
TCE

Presented by Mark Glines
(ETI)

Outline

I What is TCE?

I What have I done?

I Some crazy math!

I Some crazy code!

I Some brainstorming...

I Related research

What is it?

I Tensor Contraction Engine

I A quantum chemistry thing

I A big feature of NWChem

I (NWChem is a quantum chemistry tool, maintained by PNNL)

I 3.1 million lines of code! it is the biggest subdirectory of
nwchem/src/

I A framework for solving electrical Schrödinger equations

I A python library which turns math expressions into Fortran
code

I ...and it looks like about 2.99 million of those lines of code, in
11187 files, were generated by this library

Okay. But what is it?

The name ”TCE” is used variously to refer to:

I The ”tce” keyword in NWChem job (input) files

I The feature enabled by that keyword

I the src/tce/ subdirectory in the NWChem sources

I The python library, tce.py, which turns math expressions into
Fortran code

I A GUI which drives the whole process of generating Fortran
code (consisting of several scripts and libraries)

I The generated fortran code
I CCSD: coupled cluster singles & doubles
I CCSDT: coupled cluster singles, doubles & triples
I CC2: second-order approximate coupled cluster
I MBPT2: second-order many-body perturbation theory
I Many, many others

What have I done?

I I’ve added code to tce.py to generate simple, serial C code

I I’ve produced a simple software project which runs it the same
way NWChem does

I ...and verifies the output against NWChem’s outputs

I Er, I mean ”simple” from a runtime / language perspective.
It’s still doing the same crazy math with 2-d and 4-d tensors

I And those tensors are block-sparse and symmetry-zoned, and
all of that is defined by the weird data structures NWChem
produces

I But the tensors live in memory, there’s no networking, no
threading, no filesystem tricks

I ... yet. NWChem sometimes creates the input data lazily, to
make things fit, at some point we will have to do the same

So what’s the result?

I A git repository with a Makefile, a couple of Python files, a
small C file, and some compressed data files

I The C file has a main() which drives the process

I It also sets up the data structures, and implements simple
versions of common NWChem functions

I The Makefile runs the python to generate C implementations
of the CC2 method, decompresses the data files, builds the
test program and runs it

I Hopefully, this will provide a simple, accessible way to look at
TCE’s performance

What does it look like to run it?

TCE math, badly mangled by a lowly software engineer
I TCE produces code that iteratively solves expressions.
I TCE expressions have the general form:

〈bra| L̂ĤeT̂ R̂ |ket〉
I They have a GUI which allows you to select which tensors are

actually present, and what form they take
I For example, the cc2 t1 problem has these boxes checked:

Where it sits in the overall process

I TCE takes that set of checkboxes, and generates crazy math

I It then generates code, which you call iteratively

I The goal (for cc2 t1 and cc2 t2 at least) is to find the right
values of T

I The code generates a tensor full of residuals

I The outer loop calls it and adds the residuals back into T

I In the previous slide, the T1 and T2 boxes were checked

I That means we have T1 (a 2D tensor) and T2 (a 4D tensor)

I ...and it means e is raised to the power of (T1 + T2)

I cc2 t1 generates 2D tensor R1, which gets added back into T1

I cc2 t2 generates 4D tensor R2, which gets added back into T2

I Both functions take T1 and T2 as inputs, as well as the Fock
matrix F1 (a 2D tensor generated previously by SCF) and a
tensor V2 (a 4D tensor of second-order integrals)

Where it sits (continued)

I The C function has the following prototype:

I void cc2 t1(double* d f1,double* d i0,double* d t1,double*
d t2,double* d v2, int* k f1 offset,int* k i0 offset,int*
k t1 offset,int* k t2 offset,int* k v2 offset);

I d * is a raw pointer to the data (in the C version)

I k * offset is a lookup table, which maps block IDs to offsets
(these things are sparse)

I ”i0” is the 2D residuals tensor that this function outputs; the
output gets added to T1

I cc2 t2 is similar, except that ”i0” there is a 4D residuals
tensor which gets added to T2

I The implementation is broken out into subroutines, one
subroutine per line of math

zh7p8
= f h7p8

(cc2 t1 2 2 1)

+ t
p5
h6

vh6h7p5p8
(cc2 t1 2 2 2)

x
h7
h1

= f
h7
h1

(cc2 t1 2 1)

+ t
p8
h1

zh7p8
(cc2 t1 2 2)

− t
p4
h5

v
h5h7
h1p4

(cc2 t1 2 3)

−
1

2
t
p3p4
h1h5

vh5h7p3p4
(cc2 t1 2 4)

yp2p3
= f p2p3

(cc2 t1 3 1)

− t
p4
h5

vh5p2p3p4
(cc2 t1 3 2)

r
p2
h1

= f
p2
h1

(cc2 t1 1)

− t
p2
h7

x
h7
h1

(cc2 t1 2)

+ t
p3
h1

yp2p3 (cc2 t1 3)

− t
p3
h4

v
h4p2
h1p3

(cc2 t1 4)

. . .

What do the expression subroutines look like?

What were all those for-loops and if-statements?
I The for-loops are over block-columns and block-rows
I noab and nvab set the number of block rows and columns
I k sym and k spin set the spatial and spin symmetry domains
I k range defines the number of rows and columns in a block

How can we improve the serial performance?

I tce.py has already done a lot of work to optimize the math
I It reduces algorithmic complexity, and redundant computation,

by reusing intermediate values
I It also applies cost models to minimize computation and

memory footprints

I That said, it does not always generate the smartest code
I cc2 t1 1 transposes the input, just to transpose it back
I It also mallocs, frees and copies more than it needs to

I It’s also calling non-optimized library routines, which are
cheap knockoffs of the Fortran/NWChem versions

I The standard software engineering tricks should apply here
I Making the code as vectorizable as possible
I Reducing inner loop logic
I Reducing data movement
I Reusing buffers

How can we improve the scalability?

I Well, I think there is a lot of parallelism here

I If you look at the math, the output is a sum of separate pieces

I Those pieces can be calculated independently, and can be
summed in parallel

I Some of those pieces are, themselves, sums of other pieces

I So you can look at it as a data dependency DAG

I If you look at the implementation, the various tensors are
broken into blocks too

I Separate blocks can be worked on separately, or decomposed
further

I If the data grows too large to fit onto a single compute node,
we can start to distribute that as well

I The ”v” tensor, in particular, can be quite large

I There may be gains from splitting that tensor across compute
nodes

What’s already been done?

I Well, NWChem is doing parallelism its own way, of course
I It executes the expression functions one at a time, in order
I Points in the iterator-space are assigned to compute nodes in a

round-robin fashion
I Every compute node does the outer set of for-loops, and uses a

”NXTVAL()” function to decide whether to skip the work
I There is a reduction at the end of each expression function,

where the partial sums are merged
I (This is my interpretation of the Fortran code, any

inaccuracies here are my fault)

I There was also a paper at SC13 related to TCE
I ”A framework for load balancing of tensor contraction

expressions via dynamic task partitioning”
I http://dl.acm.org/citation.cfm?id=2503290
I They did some interesting things with the iteration-space

I There’s probably more in the literature, I haven’t done a full
search yet

http://dl.acm.org/citation.cfm?id=2503290

Take it. Use it. Make TCE fast.

I Our code: https://xstack.etinternational.com/git/tce

I TCE is here: http://www.csc.lsu.edu/~gb/TCE/

I NWChem is here: http://www.nwchem-sw.org/

I This is the file in NWChem which calls cc2 t1 and cc2 t2:
https://svn.pnl.gov/svn/nwchem/trunk/src/tce/ccsd_energy_loc.F

https://xstack.etinternational.com/git/tce
http://www.csc.lsu.edu/~gb/TCE/
http://www.nwchem-sw.org/
https://svn.pnl.gov/svn/nwchem/trunk/src/tce/ccsd_energy_loc.F

