, D. Orozco, E. Garcia, V. Sarkar, and G. Gao. Synchronization for dynamic task parallelism on manycore
architectures. 2010

21

OpenMP over HPX results can be
generated very quickly for study

•  Build the binary using standard Makefile, but using the OpenUH compiler.
•  The binary generated by default links to UH OpenMP runtime library, so we run the

code and will get the results for OpenUH OpenMP.
•  To get the results for hpxMP runtime (which is using HPX), just need to set

the LD_PRELOAD environment variable to point to the hpxMP lib.
•  The LD_PRELOAD will cause the binary to link against hpxMP instead of the default

OpenUH OpenMP lib.
•  Next Steps for Optimization: Change data layout and use of data-driven tasking

model as compared with current worksharing approach as in LU (previous slide)

0

5

10

15

20

25

30

35

40

1 2 4 8 16 32 64

Ti
m

e
in

 S
ec

on
ds

Number of Cores

UCLA OpenMP PIC Code Performance

hpxMP

OpenUH

22

Particle-In-Cell (PIC) as candidates for
Asychronous Execution—beyond benchmarks

Traditional math challenges:
finite-difference field solvers
Time step, cell aspect ratio, accuracy, stability

Spectral solver offers extreme accuracy and stability,
with no constraint on time step or cell shape
- New version allows for non-global solves

No approximation beyond discretization,
interpolation & sampling

-  all 3D non-linear effects included

Particles
(Newton-Lorentz)

EM fields (Maxwell)

Inertial fusion

Space plasmas

Solar storms
Astrophysical shocks
Magnetic reconnection Accelerators

RF cavities
Laser plasma
accelerators

Fast ignition
Heavy ion fusion

-  simple, robust, scales well to
100,000s CPUs,

-  EM-PIC applications burn
millions of CPU-hours at
NERSC & elsewhere.

First
principles

23

The proposed event-driven methodology has
applications to a variety of areas beyond vanilla PIC

Simulation of granular materials colliding and undergoing complex topological change

Simulation of a high speed projective colliding with a hyperelastic solid

Material point methods (MPM), which use particle based advection on a
background grid to discretize stress derivatives, are very relevant
These methods are particularly important for simulating multiple
phases in the presence of extreme deformation and topological change

(MPM	 Simula,ons	 below	 from	 J.	 Teran,	 Applied	 Math	 Dept.,	 UCLA)	

24

Thinking for HPX: Replace a standard time-
driven with an event-driven simulation

call wake-ups, if
necessary

For an example of PIC event-driven sim ideas and results: H. Karimabadi, J. Driscoll,
Y.A. Omelchenko, N. Omidi Journal of Computational Physics 205 (2005) 755–775

New enabling
Exascale
Technology is
HPX/ParalleX as
part of XPRESS

Event Queue

inject new particles; then reschedule next injection

reschedule particle "push",
 using next exit time

push the particle with the
earliest exit time

Paper shows good agreement between time- and event-driven sims

calculate fields in
affected shells

25

Consider Alternate (perhaps Event Driven)
algorithms for HPX

–  Exascale will be constrained by lock-step nature
–  Consider new and rethought algorithms that break away from

traditional lock-step programming
§  Compute-send;compute-send=>limited overlap

–  HPX runtime system implementation exposes intrinsic parallelism
and latency hiding

–  Use a message-driven work-queue based approach to finer grain
parallelism based on lightweight constraint-based synchronization

A combination of new OS+runtime+languages with proven event-driven
models can surpass performance of traditional time-step models

26

Conclusions
•  HPX Built, working, evolving rapidly
•  Emerging Architectures (e.g.

Knights Landing) provide exciting
new development environments

•  Application team is working to test,
understand, and create

–  Legacy Demonstrations
–  Kernels and proxy apps for

exploring kernels and best-
practice programming

–  Tools Analysis
–  Building Directly on the Runtime

with OpenMP
–  Creating New Applications with

Lightweight Threading
Concepts, New ideas

–  Adopting new paradigms

So much to do, So little time (and $)

