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2 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

E X A S C A L E 
C O M P U T I N G

Exascale Computing Trends: 
Adjusting to the “New Normal”  
for Computer Architecture
With two decades of data in hand about supercomputer performance, now is the time  
to take stock and look forward in terms of scaling models and their implications for  
future systems.

W e now have 20 years of data under 
our belt as to the performance of 
supercomputers against at least a 
single floating-point benchmark 

from dense linear algebra. Until approximately 
2004, a single model of parallel programming—
bulk synchronous using the message passing in-
terface (MPI) model—was usually sufficient for 
translating complex applications into reasonable 
parallel programs.

In 2004, however, a confluence of events 
changed forever the architectural landscape 
that underpinned MPI. Figure 1 summarizes 
the effects of these changes in terms of the 
year-over-year compound annual growth rate 
(CAGR) of several key system characteristics. 
This data, taken from an average of the top 
10 rankings reported by the TOP500 (www.
top500.org), shows that sustained performance, 
in flops (floating point operations) per second, 
has grown consistently at about 1.9= per year. 
Before 2004, this growth came from a modest 
increase in the number of cores, coupled with 

substantial (50 percent or better per year) in 
core clock rate, and substantial gains in memo-
ry per core. After 2004, the growth in cores per 
year skyrocketed, while the average core clock 
growth disappeared, and memory per core even 
declined.

The first half of this article delves into the 
underlying reasons for these changes and what 
they mean to system architectures. The second 
half addresses the ramifications of these chang-
es on our assumptions about technology scal-
ing as well as their profound implications for 
programming and algorithm design in future 
systems.

The Perfect Technological Storm
Moore’s law has driven microprocessor archi-
tectures and high-performance computing 
(HPC) for decades. While variously interpret-
ed as saying that microprocessor performance 
and memory chip density increase exponen-
tially over time, the real statement is that a 
transistor’s key linear dimensions (its feature 
size) shrink by a relatively constant factor ev-
ery N years. This shrinkage has had two ef-
fects: the transistor’s overall area has shrunk 
(meaning that more transistors can be placed 
on a die), and its inherent delay (due largely 
to the capacitance of its now smaller gate) has 
declined. The dimensional shrinkage has also 
been applied to the width of the wiring that 
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Original Article Title; 
How I learned to Stop Worrying and Love Exascale 

1/23/2013% Computa,onal%Research%Division%|%Lawrence%Berkeley%Na,onal%Laboratory%|%Department%of%Energy% 4 



Technology7Challenges7for7the7Next7Decade7
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Parallelism%is%
growing%at%

exponen,al%rate%

Power%is%leading%constraint%
for%future%performance%

growth%

By%2018,%cost%of%a%FLOP%will%be%less%
than%cost%of%moving%5mm%across%the%
chip’s%surface%(locality%will%really&

maRer)%

Reliability%going%down%for%
largeTscale%systems,%but%also%
to%get%more%energy%efficiency%

for%small%systems%

Memory%Technology%
improvements%are%
slowing%down%



Whats7wrong7with7Current7Programming7Environments?7
Designed&for&Constraints&from&30&years&ago!&(wrong'target!!)'

6 

Old Constraints 

•  Peak clock frequency as primary 
limiter for performance improvement 

•  Cost: FLOPs are biggest cost for 
system: optimize for compute 

•  Concurrency: Modest growth of 
parallelism by adding nodes 

•  Memory scaling: maintain byte per 
flop capacity and bandwidth 

•  Locality: MPI+X model (uniform costs 
within node & between nodes) 

•  Uniformity:  Assume uniform system 
performance 

•  Reliability: It’s the hardware’s 
problem 

New Constraints 

•  Power is primary design constraint for 
future HPC system design 

•  Cost: Data movement dominates: 
optimize to minimize data movement 

•  Concurrency: Exponential growth of 
parallelism within chips 

•  Memory Scaling: Compute growing 2x 
faster than capacity or bandwidth 

•  Locality: must reason about data 
locality and possibly topology 

•  Heterogeneity: Architectural and 
performance non-uniformity increase 

•  Reliability: Cannot count on hardware 
protection alone 

Fundamentally'breaks'our'current'programming'paradigm'and'compu8ng'ecosystem'
%



The Programming Model is a Reflection of 
the Underlying Abstract Machine Model 

•  Equal cost SMP/PRAM model 
–  No notion of non-local access 
–  int [nx][ny][nz]; 

•  Cluster: Distributed memory model 
–  CSP: Communicating Sequential Processes 
–  No unified memory 
–  int [localNX][localNY][localNZ]; 

•  2-level (CTA in Martha Kim Taxonomy) 
–  Candidate Type Architecture (CTA) 
–  MPI+X model (for all practical purposes) 

•  Whats Next? 

SMP 

P P P P P 

P P P P P 

MPI Distributed Memory 

Martha%Kim,%Columbia%U.%Tech%Report%“Abstract%Machine%Models%and%Scaling%Theory”%
h7p://www.cs.columbia.edu/~martha/courses/4130/au13/pdfs/scalingCtheory.pdf&

%

SMP%

P P P

SMP%

P P P

SMP%

P P P

SMP%

P P P

2:Level'MPI+X'is'dominant,'but'insufficient!'



Parameterized7Machine7Model7
(what'do'we'need'to'reason'about'when'designing'a'new'code?)'

Cores7
• How%Many%
• Heterogeneous%
• SIMD%Width%

Network7on7Chip7(NoC)7
• Are%they%equidistant%or%%
• Constrained%Topology%(2D)&

On+Chip7Memory7Hierarchy7
• Automa,c%or%Scratchpad?%
• Memory%coherency%method?%

Node7Topology7
• NUMA%or%Flat?%
• Topology%may%be%important%
• Or%perhaps%just%distance%

Memory7
• Nonvola,le%/%mul,T,ered?%
• Intelligence%in%memory%(or%not)%

Fault7Model7for7Node7
• %FIT%rates,%Kinds%of%faults%
• %Granularity%of%faults/recovery%

Interconnect7
• Bandwidth/Latency/Overhead%
• Topology%

Primi6ves7for7data7movement/sync7
• Global%Address%Space%or%messaging?%
• Synchroniza,on%primi,ves/Fences%



For7each7parameterized7machine7a"ribute,7can77

•  Ignore7it:7If'ignoring'it'has'no'serious'power/performance'consequences'
•  Expose7it7(unvirtualize):'If'there'is'not'a'clear'automated'way'of'make'decisions'

•  Must%involve%the%human/programmer%in%the%process%(make'pmodel'more'expressive)'
•  Direc,ves%to%control%data%movement%or%layout%(for%example)%

•  Abstract7it7(virtualize):'If'it'is'well'enough'understood'to'support'an'automated'
mechanism'to'op8mize'layout'or'schedule'
–  This%makes%programmers%life%easier%(one%less%thing%to%worry%about)%

Want7model7to7be7as7simple7as7possible,7but7not7neglect7any7aspects7of7the7

machine7that7are7important7for7performance7

Abstract7Machine7Model77
(what'do'we'need'to'reason'about'when'designing'a'new'code?)7



Exascale7Strawman7Arch7

Based7on7input7from7DOE7Fast7Forward7and7Design7
Forward7Projects7

•  Lets review where things are going in exascale concept designs 
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Hybrid7Architectures:7
Moving&from&sideCshow&to&necessity&

Hybrid%is%the%only%
approach%that%crosses%
the%exascale%finish%line%



Can7Get7Capacity7OR7Bandwidth7
But7Cannot7Get7Both7in7the7Same7Technology7

12 
1/23/
2013%

Bandwidth\Capacity. 16.GB. 32.GB. 64.GB. 128.GB. 256.GB. 512.GB. 1.TB.
4.TB/s. .. .. .. .. .. ..
2.TB/s. Stack/PNM. .. .. .. .. .. ..
1.TB/s. .. Interposer.. .. .. .. ..

512.GB/s. .. .. .. HMC.organic. .. ..
256.GB/s. .. .. .. .. DIMM.. ..  ..
128.GB/s. .. .. .. .. .. NVRAM..

Cost (increases for higher capacity and cost/bit increases with bandwidth) 
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Old7Paradigm7for7off+chip7memory7
•  One%kind%of%memory%(JEDEC/DDRx)%
•  ~1%byte%per%flop%memory%capacity%
•  ~1%byte%per%flop%bandwidth%(0.25%typical)%
%
New7Paradigm7

•  DDR4:%~1%byte%per%flop%capacity%w%
%<%0.01%bytes/flop%BW%

•  Stacked7Memory:%~1%byte%per%flop%capacity%
<%0.01%bytes/flop%capacity%



3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity, 
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

13 

Updated7CAL7AMM7Model7



Families7of7AMMs7
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Families7of7AMMs7
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Families7of7AMMs7
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Accelerators7vs.7Thin7Cores7
Primary7Differen6a6on7

•  ISA%
•  Security/Protec,on%
•  SIMD%Width%%
•  Thread%Divergence%
•  Cache%Coherence%
7



Are7these7the7only7possible7AMMs?7
&

NO:&this&is&just&a&reflecHon&of&what&is&seen&developing&in&industry.&&
SpecializaHon&&&other&architectures&possible.&&See&Sandia&XGC&Project&
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AMMs7vs.7Proxy7Machine7Models7

18 

Chapter 5

Proxy Architectures for Exascale
Computing

Proxy architecture models (PAMs) were introduced as a codesign counterpart to proxy applications in the DOE
ASCAC report on the Top Ten Exascale Research Challenges [?]. This Computer Architecture Laboratory
(CAL) AMM document separates the PAMl concept into AMM and proxy architectures, but the intent is still
to facilitate codesign and communication.

In this section we identify approximate estimates for key parameters of interest to application developers.
Many of these parameters can be used in conjunction with the AMM models described previously to obtain
rough estimates of full node performance. These parameters are intended to support design-space exploration
and should not be used for parameter- or hardware- specific optimization as, at this point in the development of
Exascale architectures, the estimates may have considerable error. In particular, hardware vendors might not
implement every entry in the tables provided in future systems; for example, some future processors may not
include a Level-3 cache.

5.1 Design Parameters

The following list of parameters allows application developers and hardware architects to tune any AMMs to
their desire. The list is not exhaustive and will continue to grow as needed. Since this list is for all AMMs
presented in this document, not all parameters are expected to be applicable to every AMM. In fact, we expect
that for each AMM only a subset of this list of parameters will be used for architecture tuning. Likewise, not
all parameters are useful for application developers, such as bandwidth of each level of the cache structure.

Processor Gflop/s per NoC BW per Processor Accelerator Acc Memory Acc Count TFLOP/s per Node
Cores Proc Core Proc Core (GB/s) SIMD Vectors Cores BW (GB/s) per Node Node1 Count

(Units x Width)

Homogeneous M.C. Opt1 256 64 8 8x16 None None None 16 62,500
Homogeneous M.C. Opt2 64 250 64 2x16 None None None 16 62,500
Discrete Acc. Opt1 32 250 64 2x16 O(1000) O(1000) 4 16C + 2A 55,000
Discrete Acc. Opt2 128 64 8 8x16 O(1000) O(1000) 16 8C + 16A 41,000
Integrated Acc. Opt1 32 64 64 2x16 O(1000) O(1000) Integrated 30 33,000
Integrated Acc. Opt2 128 16 8 8x16 O(1000) O(1000) Integrated 30 33,000
Heterogeneous M.C. Opt1 16 / 192 250 64 / 8 8x16 / 2x8 None None None 16 62,500
Heterogeneous M.C. Opt2 32 / 128 64 64 / 8 8x16 / 2x8 None None None 16 62,500
Concept Opt1 128 50 8 12x1 128 O(1000) Integrated 6 125,000
Concept Opt2 128 64 8 12x1 128 O(1000) Integrated 8 125,000

Table 5.1: Opt1 and Opt1 represent possible proxy options for the abstract machine model. M.C: multi-core,
Acc: Accelerator, BW : bandwidth, Proc: processor, For models with accelerators and cores, C denotes to
FLOP/s from the CPU cores and A denotes to FLOP/s from Accelerators.

18

AMM7is7the7topology7and7schema6c7for7future7machines7
7

The7Proxy7Machine7Model7fills7that7in7with7speeds7and7feeds7

7



•  Lightweight cores not fast enough to process complex 
protocol stacks at line rate 
•  Simplify MPI or add thread match/dispatch extensions 
•  Or use the memory address for endpoint matching 

•  Can no longer ignore locality (especially inside of node) 
•  Its not just memory system NUMA issues anymore 
•  On chip fabric is not infinitely fast (Topology as first class citizen) 
•  Relaxed relaxed consistency (or no guaranteed HW coherence) 

•  New Memory Classes & memory management 
•  NVRAM, Fast/low-capacity, Slow/high-capacity 
•  How to annotate & manage data for different classes of memory 

•  Asynchrony/Heterogeneity 
•  New potential sources of performance heterogeneity 
•  Is BSP up to the task? 

Programming Model Challenges 
(why is MPI+X not sufficient?) 

19 
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What are the big challenges 
for Future Programming Systems 

Implications for Future 
Programming Models 

20 



•  Cost to move a bit on copper wire: 
•  Power = Bitrate * Length / cross-section area 

•  Wire data capacity constant as feature size shrinks 
•  Cost to move bit proportional to distance 
•  ~1TByte/sec max feasible off-chip BW (10GHz/pin) 
•  Photonics reduces distance-dependence of bandwidth 

The Problem with Wires:  
Energy to move data proportional to distance 

Copper requires to signal amplification 
even for on-chip connections  

Photonics requires no redrive 
and passive switch little power 
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Data Locality Management 

Vertical Locality Management 
(spatio-temporal optimization) 

Horizontal Locality Management 
(topology optimization) 

23%

Coherence%
Domains%



Towards7a7Data7Centric7Compu6ng7Model7

•  Old7Model7(OpenMP)7
–  Describe%how%to%parallelize%loop%itera,ons%
–  Parallel%“DO”%divides%loop%itera,ons%evenly%among%processors%
–  .%.%.%but%where%is%the%data%located?%%

•  New7Model7(Data+Centric)7also'in'big'data'
–  Describe%how%data%is%laid%out%in%memory%
–  Change%applies%to%ALL%Loop%statements%operate%data%

where%it%is%located%(inTsitu)%
–  Similar%to%MapReduce,%but%need%more%sophis,cated%descrip,ons%of%

data%layout%for%scien,fic%codes%

forall_local_data(i=0;i<NX;i++;A) !
!C[j]+=A[j]*B[i][j]);!

24 



Tiling7Formula6on:7abstracts&data&locality,&
topology,&cache&coherence,&and&parallelism&

•  Expose7massive7degrees7of7parallelism7through7domain7decomposi6on7

–  Represent%an%atomic%unit%of%work%
–  Task%scheduler%works%on%,les%%

•  Core7concept7for7data7locality7

–  Ver6cal7data7movement77

•  Hierarchical&parHHoning&
–  Horizontal7data7movement7

•  CoClocate&Hles&sharing&the&same&data&by&respecHng&Hle&topology&

•  Mul6+level7parallelism7

–  CoarseTgrain%parallelism:%across%,les%
–  FineTgrain%parallelism:%vectoriza,on,%instruc,on%ordering%within%,le7

•  Centralize'and'parameterize'8ling'informa8on'at'the'data'structures''
–  Direct%approach%for%memory%affinity%management%for%data%locality%
–  Expose%massive%degrees%of%parallelism%through%domain%decomposi,on%%
–  Overcomes&challenges&of&relaxed&coherency&&&coherence&domains!!!&

Box 2 

Box 1 

Box 2 

Box 3 

Box 4 

Box 5 

Tile (1,1) Tile (1,2) 

Tile (2,1) Tile (2,2) 

Tile (3,1) Tile (3,2) 

Tiled Box 2 



Data+Centric7Programming7Model7
(current&computeCcentric&models&are&mismatched&with&emerging&hardware)&

•  Building7up7a7hierarchical7layout7
–  Layout%block%coreblk%{blockx,blocky};%
–  Layout%block%nodeblk%{nnx,nny,nnz};%
–  Layout%hierarchy%myheirarchy%{coreblk,nodeblk};%
–  Shared%myhierarchy%double%a[nx][ny][nz];%

26 

•  Then7use7data+localized7parallel7loop7

•  Foreach7(6le)7//7lambda7

7777do_local(i=0;i<nx;i++;a){7

77do_local(j=0;j<ny;j++;a){7

777777do_local(k=0;k<nz;k++;a){7

7 7a[i][j][k]=C*a[i+1]…>7

•  And'if'layout'changes,'this'loop'remains'the'
same'

Sa,sfies%the%request%of%the%applica,on%developers%
(Change%code%in%one%place…%affects%apply%globally%to%app.)%

Change as Few Lines of Code as 
Possible for Each Machine 

Model or Generation 

SIAM&PP2008&



•  Support7different7layouts7for7various7cache7coherence7scenarios77
•  Require7minimum7code7modifica6on7when7the7memory7layout7is7changed77
•  Memory7layout7op6ons7

–  Specified%at%the%array%construc,on%thru%a%flag%or%
–  export DATA_LAYOUT={LOG | SEP | REG}!

•  The7solvers7remain7unchanged7!!!7 77

Abstrac6on7for7Memory7Layout7

27 

a)%Logical%Tiles%%%%%%%%%%%%%%%%%%%%b)%Separated%Tiles%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%c)%Regional%Tiles%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cell%%%%%%%%%%%%,le%

Separated%,les%with%halos%

Didem%Unat%
Dan%Quinlan%



•  Many Examples in library and DSL form 
•  HTA: Hierarchical Tiled Arrays 
•  TiDA: Tiling as a Durable Abstraction 
•  RAJA & KOKKOS: C++ Template Metaprogram Lib (many other examples!!) 

•  All arrived at similar underlying concepts 
•  Lamba functions to relax loop nest order 
•  Abstracts data physical layout from logical layout 

•  When many different projects independently arrive at the same or 
very similar solutions 

•  Perhaps they have found a reasonably optimal solution 
•  Its time to talk about standardization (MPI forum) 

•  For Tiling Abstractions, see PADAL  
 (Programming Abstractions for Data Locality) 
 http://www.padalworkshop.org/ 

Data Locality Abstractions 
(is it time for standardization?) 

1/23/
2013%
Computa,onal%Research%Division%|%Lawrence%Berkeley%
Na,onal%Laboratory%|%Department%of%Energy%
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Heterogeneity7/7Inhomogeneity7
Async7Programming7Models?7



Assump6ons7of7Uniformity7is7Breaking7
(many'new'sources'of'heterogeneity)7
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•  Heterogeneous compute engines 
(hybrid/GPU computing) 

•  Fine grained power mgmt. makes 
homogeneous cores look 
heterogeneous 
•  thermal throttling – no longer guarantee 

deterministic clock rate 
•  Nonuniformities in process technology 

creates non-uniform operating 
characteristics for cores on a CMP 
•  Near Threshold Voltage (NTV) 

•  Fault resilience introduces inhomogeneity in 
execution rates 

•  error correction is not instantaneous 
•  And this will get WAY worse if we move towards 

software-based resilience 

1/23/
2013%
Computa,onal%Research%Division%|%Lawrence%Berkeley%
Na,onal%Laboratory%|%Department%of%Energy%

Bulk Synchronous Execution 
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•  Heterogeneous compute engines 
(hybrid/GPU computing) 

•  Fine grained power mgmt. makes 
homogeneous cores look 
heterogeneous 
•  thermal throttling – no longer guarantee 

deterministic clock rate 
•  Nonuniformities in process technology 

creates non-uniform operating 
characteristics for cores on a CMP 
•  Near Threshold Voltage (NTV) 

•  Fault resilience introduces inhomogeneity in 
execution rates 

•  error correction is not instantaneous 
•  And this will get WAY worse if we move towards 

software-based resilience 

Computa,onal%Research%Division%|%Lawrence%Berkeley%
Na,onal%Laboratory%|%Department%of%Energy%

Bulk Synchronous Execution 



Near7Threshold7Voltage7(NTV):7Shekhar&Borkar&(Intel)&
The&really&big&opportuniHes&for&energy&efficiency&require&codesign!&
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•  Heterogeneous compute engines (hybrid/
GPU computing) 

•  Fine grained power mgmt. makes 
homogeneous cores look heterogeneous 
•  thermal throttling – no longer guarantee deterministic 

clock rate 
•  Nonuniformities in process technology 

creates non-uniform operating 
characteristics for cores on a CMP 
•  Near Threshold Voltage (NTV) 

•  Fault resilience introduces inhomogeneity in 
execution rates 

•  error correction is not instantaneous 
•  And this will get WAY worse if we move towards software-based 

resilience 

Computa,onal%Research%Division%|%Lawrence%Berkeley%
Na,onal%Laboratory%|%Department%of%Energy%

Bulk Synchronous Execution 
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•  Improving energy efficiency or performance of 
individual components doesn’t really need co-
design 

•  Memory is faster, then odds are that the software will 
run faster 

•  if its better, that’s good! 
•  The really *big* opportunities to improve energy 

efficiency may require a shift in how we program 
systems 

•  This requires codesign to evalute the hardware and 
new software together 

•  HW/SW Interaction unknown (requires HW/SW 
codesign) 

•  If software CANNOT exploit these radical 
hardware concepts (such as NTV), then it would 
be better to not have done anything at all! 

Computa,onal%Research%Division%|%Lawrence%Berkeley%
Na,onal%Laboratory%|%Department%of%Energy%

Bulk Synchronous Execution 
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Assump6ons7of7Uniformity7is7Breaking7
(many'new'sources'of'heterogeneity)7

Computa,onal%Research%Division%|%Lawrence%Berkeley%
Na,onal%Laboratory%|%Department%of%Energy%

Bulk Synchronous Execution Asynchronous7Execu6on7Model7



•  Sources7of7performance7heterogeneity7increasing7
–  Heterogeneous%architectures%(accelerator)%
–  Thermal%throRling%
–  Performance%heterogeneity%due%to%transient%error%recovery%

7

•  Current7Bulk7Synchronous7Model7not7up7to7task7
–  Current%focus%is%on%removing%sources%of%performance%varia,on%
(jiRer),%is%increasingly%imprac,cal%

–  Huge%costs%in%power/complexity/performance%to%extend%the%life%
of%a%purely%bulk%synchronous%model'

Embrace'performance'heterogeneity:''Study'use'of'asynchronous'
computa8onal'models'(e.g.'SWARM,'HPX,'and'other'concepts'
from'1980s)'

Conclusions7on7Heterogeneity7



•  Programming7Models7are7a7Reflec6on7of7the7Underlying7Machine7
Architecture7
–  Express&what&is&important&for&performance&

–  Hide&complexity&that&is&not&consequenHal&to&performance&

•  Programming7Models7are7Increasingly7Mismatched7with7
Underlying7Hardware7Architecture7
–  Changes&in&computer&architecture&trends/costs&

–  Performance&and&programmability&consequences&

•  Technology7changes7have7deep7and7pervasive7effect7on7ALL7of7our7
somware7systems7(and'how'we'program'them)'

•  Change&in&costs&for&underlying&system&affect&what&we&expose'
•  What&to&virtualize'
•  What&to&make&more&expressive/visible'
•  What&to&ignore'

The7Programming7Systems7Challenge7



•  Emerging7hardware7constraints7are7increasingly7mismatched7with7our7
current7programming7paradigm7

–  Current%emphasis%is%on%preserving%FLOPs%
–  The%real%costs%now%are%not%FLOPs…%it%is%data%movement%
–  Requires%shiu%to%a%dataTlocality%centric%programming%paradigm%and%hardware%features%

to%support%it%

•  Technology7Changes7Fundamentally7Disrupt7our7Programming7

Environments7

–  The%programming%environment%and%associated%“abstract%machine%model”%is%a%
reflec,on%of%the%underlying%machine%architecture%%

–  Therefore,%design%decisions%can%have%deep%effect%your%en,re%programming%
paradigm%

–  The%BIGGEST%opportuni,es%in%energy%efficiency%and%
performance%improvements%require%HW%and%SW%considered%
together%(codesign)%

•  Performance7Portability7Should7be7Top+Tier7Metric7for7codesign7
–  Know%what%to%IGNORE,%what%to%ABSTRACT,%and%what%to%make%more%EXPRESSIVE7

Conclusions7



The7End7
For7more7informa6on7go7to7

7h"p://www.cal+design.org/7
7h"p://www.nersc.gov/7
7h"p://crd.lbl.gov/7

7





Abstract7Machine7Model77
(what7are7the7cri6cal7elements7for7spa6al7op6mizaitons?)7

•  The7number7of7cores7on7a7chip7
will7be7on7the7order7of71000s7

–  Expect&100x&concurrency&
•  Maintaining7cache7coherence7is7

NOT7scalable7

–  Expect&coherence&domains&&

•  Flat7and7infinitely7fast7on+chip7

interconnect7is7NO7longer7
prac6cal7

–  Expect&complex&NOCs&

•  Processing7elements7within7a7

node7are7NOT7equidistant.77

–  Expect&nonCuniformity&&

Latency 
Optimized

Core
(Fat Cores)

Throughput Optimized Cores
(Thin Cores)

Massively Parallel,Simple

Core
Coherence 

Domain

Move%away%from%computeTcentric%to%dataTcentric%programming%
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Emerging7Fast7Forward7Exascale7Node7Architecture7
Abstract&Machine&Model&

Memory%
Stacks%

on&package&

Low%
Capacity%
High%

Bandwidth%

Fat7Core7
Latency&

OpHmized& Memory%
DRAM/DIMMS%

Memory%High%Capacity%Low%
Bandwidth%

NIC7on7Board7

NVRAM:%Burst%
Buffers%/%rackTlocal%

storage%
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Emerging7Fast7Forward7Exascale7Node7Architecture7
Abstract&Machine&Model7

Memory'
Stacks'

on#package#

Low'
Capacity'
High'

Bandwidth'

Fat Core 
Latency 
Optimized Memory'

DRAM/DIMMS'

Memory'High'Capacity'Low'
Bandwidth'

NIC on Board 

NVRAM:'Burst'
Buffers'/'rackClocal'

storage'


