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DEGAS	Mission	for	XStack
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Libraries/Frameworks

Programming	Environment

Hardware

Applications

Communica)on*Node*
Run)mes*

Domain1*
Specific**
Resilience*

Domain1Specific**
Communica)on1Avoiding*
Code*Generators*

PGAS*Data*Structures* Adap)ve*Scheduling*Structures*

Hierarchical*PGAS*with*Interoperability*and*Dynamic*Scheduling*as*Needed*

UPC++*

Haba1
nero*

GASNet1
EX*

OCR*PGAS1on1
a1Chip*

MPI***+*
UPC++*

UPC++*
+**OpenMP*

UPC++*
+*DAGs*

UPC++*
+*TaskQ*

Distributed*Data*Structures*
(Arrays,*Hash*Tables,*Graphs,*etc.)*

Domain1Specific*Run)me*Structures*
(DAGs,*TaskQs,*etc.)*

SEJITS* PGAS*Contain1
ment*Domains*

PGAS*
BLCR*

UPC++*
+**OpenACC*

Ram1
butan* MPI*

Manycore*and*Mul)core*nodes*with*scratchpad*
memory*and*limited*cache1coherence* Interconnect*

XPI*

Build	a	PGAS	programming	environment	and	toolkit	
that	deliver	high	performance	and	productivity	to	DOE	
applications	on	current	and	future	systems.

DEGAS	Stack
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PGAS	with	Composable Extensions
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Private	address	space

Global	address	space

Multi-threading

Local	
task	
queue

Function	shipping	 across	nodes Multidimensional	
arrays

4/06/16



Data	Structures	and	Runtime	Support	for	
Irregular	Data-Intensive	Applications

• Distributed	hash	table
• Applications:	HipMer (genomics)

• Irregular	data	exchange
• Applications:	AMR,	HPGMG	

• Irregular	global	matrix	update
• Applications:	NWChem,	seismic	tomography

• Distributed	work	queue
• Applications:	NWChem,	Hartree-Fock

• Dynamic	task	graph
• Applications:	Sparse	symmetric	matrix	solver

XStack	PI	meeting	- DEGAS	 44/06/16

Speedups

720x

1.2x

6x

1.2x

2x



HipMer:	High-Performance	Meraculous
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k-mers

New	k-mer analysis	filters	errors	
using	probabilistic	“Bloom	Filter”	

Graph	algorithm	(connected	components)	
scales	to	15K	cores	on	NERSC’s	Edison

contigs

Scaffolding using Scalable Alignment

x
x

New	fast	&	parallel	I/O

reads

Meraculous Assembly	Pipeline

Human 650	GB

Wheat 1200 GB

Salamander 1400	GB

Typical	Genome	Data	Size

GAT ATC TCT CTG TGA

P0

GET

GET GET GET

C	T	G								Τ ΑΑG
AAC

ACC

CCG

AAT

ATG

TGC

P1

P2

A	A	C	C	G

A	A	T	G C

Represent	genome	by	de	Bruijn Graph

Georganas,	 Buluc,	Chapman,	 Oliker,	Rokhsar,	Yelick,	[Aluru,Egan,Hofmeyr]	 in	SC14,	 IPDPS15,	SC15
4/06/16



PGAS	Hash	Table	for	Efficient	Graph	
Construction	and	Traversal
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buckets entries 
Key: 
ATC 

Val: 
TG ! ! 

! 

! 

! 
! 

! 

! 

! 

! 

! 

! 

! 

Thread 0 

Thread 1 

Thread 2 

Thread 3 

Thread N 

Key: 
ACC 

Val: 
GA ! 

Key: 
AAC 

Val: 
CF ! 

Key: 
TGA 

Val: 
FC ! 

Key: 
GAT 

Val: 
CF ! Key: 

ATG 
Val: 
CA ! 

Key: 
AAT 

Val: 
GF ! 

Key: 
TCT 

Val: 
GA ! 

Key: 
CCG 

Val: 
FA ! 

Key: 
CTG 

Val: 
AT ! Key: 

TGC 
Val: 
FA ! 

G
lo

ba
l A

dd
re

ss
 S

pa
ce

 

Shared Private 

…
 

x 

x 

y 

z 

P0 

P1 

Pn 

… 

Input: k-mers and 
their high quality 

extensions 

Read k-mers 
& extensions 

Distributed 
Hash table Store k-mers 

& extensions 

ACCCA   CT 
CTTAG   CF 
AACCT   TG 
CGCAT   XA      
 
AGGCA   AT 
GGTAG   FF 
AAAAT   TG 
CCCAT   XX      
             

 
 
TTCCA   GT 
TTTGC   CA 
AACTT   GG 
CTTTT    CA      

…
 

• Implement	the	de	Bruijn graph	by	a	
distributed	hash	table	written	in	UPC

• Parallel	graph	construction	and	traversal

The	distributed	hash	table	data	structure	can	be	applied	to	
similar	type	of	problems.	



New	HipMer Results
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• Complete	assembly	of	human	genome	in	4	minutes	using	23K	cores	
• 720x	faster	than	the	original	Meraculous due	to	the	combination	of	

algorithmic	innovations,	massive	parallelization,	 and	optimized	C	code
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1920 3840 7680 15360 23040

Ti
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)

Number	of	Cores

Strong	Scaling	(Human	Genome)	on	Cray	XC30

Kmer	Analysis
Contig	Generation
Scaffolding
I/O
Total	time	before	I/O	opt.
Total	time	after	I/O	opt.

Last	Year
Now

2X	speedups	
due	to	I/O	
optimization
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Recent	Progress	on	HipMer
• Tackling	the	metagenome
assembly	grand	challenge
• HipMer released!
https://sourceforge.net/projects/hipmer

• Collaborating	with	NERSC
on	creating	a	web	portal

XStack	PI	meeting	- DEGAS	 84/06/16



Adaptive	Mesh	Refinement
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• AMR	allows	the	method	to	
dynamically	adapt	the	multilevel	
grid	hierarchy	on	which	the	
equations	are	solved.
• Finer	level	composed	of	union	of	
regular	subgrids but	the	union	
may	be	irregular
• Intensive	and	dynamic	data	
exchange	communication	required
• Between	levels
• Neighbors	within	the	same	level

4/06/16



BoxLib AMR	Framework
• BoxLib mostly	written	in	C++	
and	Fortran	90	with	
MPI+OpenMP
• BoxLib development	effort	
estimated	by	SLOCCount:	
70.77	Person-Years	($24.77M)

• Need	an	incremental	adoption	
strategy	with	maximum	code	
reuse

• Collaboration	and	integration	
are	key!

XStack	PI	meeting	- DEGAS	 10

121244

96949

34018

5753

4184

3100

1324
795 208

cpp

f90

fortran

python

ansic

perl

objc

sh

yacc

Source	Lines	of	Code
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Active	Messages	Simplify	
Communication	Workflow
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Isend for	
data

P0 P1 P2 P3

MPI_Alltoall to	
figure	out	who	
needs	to	talk	to	
whom

Isend for	
metadata

Irecv for	
metadata

Prepare	the	
requested	data

Launch	a	
remote	task	to	
request	data

Remote	task	execution:	
• Prepare	the	requested	

data
• Put	the	data	directly	to	

the	requester’s	buffer
• Signal	the	requester	for	

completion

P0 P1 P2 P3
Message	Passing	Model	 in	BoxLib Active	Message	Model	in	BoxLib

Irecv for	
data

In	the	following	example,	P2	needs	data	from	P0.

4/06/16



PGAS	for	Efficient	Communication	
and	Data	Sharing	within	a	Node
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Pure	Message	Passing	
Model:	no	data	sharing	

Pure	Multi-threading	
Model:	 share	all	data

PGAS	Model:	 selectively	
share	data

• Pure	message	passing	model	is	good	for	data	protection	
and	parallel	network	injection.

• Pure	multi-threading	model	is	good	for	sharing	data	and	
intra-node	communication.

• PGAS	(process-shared-memory)	provides	both	advantages.
4/06/16



Communication	Performance	
Improvement	in	BoxLib
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17.89 16.57
14.98

25.46
28.02

19.28

0

5

10

15

20

25

30

Flat w.	OpenMP Hierarchical

Ti
m
e	
(s
ec
.)

Flat:	use	only	one	programming	model.
Hierarchical:	use	one	programing	model	but	handle	on-node	
communication	 through	shared-memory	 (e.g.,	MPI+MPI)

Fill	Boundary	Benchmark	- 2048	Cores	on	Cori
UPC++
MPI

Flat	UPC++	 is	
better	than	
MPI+X.

Lower	is	
better
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Full	Application	Performance:	
Compressible	Astrophysics	(CASTRO)
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Flat w.	OpenMP Hierarchical

Ti
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CASTRO	– 2048	Cores	on	Cori
UPC++
MPI

Flat:	use	only	one	programming	model.
Hierarchical:	use	one	programing	model	but	handle	on-node	

communication	 through	shared-memory.		

The	best	UPC++	version	
(Hierarchical)	is	18%	
faster	than	the	best	
MPI	version	(flat).

Image	Credit:	Ken	Chen,	University	
of	California,	Santa	Cruz
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Global	Arrays	Over	GASNet in	NWChem
• Problem	

• Enabling	UPC++	capabilities	in	
NWChem

• Transformation	needs	support	
Global	Arrays	Toolkit	and	UPC++	to	
limit	disruption	to	large	user	base

• Solution
• New	Global	Arrays	Toolkit	over	
GASNet

• Transform	current	or	add	new	
capabilities	with	UPC++

• Impact
• Over	20%	faster	on	Infiniband than	
the	base	Global	Arrays	over	ARMCI	
solution	in	NWChem for	coupled	
cluster	simulation Strong	Scaling	of	GASNet Compared	to	ARMCI	 in	

NWChem on	PNNL’s	Cascade	with	Infiniband Network
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2000

2500

3000

0 512 1024 1536 2048

W
al
l	c
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ck
	ti
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)

Number	of	processor	cores	(Using	16	cores	per	node)

GA	over	GASNET
GA	base	version

Cytosine-OH
TCE:	CCSD(T)

268	basis	functions
Correlating	49	electrons

Bert	de	Jong
XStack	PI	meeting	- DEGAS	 154/06/16



NWChem Execution	Overview	(Cytosine	OH)

16

ccsd_energy_loc:	42%

Pr
oc

es
se

s

Time

Call 
stack

Call stack over time

ccsd_t:	45%

tce_mo2e:	
6.4%



NWChem Analysis	(Cytosine	OH)

17

ccsd_energy_loc
• 42%	of	execution
• 43%	is	barriers	on	
behalf	of	nxtask

• 38%	is	comm (get)	

tce_mo2e
• 6.4%	of	execution
• 58%	is	barrier	on	
behalf	of	nxtask

• imbalance:	some	
ranks	have	no	work

ccsd_t
• 45% of	execution	
• 96%	of	FLOPs	
• 3.3 cyc/FLOP	
• 2.6%	is	comm or	
synch

Overall	conclusions
• No	fundamental	inefficiencies	observed	in	GASNet communication	substrate

• Insufficient	and	imbalanced	parallelism	seems	to	be	the	cause	of	comm and	sync	inefficiencies

black	is	comm/sync



Better	Strided Data	Movement	Using	
Active	Message	Pipelines
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Irregular	Submatrix Update
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Distributed	Array

Local	Array

• Dynamic	work	stealing	and	fast	atomic	
operations	enhance	load	balance
• New	distributed	array	abstraction	delivers	
productivity	and	performance

4/06/16



UPC++	Fock Scales	to	96K	Cores
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Strong	Scaling	on	Edison	(Cray	XC30)

20%	faster	than	the	best	existing	solution
D.	Ozog,	A.	Kamil,	Y.	Zheng,	P.	Hargrove,	J.	R.	Hammond,	A.	Malony,	W.	de	Jong,	K.	Yelick;	
"A	Hartree-Fock Application	using	UPC++	and	the	New	DArray Library”,	 IPDPS	2016

4/06/16



• Problem
• Massive	data	don’t	fit	in	single	memory	
• Dynamic	and	irregular	update	patterns

• Solution
• PGAS	+	Asynchronous	Remote	Task	
Execution	using	Customized	App	Logics

• Impact
• First-ever	whole-mantle	seismic	model	
from	numerical	waveform	tomography

• Reveals	new	details	of	deep	structure	
not	seen	before

UPC++	Enabled	New	Seismic	Discovery

XStack	PI	meeting	- DEGAS	 21

3D	rendering	of	low-
velocity	structure	
beneath	the	Hawaii	
hotspot

Excellent	parallel	efficiency	for	strong	scaling	
due	to	near	complete	overlap	of	computation	
and	communication	(IPDPS’15)

Scott	French,	Barbara	Romanowicz,	"Broad	plumes	
rooted	at	the	base	of	the	Earth’s	mantle	beneath	
major	hotspots",	Nature,	2015

NERSC	2016	Achievement	Award	for	Innovative	Use	of	HPC

ConvergentMatrix: An array abstraction for distributed dense-matrix assembly with

asynchronous updates

CS294 Fall 2013: Modern Parallel Languages
Scott French

sfrench@seismo.berkeley.edu

I. INTRODUCTION

In large-scale inverse problems [1] (e.g. regression), one
must often assemble and manipulate dense matrices that are
too large to fit “in-core” on a single shared-memory com-
puter – instead requiring a distributed-memory approach.
Further, it is also common that the elements of these matrices
are themselves the result of (possibly many) distributed
computations. While the PBLAS and ScaLAPACK [2], for
example, provide a convenient abstraction for linear algebra
operations on distributed dense matrices, the problem of
distributed-matrix assembly is typically left to the user.

One particular class of assembly problem is that which
consists only of augmented assignments to distributed matrix
elements with an operator that is, or can be assumed to be
for practical purposes, commutative and associative, e.g. the
+= operator. Under this scenario, the stream of concurrent
update operations to any given matrix element may be
arbitrarily reordered, so long as each augmented assignment
is applied in isolation (i.e. is atomic w.r.t. the others). Here,
we explore the efficacy of implementing a distributed matrix
abstraction for this particular class of assembly problem
using UPC++ [3], a partitioned global address space (PGAS)
extension to the C++ language.

A. A motivating example

The above class of distributed assembly problem is
commonly encountered in inverse theory – namely, in the
assembly of a Gauss-Newton estimate for the Hessian of
a given misfit functional. For example, in the case of the
generalized least-squares misfit

�(m) =
1

2
kd� g(m)k22 + prior terms . . .

where d contains observed data, m is a proposed model,
and g(·) is the (non-linear) forward operator that predicts d
given m, the Hessian estimate is given by GTG, where G
is the typically non-sparse Jacobian of the forward operator:
Gij = @gi(m)/@mj .

Often, for inverse problems considering large numbers
of data, the Jacobian G (dimd ⇥ dimm where dimd �
dimm) is too large to form explicitly and we instead
form GTG (dimm ⇥ dimm) directly. Typically, column-
strided panels of the Jacobian, denoted G(i), are produced

GtG[ix,ix] += GtG_i[:,:]

L
o
c
a
l

D
is
tr
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u
te
d

Figure 1. A schematic illustration of the strided update operation discussed
in the text.

concurrently by distributed computations – one for each
datum i of size k, such that G(i) is k ⇥ n, where (1) n
is typically an order of magnitude smaller than dimm due
to thresholding of small partial-derivative values, and (2) k
is at least an order of magnitude smaller than n. For each i,
the (smaller) symmetric matrix GT

(i)G(i) must be “added”
to the global GTG, with the mapping between elements
given by a strided slicing operation; or, in pseudocode
GtG[ix,ix] += GtG_i[:,:] where ix is an indexing
array (see Fig. I-A).

II. DESIGN

A. Requirements

An implementation of a distributed dense-matrix abstrac-
tion tailored to the class of assembly problem detailed above
should provide:

1) Support for distribution schemes common in parallel
dense linear algebra (i.e. cyclic, block, block-cyclic);

2) Distributed augmented-assignment operations (for
commutative and associative operators), which are
applied in isolation of each other;

3) Generality, with no fixed assumptions regarding sym-
metry or rank of updates;

4) Minimal need for synchronization, with the exception
of a barrier-like “freeze” operation, which is guaran-
teed to return only after all updates have been applied
and the distributed matrix has converged to its final
value; and

4/06/16



• A	particle-in-cell	(PIC)	code	that	solves	the	five-dimensional	 (5D)	gyrokinetic
Vlasov equation	in	full,	global	 torus	geometry	to	address	kinetic	turbulence	
issues	in	magnetically-confined	fusion	experimental	facilities	tokamaks.		

Gyrokinetic Toroidal Code	(GTC-P)

mgrid = total number of points 

• A	highly	scalable	code	with	three	
levels	of	parallelism	and	
vectorization:
• Toroidal domain	decomposition	
• Poloidal domain	decomposition
• Particle	decomposition

• Network	performance becomes	
increasingly	important	factor	for	the	
overall	performance	
• Using	one-sided	
communication	for	
performance	improvement

XStack	PI	meeting	- DEGAS	 224/06/16



PGAS	GTC-P	Performance	Improvement
• Total	running	time	improved	18-28%
• Communication	time	improved	125-200%

Communication	Time	Breakdown
Pack Transfer Unpack

MPI 5.8 17.7 7.3

UPC++ 10.7 0.0

Overlap	packing	and	data	transfer Directly	write	to	the	
destination;	no	unpackXStack PI	meeting	- DEGAS	 23
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Sparse	Symmetric	Matrix	Solver

• Parallel	sparse	Cholesky solver
• Symmetric	matrices	in	many	applications:

Optimization	problems	,	PDE	discretization,	…
• Symmetry	=	less	computations,	 lower	
memory

• Algorithm	expressed	by	a	DAG	of	tasks
• Asynchronous	remote	task	execution	
and	one-sided	communication	provided	
by	UPC++
• Dynamic	scheduling	of	local	ready tasks

XStack	PI	meeting	- DEGAS	 24

Revisiting Cholesky factorization Parallel minimum degree algorithm

Fan-Both mappings

How do we map tasks ?
(independently of data)

Use of 2D Wrap computation
mapping grid M

Grid “extends” to matrix size

F (i) on proc. M(i , i)
U(j , i) on M(j , i)
A(j) on M(j , j)

Better if P processors on diagonal

Many possible mappings

P1 P2 P3 P4 P1 P2 P3

P1

P3

P1

P1

P3

P2

P4

P2

P3

P3

P1

P4P4

Mathias Jacquelin Sparse Cholesky Factorization and Parallel MD 6/ 28

Mathias	Jacquelin,	Esmond Ng	
(FASTMath)	
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SymPACK Strong	Scaling	on	Edison
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SymPACK supercharged	by	UPC++	is	45%-105%	faster	than	MUMPS.	

Lower	is	better

4/06/16
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Note:	SuperLU doesn’t	have	special	treatment	for	symmetric	matrices	so	its	runtime	is	
expected	to	be	higher	since	it	performs	a	regular	LU	factorization	instead	of	a	Cholesky
factorization.	



Habanero-UPC++:	Locality-Aware	and	
Support	Heterogeneous	Architecture
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DRAM
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L2/L
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1

GMEM GMEM

Network	
Card

ALU ALU ALU ALU

SMsSMs

• Represent	machine	layout	as	a	graph.
• Tasks	are	each	associated	with	a	
locale;	worker	threads	have	static	
locale	paths	along	which	they	search	
for	tasks	(generalized	 load	balancing).
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Distributed	Load	Balancing	Support
Distributed	Load	Balancing	with	
Habanero-UPC++
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• A	simple	API	to	declare	a	“locality-free” task,	which	can	
participate	in	distributed	load-balancing

• Habanero-UPC++	runtime	uses	a	novel	distributed	work-stealing	
strategy	that	maximizes	balance	and	minimizes	overheads

UTS	Benchmark	Performance	 (T3WL)

4/06/16
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Towards	Communication-Optimal	
Compilers
• Many	algorithms	have	
provably-optimal	variants
• Linear	algebra,	dense/sparse
• Direct	N-body	and	now	K-body
• New	Sparse/Dense	for	ML

• Generalize	to	compilers
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Penporn Koanantakool
and	K.	Yelick,	SC’15

Christ,	Demmel,	Knight,	Scanlon,	Yelick
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Compiling	for	Communication	
Avoiding	Algorithms

Compiler analysis and code generation for automating data
movement to produce communication-optimal code
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Sparse-Dense	Matrix-Matrix	
Multiplication	(SpDM3)

• Building	block	of	increasing	number	of	applications
• Machine	learning	 and	data	analytics,	algebraic	multigrid,	graph	algorithms,	
quantum	monte carlo simulations,	etc.

• Communication	can	be	the	bottleneck
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(sparse)

(dense)

(dense)

• Relatively	understudied
• Optimal	parallel	algorithms	for	dense-
dense/sparse-sparse	case	move	both	
matrix	operands	and	are	not	always	
communication-optimal	 in	this	case.

• New	communication-avoiding	
algorithms	move	just	the	sparse	
matrix.	Observed	up	to	~100x	speedup

Koanantakool,	Azad,	Buluç,		Morozov,	Oh,	Oliker,	Yelick in	IPDPS16

4/06/16



Communication-Avoiding	SpDM3

• Best	choice	depends	on	the	#	of	nonzeroes of	each	matrix
• Also	applicable	to	dense-dense/sparse-sparse	cases	with	
different	#	of	nonzeroes
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128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
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L3_VICTIMS.E$ 0.4$ 0.9$ 1.8$ 4.2$ 11.7$ 25.4$ 50.8$ 101.9$ 203.6$
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x-axis:	n

y-axis:	
cache	events
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Write-backs	
to	DRAM	

Measured	number	of	writes	to	DRAM	is	close	
to	the	theoretical	prediction.	

Write-Avoiding	Algorithms
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• Writes	are	more	expensive	than	reads	
for	some	memory	technology	(NVM)

• Results:
- Classical	Direct	LA	solvers,	N-body	methods,	
and	Krylov methods	need	asymptotically	
fewer	writes	than	reads	

- Fast	algorithms	(FFT,	Strassen)	and	
Cache-Oblivious	classical	direct	linear	
algebra	cannot	be	write-avoiding.

Erin	Carson,	James	Demmel,	Laura	Grigori,	Nicholas	 Knight,	
Penporn Koanantakool,	Oded Schwartz,	Harsha Vardhan
Simhadri,	 “Write-Avoiding	Algorithms”, IPDPS’16

Store

Slow

Fast

P

Load

Theoretical	foundations	for	
improving	performance	of	
algorithms	on	machines	with	NVM
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GASNet

33

• GASNet	is	“Global	Address	Space	Networking”
• A	communications	 library	for	Partitioned	Global	Address	Space	(PGAS)	
languages	 and	libraries,	supporting	 RMA	(Put/Get)	and	Active	Messages.

• A	project	of	Lawrence	Berkeley	National	 Laboratory	(LBNL)	and	the	University	
of	California	at	Berkeley	(UCB),	begun	in	2002	to	support	UPC	and	Titanium.

• Runs	on	everything	from	laptops	 to	supercomputers.

• GASNet	has	become	the	de	facto	standard	in	its	field,	with	
projects	using	it	for	their	communications	including:
• Unified	Parallel	C	(“UPC”)

• Berkeley	UPC	(LBNL	and	UCB)
• GNU	UPC	(Intrepid	Technology)
• Clang	UPC	(Intrepid	Technology)
• UPC	for	Cray	XT	(Cray)

• Fortran	2008	Coarrays
• OpenUH Fortran	compiler	(UH)
• OpenCoarrays for	gfortran
• CAF	for	Cray	XT	(Cray)

• CAF	2.0	(Rice)
• A	superset	of	Fortran	2015	

• OpenSHMEM (UH	and	ORNL)
• Reference	implementation

• Legion	(Stanford)
• UPC++	(LBNL)
• Habanero-UPC++	 (Rice	and	LBNL)
• Global	Arrays	/	NWChem (LBNL)

• Emerging	prototypes
• Titanium	(UCB)
• Cray	Chapel	(Cray)
• And	more	…

XStack	PI	meeting	- DEGAS	4/06/16



GASNet-EX
• GASNet-EX	modernizes	GASNet	for	Exascale
• Incorporates	15	years	worth	of	“lessons	learned”
• Recognizes	that	requirements	have	changed	significantly

• From	few	to	hundreds	of	CPU	threads	per	NIC
• From	modest	to	huge	memory	per	node	(and	thus	NIC)
• From	PGAS	to	Asynchronous	PGAS	(APGAS)	languages

• Major	modernization	themes	include
• Standardize	existing	extensions	to	GASNet
• Support	multiple	clients	(e.g.	hybrid	apps)
• Support	resilient	clients
• Support	threads	as	first-class	entities
• Better	manage	“time”	(polling)
• Better	manage	“space”	(buffers)
• Discard	some	legacy	baggage

XStack	PI	meeting	- DEGAS	 344/06/16



End-to-end	Resilience
• Resilience	against	soft	errors	in	HPC
• Many	existing	algorithm-based	 fault	tolerance	(ABFT)	
techniques	only	protect	data	within	a	kernel	but	errors	may	
happen	when	data	live	across	kernels	(regions)
• E2E	resilience	protects	data	structures	spanning	across	
phases	of	alternating	resilience	techniques
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End-to-end	Resilience	(cont.)

• Add	check	after	last	use	per	variable
• SUCCESS:	No	action	is	taken
• FAIL:		Correct	the	value	or	recompute
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Init

Fin

Method	1 Method	2

Method	3

…

x0
x1

x3

x2Check
…

Check
Check

Check

Live	Ranges

• Add	pragma	for	critical	data	structures	
• Checker	method
• Convergence	tests
(numeric	solvers)

• Checksum	of	data
• Recovery	method
• Forward	recovery	or
• Restore	data	(checkpoint)

Load(A); Load(B)
#pragma protect Check(isOK(A),isOK(B)) 

Recover(Fix(A), Fix(B))
mmult(A,B,C)
Load(D)
#pragma protect Check(isOK(C), isOK(D)) 

Recover(Fix(C),Fix(D))
mmult(C,D,E)
#pragma protect Check(isOK(E))

Recover(Fix(E))
Store(E)

4/06/16



Figure 4.16: Live Vulnerability Factor

1 Matrix A, B, C, D, E;
2 Load(A);
3 Load(B);
4 mmult (A,B,C);
5 if (! Check (C))
6 if (! Recover (C))
7 throw unrecoverable ;
8 Load(D);
9 mmult (C,D,E)

10 if (! Check (E))
11 if (! Recover (E))
12 throw unrecoverable ;

Figure 4.17: Sequentially composed matrix multiplication with ABFT
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Figure 4.18: ABFT with fault injection
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Figure 4.19: Fault injection scenario with di�erent fault rates (⁄ per seconds) over 100 simulated
runs (pragma-based)

Figure 4.20: Fault injection scenario with di�erent fault rates (⁄ per seconds) over 100 simulated
runs (task-based)
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Results:	Fault	Count	(ABFT	vs.	End-to-end)
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End-to-end Resilience

Failure
• Blocked	matmult,	2560x2560
• Matrices	are	2560	x	2560
• Fault	rates:		one	per	25/35/45	secs

ABFT

ABFT	àFailure cases are undetected errors

• End-to-end	performs	checks after	
last	use	of	every	matrix	(ABFT	
matrix	checksum)	

• End-to-end	might	trigger	re-
computation	when	cannot	fix	
errors	

End-to-end	à can	still	contain	all	the	errors

4/06/16



Containment	Domains	for	DEGAS
• Allow	applications	to	express	resilience	concerns

• Simple	consistent	abstraction
• Define	consistent	state	points	for	PGAS	resilience
• Enable	resilience	optimizations

• Provide	partial	rollback	and	error	handling	 for	applications
• Serve	as	a	driver	for	defining	resilience	of	other	system	

components:	GASNet-EX
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Root	CD

Child	CD

Components
• Preserve data	on	domain	start
• Compute (domain	 body)
• Detect faults	before	domain	commits
• Recover from	detected	errors
• Semantics
• Erroneous	data	never	communicated
• Each	CD	provides	recovery	mechanism
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Consistent	Localized	PGAS	Recovery
• Semantics	and	protocols	for		distributed	PGAS	recovery	

not	well	researched	before
• We	identified	gaps	in	a	very-recently	

proposed	protocol	[Besta and	Hoefler,	2014]
• Some	race-free	cases cannot	be	consistently

replayed
• Inefficiencies	in	implementation	 for	

fine-grained	 recovery

• We	developed	a	new	protocol	and	
defined	semantics
• Introduce	a	network-level	counter	to	

order	incoming	writes	from	remote	nodes
• Races	between	local	accesses	and	remote	

writes	disallowed

• Designed	a	new	logging	framework	for	highly-localized	 recovery
XStack PI	meeting	- DEGAS	 39
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CD	DEGAS	Accomplishments
• New	protocol	and	semantics	for	consistent	distributed	

recovery	in	PGAS	systems
• Determined	requirements	for	ensuring	global	consistent	view
• Closed	gaps	in	prior-work	semantics

• Developed	new	designs	for	improving	recovery	locality
• Combining	 local	and	remote	logging	 options	to	minimize	

global	 recovery	actions

• Helped	define	and	determine	GASNet-EX	resilience	
• UPC++	implementation	of	CD	runtime	prototype

• Support	of	CD management,	preservation,	and	restoration
• Full	support	for	strict	CDs
• Support	for	communication	logging	 and	runtime	logging	

for	relaxed	CDs	(currently	partial	support)
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DEGAS	Software	Technologies	
Pipeline
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Theories	and	
Designs

Research	
Prototypes

Application	
Demonstrations

Production	
Software

UPC++,
Habanero-UPC++,
AMR,	Chemistry,	
Genomics,	Machine	
Learning,	Seismic

UPC,	
GASNet,	
BLCR

Communication-
Avoiding	Algorithms

CA	Compiler,	
CD	for	PGAS,
End-to-End	
Resilience,
Snowflake
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Demos	Tonight!
• Leveraging	HipMer via	NERSC	Web	Portal
• Containment	Domains	Resilience
• Understanding	the	Performance	Characteristics	
of	PGAS	Codes
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Software	Products:
http://crd.lbl.gov/departments/computer-
science/CLaSS/research/DEGAS/degas-software-releases

Publications:
http://crd.lbl.gov/assets/Uploads/FTG/Projects/DEGAS/DEGAS-
products-April2016.pdf


