Presented by Mark Glines (ETI)

Outline

- What is TCE?
- What have I done?
- Some crazy math!
- Some crazy code!
- Some brainstorming...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Related research

What is it?

- Tensor Contraction Engine
- A quantum chemistry thing
- A big feature of NWChem
- (NWChem is a quantum chemistry tool, maintained by PNNL)
- 3.1 million lines of code! it is the biggest subdirectory of nwchem/src/
- A framework for solving electrical Schrödinger equations
- A python library which turns math expressions into Fortran code
- ...and it looks like about 2.99 million of those lines of code, in 11187 files, were generated by this library

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Okay. But what is it?

The name "TCE" is used variously to refer to:

- ► The "tce" keyword in NWChem job (input) files
- The feature enabled by that keyword
- ▶ the src/tce/ subdirectory in the NWChem sources
- The python library, tce.py, which turns math expressions into Fortran code
- A GUI which drives the whole process of generating Fortran code (consisting of several scripts and libraries)
- The generated fortran code
 - CCSD: coupled cluster singles & doubles
 - CCSDT: coupled cluster singles, doubles & triples
 - CC2: second-order approximate coupled cluster
 - MBPT2: second-order many-body perturbation theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Many, many others

What have I done?

- I've added code to tce.py to generate simple, serial C code
- I've produced a simple software project which runs it the same way NWChem does
- …and verifies the output against NWChem's outputs
- Er, I mean "simple" from a runtime / language perspective. It's still doing the same crazy math with 2-d and 4-d tensors
- And those tensors are block-sparse and symmetry-zoned, and all of that is defined by the weird data structures NWChem produces
- But the tensors live in memory, there's no networking, no threading, no filesystem tricks
- ... yet. NWChem sometimes creates the input data lazily, to make things fit, at some point we will have to do the same

So what's the result?

- A git repository with a Makefile, a couple of Python files, a small C file, and some compressed data files
- The C file has a main() which drives the process
- It also sets up the data structures, and implements simple versions of common NWChem functions
- The Makefile runs the python to generate C implementations of the CC2 method, decompresses the data files, builds the test program and runs it
- Hopefully, this will provide a simple, accessible way to look at TCE's performance

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What does it look like to run it?

```
infinoid@forge:"/workspace/swarm/tce$ make
python driver.py cc2_t1 cc2_t1.tt >/dev/null
gcc -g -Wall -DUSE_ATLAS_BLAS -c -o cc2_t1.o cc2_t1.c
python driver.py cc2_t2 cc2_t2.tt >/dev/null
gcc -g -Wall -DUSE_ATLAS_BLAS -c -o cc2_t2.o cc2_t2.c
ne.c
gcc -L/usr/lib/atlas-base -Wl,-rpath,/usr/lib/atlas-base -o cc2_t1_t2_standalon
e cc2 t1.o cc2 t2.o cc2 t1 t2 standalone.o -lcblas
lzma -d -k data/test cc2/params.i1.dump.lzma
lzma -d -k data/test cc2/f1.i1.before.dump.lzma
lzma -d -k data/test cc2/v2.i1.before.dump.lzma
lzma -d -k data/test cc2/t1.i1.before.dump.lzma
lzma -d -k data/test cc2/t2.i1.before.dump.lzma
lzma -d -k data/test cc2/r1.i1.after.dump.lzma
lzma -d -k data/test cc2/r2.i1.after.dump.lzma
,/cc2_t1_t2_standalone data/test_cc2/params.i1.dump data/test_cc2/f1.i1.before.d
ump data/test_cc2/v2.i1.before.dump data/test_cc2/t1.i1.before.dump data/test_cc
2/t2.i1.before.dump_data/test_cc2/r1.i1.after.dump_data/test_cc2/r2.i1.after.dum
0 errors detected in total.
infinoid@forge:~/workspace/swarm/tce$ []
```

TCE math, badly mangled by a lowly software engineer

- TCE produces code that iteratively solves expressions.
- TCE expressions have the general form: $\langle bra | \hat{L}\hat{H}e^{\hat{T}}\hat{R} | ket \rangle$
- They have a GUI which allows you to select which tensors are actually present, and what form they take
- ▶ For example, the cc2_t1 problem has these boxes checked:

Tensor Contraction Engine, Version 1.0											
Copyright (c) 2003, Battelle & Pacific Northwest National Laboratory											
○ <0	✓ L0 = 1	L0 = 1									
• <5	L1 Operator	<p f q>{p+q}</p f q>	T1 Operator	R1 Operator	○ S>						
○ <d < td=""><td>L2 Operator</td><td>✓ 1/4<pq rs>{p+q+sr}</pq rs></td><td>T2 Operator</td><td>R2 Operator</td><td>○ D></td></d <>	L2 Operator	✓ 1/4 <pq rs>{p+q+sr}</pq rs>	T2 Operator	R2 Operator	○ D>						
○ <t < td=""><td>L3 Operator</td><td></td><td>T3 Operator</td><td>R3 Operator</td><td>○ T></td></t <>	L3 Operator		T3 Operator	R3 Operator	○ T>						
○ <q < td=""><td>L4 Operator</td><td></td><td>T4 Operator</td><td>R4 Operator</td><td>○ Q></td></q <>	L4 Operator		T4 Operator	R4 Operator	○ Q>						
	L Is Connected	H Is Connected	T Is Connected	R Is Connected	All Are Linked						
Perform Operator Contractions											
	Skip Clear All										
[+1.0]*	Sum (g3 g4) * f (g3	g4)*<0 {h1+p2}{g3+g	4 } 0>								
[+0.25] * Sum (g3 g4 g5 g6) * v (g3 g4 g5 g6) * <0] { h1+ p2 } { g3+ g4+ g6 g5 } 0>											
[+1.0]*	Sum (g3 g4 p5 h6) *	*f(g3g4)*t(p5h6)*<0 {	h1+p2 } { g3+g4 }	{ p5+ h6 } 0>							
[+0.25]	* Sum (g3 g4 g5 g6 p	o7 h8) * v (g3 g4 g5 g6) * t (j	p7 h8) * <0 { h1+ p	2 } { g3+ g4+ g6 g5 }	p7+h8 } 0>						
[+ 0.25] * Sum (g3 g4 p5 p6 h7 h8) * f (g3 g4) * t (p5 p6 h7 h8) * <0 { h1+ p2 } { g3+ g4 } { p5+ p6+ h8 h7 } 0>											
[+ 0.0625] * Sum (g3 g4 g5 g6 p7 p8 h9 h10) * v (g3 g4 g5 g6) * t (p7 p8 h9 h10) * <0] { h1+ p2 } { g3+ g4+ g6 g5 } { p7											
[+ 0.5]* Sum (g3 g4 p5 n6 p/ n8)*T(g3 g4)*T(p5 n6)*T(p/ n8)*<0] { h1+ p2 } { g3+ g4 } { p5+ h6 } { p/+ h8 } [0]											
$[1 + 0.125] + 5 \text{ sum} (g_{3} g_{4} g_{5} g_{6} g_{7} n_{8} p_{9} n_{10}) + V(g_{3} g_{4} g_{5} g_{6}) + t(p_{7} n_{8}) + t(p_{9} n_{10}) + \langle 0 \{n_{1} + p_{2}\} \{g_{3} + g_{4} + g_{6} g_{5}\}$											
$[1 + 0.25] \times \text{Sum} (g3 g4 p5 n6 p7 p8 n9 n10) \times T (g3 g4) \times T (p5 n6) \times T (p7 p8 n9 n10) \times O [n1 + p2] \times (g3 + g4] \times (p5 n6) \times O [n1 + p2] $											
[+ 0.0025] - Sum (g5 g4 g5 g6 μ) ns μα μιο πιτ πι2) - ν (g5 g4 g5 g6) + τ (μ7 ns) + τ (μα μπ											
<1 (1)He	exp(T1+T2) (1) 0>										
				(1)	★ E → < E →						

Where it sits in the overall process

- TCE takes that set of checkboxes, and generates crazy math
- It then generates code, which you call iteratively
- The goal (for cc2_t1 and cc2_t2 at least) is to find the right values of T
- The code generates a tensor full of residuals
- The outer loop calls it and adds the residuals back into T
- In the previous slide, the T1 and T2 boxes were checked
- ► That means we have T1 (a 2D tensor) and T2 (a 4D tensor)
- ...and it means e is raised to the power of (T1 + T2)
- cc2_t1 generates 2D tensor R1, which gets added back into T1
- cc2_t2 generates 4D tensor R2, which gets added back into T2
- Both functions take T1 and T2 as inputs, as well as the Fock matrix F1 (a 2D tensor generated previously by SCF) and a tensor V2 (a 4D tensor of second-order integrals)

Where it sits (continued)

- The C function has the following prototype:
- void cc2_t1(double* d_f1,double* d_i0,double* d_t1,double* d_t2,double* d_v2, int* k_f1_offset,int* k_i0_offset,int* k_t1_offset,int* k_t2_offset,int* k_v2_offset);
- ▶ d_* is a raw pointer to the data (in the C version)
- k_*_offset is a lookup table, which maps block IDs to offsets (these things are sparse)
- "i0" is the 2D residuals tensor that this function outputs; the output gets added to T1
- cc2_t2 is similar, except that "i0" there is a 4D residuals tensor which gets added to T2
- The implementation is broken out into subroutines, one subroutine per line of math

$$\begin{aligned} z_{Pg}^{h\gamma} &= f_{Pg}^{h\gamma} & (\text{cc2.t1.2.2.1}) \\ &+ t_{P_6}^{P_5} v_{P_5P_8}^{h_6h\gamma} & (\text{cc2.t1.2.2.2}) \end{aligned}$$

$$x_{h_1}^{h_7} = f_{h_1}^{h_7} \tag{cc2.t1.2.1}$$

$$+ t_{h_1}^{P_8} z_{P_8}^{h_7} \tag{cc2-t1-2-2}$$

$$-t_{h_5}^{p_4}v_{h_1p_4}^{h_5h_7}$$
 (cc2.t1.2.3)

$$-\frac{1}{2}t_{h_1h_5}^{p_3p_4}v_{p_3p_4}^{h_5h_7} \tag{cc2-t1-2-4}$$

$$y_{p_3}^{p_2} = f_{p_3}^{p_2}$$
 (cc2.t1.3.1)

$$-t_{h_5}^{P_4}v_{p_3p_4}^{n_5p_2} \tag{cc2_t1_3_2}$$

$$r_{h_1}^{p_2} = f_{h_1}^{p_2} \tag{cc2_t1_1}$$

$$-t_{h_7}^{P_2} \times_{h_1}^{h_7}$$
 (cc2_t1_2)

$$+ t_{h_1}^{P_3} y_{P_3}^{P_2}$$
 (cc2_t1_3)

$$-t_{h_4}^{p_3}v_{h_1p_3}^{h_4p_2} \tag{cc2_t1_4}$$

. . .

What do the expression subroutines look like?

```
1479@ void cc2 t1 1(double* d a,double* d c,int* k a offset,int* k c offset) { // tce.pv:11781
1480
         //$Id: tce.pv.v 1.10 2002/12/01 21:37:34 sohirata Exp $
1481
         //This is a ISOC99 program generated by Tensor Contraction Engine v.1.0.ETI
1482
         //Copyright (c) Battelle & Pacific Northwest National Laboratory (2002)
14839
         /* ElementarvTensorContraction:
1484
          * i0 (p_2 h_1) f_{+} = 1 * f (p_2 h_1) f_{+}
1485
          */ // tce.pv:6358
         int p2b, h1b, dimc, p2b 1, h1b 1, dim common, dima sort, dima; // tce.py:11803
1486
1487
         double* k a sort, * k a, * k c; // tce.py:11803
1488
         for(p2b = noab:p2b < noab+nvab:p2b++) { // tce.pv:12147</pre>
1489
             for(h1b = 0;h1b < noab;h1b++) { // tce.pv:12145</pre>
1490
                 if(!((!restricted) || (k spin[p2b]+k spin[h1b] != 4))) continue; // tce.pv:12198
1491
                 if(!(k spin[p2b] == k spin[h1b])) continue; // tce.py:12250
1492
                 if(!((k sym[p2b]^k sym[h1b]) == irrep f)) continue; // tce.py:12305
1493
                 dimc = k range[p2b] * k range[h1b]; // tce.py:6648
                 tce restricted 2(p2b, h1b, &p2b 1, &h1b 1); // tce.py:6687
1494
1495
                 dim common = 1; // tce.py:6722
                 dima sort = k range[p2b] * k range[h1b]; // tce.py:6735
1496
1497
                 dima = dim common * dima sort; // tce.py:6740
                 if(!(dima > 0)) continue; // tce.py:6768
1498
                 k a sort = tce double malloc(dima); // tce.py:6775
1499
                 k a = tce double malloc(dima); // tce.py:6781
1500
                 tce get hash block(d a,k a,dima,k a offset,(h1b 1 + (noab+nvab) * (p2b 1))); // tce.py:6916
1501
1502
                 tce_sort 2(k a, k a sort, k range[p2b], k range[h1b], 1, 0, 1.0); // tce.py:6933
1503
                 tce free(k a); // tce.py:6946
                 k c = tce double malloc(dimc); // tce.py:7315
1504
                 tce sort 2(k a sort,k c,k range[h1b],k range[p2b],1,0,1.0); // tce.py:7481
1505
                 tce_add_hash_block(d_c,k_c,dimc,k_c_offset,(h1b + noab * (p2b - noab))); // tce.py:7519
1506
1507
                 tce_free(k c): // tce.pv:7528
                 tce free(k a sort): // tce.pv:7538
1508
             } // tce.pv:12150
1509
1510
         } // tce.pv:12150
1511 } // tce.pv:11816
```

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

What were all those for-loops and if-statements?

- The for-loops are over block-columns and block-rows
- noab and nvab set the number of block rows and columns
- k_sym and k_spin set the spatial and spin symmetry domains
- k_range defines the number of rows and columns in a block

				1	1	1	1	1	2	2	2	2	2	k_spin
				0	0	1	2	3	0	0	1	2	3	k_sym
				11	12	8	11	18	11	12	8	11	18	k_range
				8	9	10	11	12	13	14	15	16	17	Col-ID
1	0	4	0	44	48									
1	1	1	1			8								
1	2	1	2				11							
1	3	3	3					54						
2	0	4	4											
2	1	1	5											
2	2	1	6											
2	3	3	7											

Row-ID k_range k_sym k_spin

noab = 8, nvab = 10

How can we improve the serial performance?

- tce.py has already done a lot of work to optimize the math
 - It reduces algorithmic complexity, and redundant computation, by reusing intermediate values
 - It also applies cost models to minimize computation and memory footprints
- ► That said, it does not always generate the smartest *code*
 - cc2_t1_1 transposes the input, just to transpose it back
 - It also mallocs, frees and copies more than it needs to
- It's also calling non-optimized library routines, which are cheap knockoffs of the Fortran/NWChem versions
- The standard software engineering tricks should apply here

- Making the code as vectorizable as possible
- Reducing inner loop logic
- Reducing data movement
- Reusing buffers

How can we improve the scalability?

- Well, I think there is a lot of parallelism here
- If you look at the math, the output is a sum of separate pieces
- Those pieces can be calculated independently, and can be summed in parallel
- Some of those pieces are, themselves, sums of other pieces
- So you can look at it as a data dependency DAG
- If you look at the implementation, the various tensors are broken into blocks too
- Separate blocks can be worked on separately, or decomposed further
- If the data grows too large to fit onto a single compute node, we can start to distribute that as well
- ► The "v" tensor, in particular, can be quite large
- There may be gains from splitting that tensor across compute nodes

What's already been done?

- ► Well, NWChem is doing parallelism its own way, of course
 - It executes the expression functions one at a time, in order
 - Points in the iterator-space are assigned to compute nodes in a round-robin fashion
 - Every compute node does the outer set of for-loops, and uses a "NXTVAL()" function to decide whether to skip the work
 - There is a reduction at the end of each expression function, where the partial sums are merged
 - (This is my interpretation of the Fortran code, any inaccuracies here are my fault)
- There was also a paper at SC13 related to TCE
 - "A framework for load balancing of tensor contraction expressions via dynamic task partitioning"
 - http://dl.acm.org/citation.cfm?id=2503290
 - They did some interesting things with the iteration-space
- There's probably more in the literature, I haven't done a full search yet

Take it. Use it. Make TCE fast.

- Our code: https://xstack.etinternational.com/git/tce
- TCE is here: http://www.csc.lsu.edu/~gb/TCE/
- NWChem is here: http://www.nwchem-sw.org/
- This is the file in NWChem which calls cc2_t1 and cc2_t2: https://svn.pnl.gov/svn/nwchem/trunk/src/tce/ccsd_energy_loc.F

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <