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Executive Summary 
 

Expected completion times for these tasks were impacted by personnel changes 
for this project at ETI (PI) and PNNL (Co-PI), causing realignment issues that are 
now fully resolved but initially introduced some additional delay. 
 
 For Task 9.1, this includes (1) a comparative study of the Architected Composite 
Data Types (ACDT) framework developed under the program on SWARM vs. an 
OCR implementation as part of measuring the overall impact of this technique 
across these runtimes; (2) the completion of the documentation with these new 
findings. For 9.2, this includes the completion of the documentation of the Group 
Locality (GL) compiler and the results of the applications that exercise it.  
 
 

 
 
 
 



Task 9.1 
 
The implementation of ACDT in SWARM already showed substantial potential of 
performance and power efficiency improvements for selected kernels like sparse 
Cholesky, as presented in the ICPADS’14 paper end of last calendar year. 
 
 
Figure 1 

 
 

Figure 1 shows a sweep over various Cholesky tile sizes  where SWARM ACDT 
execution time (uC/D T) can outperform standard SWARM Cholesky (Nat T) by 
two orders of magnitude.  In addition, power savings for SWARM ACDT Cholesky 
(uC/D P) can yield ~30% compared to the standard SWARM Cholesky (Nat P). 
 
 It stands to reason that similar benefits can be had if we were to apply similar 
principles to OCR.   
 

The Pacific Northwest National Lab Open Community Runtime (P-OCR) is a 
framework that implements the OCR standard across current distributed systems, 
exploring how fine-grained event driven tasks, movement of data, and dynamic 
resource adaption provide scalability for regular and irregular applications while 
managing those constraints.  
 
With P-OCR on a general purpose cluster, we have found substantial speed-ups 
for various kernels of interest to DOE. E.g., a parallel tiled Smith-Waterman kernel 
using 4096 cores with the help of ACDT – showcased as a SC’15 poster at the DOE 
booth. The findings show that this speedup is even more substantial than for 



Cholesky, as studied in the past. Figure 2 and Figure 3 demonstrate the relative 
speedups for various kernels within a node and across nodes for P-OCR. 
 
Figure 2 

 

 
Figure 3 

 
 



In summary, initial findings indicate that the ACDT methodology is applicable 
across different runtime systems with the potential of orders of magnitude 
improvements for selected kernels. 
 
 
Task 9.2 
 

Introduction 

The concept of Group Locality (GL) has is origins around 2012. The basic ideas are 
simple yet the realization of these ideas is rather complex: In GL, multiple thread 
groups work together in close proximity in time and space as scheduling and 
allocation units, taking advantage of a group’s data movements, hereby 
collaborating at a very fine-grain level within a group and across groups.  
The task presented here examines GL orchestration with a-priori knowledge 
gained through static analysis at compile time for stencil kernels, a class of kernels 
important to DOE. The task was successfully completed, yielded numerous papers 
in renowned conferences, and resulted in a very interesting Ph.D. thesis as added 
bonus. 
 
The rest of this section will highlight salient excerpts of Dr.’s Shrestha Ph.D. thesis. 
A complete manuscript of the thesis can be found under reference:  “A 
Framework for Group Locality Aware Multithreading”, Ph.D. Thesis by Sunil 
Shrestha, University of Delaware, 2015. 
 

Jagged Tiling 

Jagged Tiling is a new concept developed under GL that addresses the apparent 
contradiction of enabling efficient parallelism at multiple, hierarchical levels of 
granularity – in our lingo: parallelism within a tile group and across tile groups. 
Classical approaches concentrate on facilitating parallelism at only one level, 
usually the coarsest level. Jagged Tiling reshapes these tiles under valid 
transformations in such a way that parallelism is enabled at all levels of the 
hierarchy. 
 
 



Figure 4 (a) two level classical hierarchical tiling (b) jagged tiling 

  
Figure 4 exemplifies jagged tiling reshaping from (a) to (b) spanned by a two level 
iteration space (i,j), that manifests itself as a uniform color front along the chosen 
execution front (L2 HP), hereby “rippling” the parallelism within a group across 
goups.  
 

 

Gregarious Data Restructuring 

It only appears natural that once scheduling units orchestrate threads in unison 
there should be opportunities to share data movements as well. We know that 
GPUs do this, so it is a valid question to examine data movement sharing in the 
context of GL. Gregarious Data Restructuring can go a step farther by reshaping 
data units once by a thread for improved ingestion to the benefit of all threads in 
a group. 
 
 
Figure 5: Strided access (shown by downward arrows) and row arrangement of parallel tiles (A-E) transformed to 

have contiguous access using calculated offset (shown in red). 

  
 
 

Figure 5 shows and example of a data transformation under GL that would be 
beneficial to LU decomposition. 



 
 
Result Excerpts 

(for a more detailed, in-depth analysis consult thesis) 

 

Results presented in this section compare a reference PLUTO code compilation 
and optimization (PLT) vs. the GL framework (FG) running on an Intel Xeon Phi. 
 

Figure 6 

 

Figure 6 shows thread sweeps over the execution time of a 2D Seidel over two 
different data sets. The GL framework consistently outperforms the reference 
implementation. 
 
Figure 7 

  
 
Figure 7 shows advantageous comparisons in favor of GL for the Heat 3D kernels. 
 
 



Figure 8: DOE Mini-App TeaLeaf Jacobi-2D 

 
 
Figure 8 shows the performance of the Jacobi-2D stencil kernel embedded in the 
DOE Mini-App TeaLeaf. The three numbers on the x-axis represent the tile sizes in 
(I,j,k). GL outperforms by ~30% the reference implementation in PLUTO. 
 
Figure 9: DOE MiniAMR-3D 

 



Figure 9 shows the performance of the 3D stencil kernel embedded in the DOE 
Mini-App MiniAMR. GL and the reference implementation in PLUTO both reach 
70GF, albeit at different tiling configurations. 
 


