
Click to edit Master title style

John Shalf
Lawrence Berkeley National Laboratory

Abstract Machine Models
for Exascale Computing

XStack PI Meeting, May 28-29, 2014

h"p://www.cal+design.org/publica6ons7

2

Abstract Machine Models and Proxy
Architectures for Exascale Computing

Rev 1.1

J.A. Ang1, R.F. Barrett1, R.E. Benner1, D. Burke2,
C. Chan2, D. Donofrio2, S.D. Hammond1,

K.S. Hemmert1, S.M. Kelly1, H. Le1, V.J. Leung1,
D.R. Resnick1, A.F. Rodrigues1,

J. Shalf2, D. Stark1, D. Unat2, N.J. Wright2

Sandia National Laboratories, NM1

Lawrence Berkeley National Laboratory, CA2

May, 16 2014

2 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

E X A S C A L E
C O M P U T I N G

Exascale Computing Trends:
Adjusting to the “New Normal”
for Computer Architecture
With two decades of data in hand about supercomputer performance, now is the time
to take stock and look forward in terms of scaling models and their implications for
future systems.

W e now have 20 years of data under
our belt as to the performance of
supercomputers against at least a
single floating-point benchmark

from dense linear algebra. Until approximately
2004, a single model of parallel programming—
bulk synchronous using the message passing in-
terface (MPI) model—was usually sufficient for
translating complex applications into reasonable
parallel programs.

In 2004, however, a confluence of events
changed forever the architectural landscape
that underpinned MPI. Figure 1 summarizes
the effects of these changes in terms of the
year-over-year compound annual growth rate
(CAGR) of several key system characteristics.
This data, taken from an average of the top
10 rankings reported by the TOP500 (www.
top500.org), shows that sustained performance,
in flops (floating point operations) per second,
has grown consistently at about 1.9= per year.
Before 2004, this growth came from a modest
increase in the number of cores, coupled with

substantial (50 percent or better per year) in
core clock rate, and substantial gains in memo-
ry per core. After 2004, the growth in cores per
year skyrocketed, while the average core clock
growth disappeared, and memory per core even
declined.

The first half of this article delves into the
underlying reasons for these changes and what
they mean to system architectures. The second
half addresses the ramifications of these chang-
es on our assumptions about technology scal-
ing as well as their profound implications for
programming and algorithm design in future
systems.

The Perfect Technological Storm
Moore’s law has driven microprocessor archi-
tectures and high-performance computing
(HPC) for decades. While variously interpret-
ed as saying that microprocessor performance
and memory chip density increase exponen-
tially over time, the real statement is that a
transistor’s key linear dimensions (its feature
size) shrink by a relatively constant factor ev-
ery N years. This shrinkage has had two ef-
fects: the transistor’s overall area has shrunk
(meaning that more transistors can be placed
on a die), and its inherent delay (due largely
to the capacitance of its now smaller gate) has
declined. The dimensional shrinkage has also
been applied to the width of the wiring that

1521-9615/13/$31.00 © 2013 IEEE
COPUBLISHED BY THE IEEE CS AND THE AIP

Peter Kogge
University of Notre Dame
John Shalf
Lawrence Berkeley National Laboratory

CISE-15-6-Shalf.indd 2 08/11/13 7:00 PM

2 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

E X A S C A L E
C O M P U T I N G

Exascale Computing Trends:
Adjusting to the “New Normal”
for Computer Architecture
With two decades of data in hand about supercomputer performance, now is the time
to take stock and look forward in terms of scaling models and their implications for
future systems.

W e now have 20 years of data under
our belt as to the performance of
supercomputers against at least a
single floating-point benchmark

from dense linear algebra. Until approximately
2004, a single model of parallel programming—
bulk synchronous using the message passing in-
terface (MPI) model—was usually sufficient for
translating complex applications into reasonable
parallel programs.

In 2004, however, a confluence of events
changed forever the architectural landscape
that underpinned MPI. Figure 1 summarizes
the effects of these changes in terms of the
year-over-year compound annual growth rate
(CAGR) of several key system characteristics.
This data, taken from an average of the top
10 rankings reported by the TOP500 (www.
top500.org), shows that sustained performance,
in flops (floating point operations) per second,
has grown consistently at about 1.9= per year.
Before 2004, this growth came from a modest
increase in the number of cores, coupled with

substantial (50 percent or better per year) in
core clock rate, and substantial gains in memo-
ry per core. After 2004, the growth in cores per
year skyrocketed, while the average core clock
growth disappeared, and memory per core even
declined.

The first half of this article delves into the
underlying reasons for these changes and what
they mean to system architectures. The second
half addresses the ramifications of these chang-
es on our assumptions about technology scal-
ing as well as their profound implications for
programming and algorithm design in future
systems.

The Perfect Technological Storm
Moore’s law has driven microprocessor archi-
tectures and high-performance computing
(HPC) for decades. While variously interpret-
ed as saying that microprocessor performance
and memory chip density increase exponen-
tially over time, the real statement is that a
transistor’s key linear dimensions (its feature
size) shrink by a relatively constant factor ev-
ery N years. This shrinkage has had two ef-
fects: the transistor’s overall area has shrunk
(meaning that more transistors can be placed
on a die), and its inherent delay (due largely
to the capacitance of its now smaller gate) has
declined. The dimensional shrinkage has also
been applied to the width of the wiring that

1521-9615/13/$31.00 © 2013 IEEE
COPUBLISHED BY THE IEEE CS AND THE AIP

Peter Kogge
University of Notre Dame
John Shalf
Lawrence Berkeley National Laboratory

CISE-15-6-Shalf.indd 2 08/11/13 7:00 PM

CISE%CSE%2013%Ar,cle%

Original Article Title;
How I learned to Stop Worrying and Love Exascale

1/23/2013% Computa,onal%Research%Division%|%Lawrence%Berkeley%Na,onal%Laboratory%|%Department%of%Energy% 4

Technology7Challenges7for7the7Next7Decade7

5

!"

!#"

!##"

!###"

!####"

$%
"&'
(%
"

)*
+,-
.*
/"

!0
0"
12
345
,6"

70
0"
12
345
,6"

(8
345
,69
$)
:;

"

<14
=<"
,2.
*/
41
22
*4
."

>/
1-
-"-
?-
.*
0"

21@"

A#!B"

Internode/MPI+
Communica2on+

On4chip++/+CMP+
communica2on+

Intranode/SMP+
Communica2on+

Pi
co
jo
ul
es
*P
er
*O
pe

ra
/o

n*

Parallelism%is%
growing%at%

exponen,al%rate%

Power%is%leading%constraint%
for%future%performance%

growth%

By%2018,%cost%of%a%FLOP%will%be%less%
than%cost%of%moving%5mm%across%the%
chip’s%surface%(locality%will%really&

maRer)%

Reliability%going%down%for%
largeTscale%systems,%but%also%
to%get%more%energy%efficiency%

for%small%systems%

Memory%Technology%
improvements%are%
slowing%down%

Whats7wrong7with7Current7Programming7Environments?7
Designed&for&Constraints&from&30&years&ago!&(wrong'target!!)'

6

Old Constraints

•  Peak clock frequency as primary
limiter for performance improvement

•  Cost: FLOPs are biggest cost for
system: optimize for compute

•  Concurrency: Modest growth of
parallelism by adding nodes

•  Memory scaling: maintain byte per
flop capacity and bandwidth

•  Locality: MPI+X model (uniform costs
within node & between nodes)

•  Uniformity: Assume uniform system
performance

•  Reliability: It’s the hardware’s
problem

New Constraints

•  Power is primary design constraint for
future HPC system design

•  Cost: Data movement dominates:
optimize to minimize data movement

•  Concurrency: Exponential growth of
parallelism within chips

•  Memory Scaling: Compute growing 2x
faster than capacity or bandwidth

•  Locality: must reason about data
locality and possibly topology

•  Heterogeneity: Architectural and
performance non-uniformity increase

•  Reliability: Cannot count on hardware
protection alone

Fundamentally'breaks'our'current'programming'paradigm'and'compu8ng'ecosystem'
%

The Programming Model is a Reflection of
the Underlying Abstract Machine Model

•  Equal cost SMP/PRAM model
–  No notion of non-local access
–  int [nx][ny][nz];

•  Cluster: Distributed memory model
–  CSP: Communicating Sequential Processes
–  No unified memory
–  int [localNX][localNY][localNZ];

•  2-level (CTA in Martha Kim Taxonomy)
–  Candidate Type Architecture (CTA)
–  MPI+X model (for all practical purposes)

•  Whats Next?

SMP

P P P P P

P P P P P

MPI Distributed Memory

Martha%Kim,%Columbia%U.%Tech%Report%“Abstract%Machine%Models%and%Scaling%Theory”%
h7p://www.cs.columbia.edu/~martha/courses/4130/au13/pdfs/scalingCtheory.pdf&

%

SMP%

P P P

SMP%

P P P

SMP%

P P P

SMP%

P P P

2:Level'MPI+X'is'dominant,'but'insufficient!'

Parameterized7Machine7Model7
(what'do'we'need'to'reason'about'when'designing'a'new'code?)'

Cores7
• How%Many%
• Heterogeneous%
• SIMD%Width%

Network7on7Chip7(NoC)7
• Are%they%equidistant%or%%
• Constrained%Topology%(2D)&

On+Chip7Memory7Hierarchy7
• Automa,c%or%Scratchpad?%
• Memory%coherency%method?%

Node7Topology7
• NUMA%or%Flat?%
• Topology%may%be%important%
• Or%perhaps%just%distance%

Memory7
• Nonvola,le%/%mul,T,ered?%
• Intelligence%in%memory%(or%not)%

Fault7Model7for7Node7
• %FIT%rates,%Kinds%of%faults%
• %Granularity%of%faults/recovery%

Interconnect7
• Bandwidth/Latency/Overhead%
• Topology%

Primi6ves7for7data7movement/sync7
• Global%Address%Space%or%messaging?%
• Synchroniza,on%primi,ves/Fences%

For7each7parameterized7machine7a"ribute,7can77

•  Ignore7it:7If'ignoring'it'has'no'serious'power/performance'consequences'
•  Expose7it7(unvirtualize):'If'there'is'not'a'clear'automated'way'of'make'decisions'

•  Must%involve%the%human/programmer%in%the%process%(make'pmodel'more'expressive)'
•  Direc,ves%to%control%data%movement%or%layout%(for%example)%

•  Abstract7it7(virtualize):'If'it'is'well'enough'understood'to'support'an'automated'
mechanism'to'op8mize'layout'or'schedule'
–  This%makes%programmers%life%easier%(one%less%thing%to%worry%about)%

Want7model7to7be7as7simple7as7possible,7but7not7neglect7any7aspects7of7the7

machine7that7are7important7for7performance7

Abstract7Machine7Model77
(what'do'we'need'to'reason'about'when'designing'a'new'code?)7

Exascale7Strawman7Arch7

Based7on7input7from7DOE7Fast7Forward7and7Design7
Forward7Projects7

•  Lets review where things are going in exascale concept designs

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07
1/
1/
19

92

1/
1/
19

96

1/
1/
20

00

1/
1/
20

04

1/
1/
20

08

1/
1/
20

12

1/
1/
20

16

1/
1/
20

20

1/
1/
20

24

En
er
gy

pe
rF

lo
p
(p
J)

Heavyweight Heavyweight Scaled Heavyweight Constant

Lightweight Lightweight Scaled Lightweight Constant

Heterogeneous Hetergeneous Scaled Historical

CMOS Projection Hi Perf CMOS Projection Low Power UHPC Goal

1/23/
2013%

11

Hybrid7Architectures:7
Moving&from&sideCshow&to&necessity&

Hybrid%is%the%only%
approach%that%crosses%
the%exascale%finish%line%

Can7Get7Capacity7OR7Bandwidth7
But7Cannot7Get7Both7in7the7Same7Technology7

12
1/23/
2013%

Bandwidth\Capacity. 16.GB. 32.GB. 64.GB. 128.GB. 256.GB. 512.GB. 1.TB.
4.TB/s.
2.TB/s. Stack/PNM.
1.TB/s. .. Interposer..

512.GB/s. HMC.organic.
256.GB/s. DIMM..
128.GB/s. NVRAM..

Cost (increases for higher capacity and cost/bit increases with bandwidth)

P
o
w
e
r

Hi
gh

 B
an

dw
idt

h M
em

ory

St
an

da
rd

DR
AM

No
n-V

ola
tile

 M
em

ory

Old7Paradigm7for7off+chip7memory7
•  One%kind%of%memory%(JEDEC/DDRx)%
•  ~1%byte%per%flop%memory%capacity%
•  ~1%byte%per%flop%bandwidth%(0.25%typical)%
%
New7Paradigm7

•  DDR4:%~1%byte%per%flop%capacity%w%
%<%0.01%bytes/flop%BW%

•  Stacked7Memory:%~1%byte%per%flop%capacity%
<%0.01%bytes/flop%capacity%

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

13

Updated7CAL7AMM7Model7

Families7of7AMMs7

14
1/23/
2013%

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Core

Core

Core

Core

Core Core

Core Core

Network-on-Chip

...

...

...

M
em

or
y

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Acc. Acc.

Core Core

Core Core

Network-on-Chip

...

...

...
M
em

or
y

...

Acc.

...

M
em

or
y

M
em

or
y

Acc.

Heterogeneous%
Manycore%

Homogeneous%
Manycore%

Heterogeneous%
Accelerator% ARached%Accelerator%

Families7of7AMMs7

15
1/23/
2013%

Core Core

Core Core

Network-on-Chip

...

...

...

M
em

or
y

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Acc. Acc.

Core Core

Core Core

Network-on-Chip

...

...

...
M
em

or
y

...

Acc.

...

M
em

or
y

M
em

or
y

Acc.

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Core

Core

Core

Core

Families7of7AMMs7

16
1/23/
2013%

Core Core

Core Core

Network-on-Chip

...

...

...

M
em

or
y

Core Core

Core Core

Network-on-Chip

...

...

...
M
em

or
y

...

Acc.

...

M
em

or
y

M
em

or
y

Acc.

1/23/2013%

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Acc. Acc.

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Core

Core

Core

Core

Accelerators7vs.7Thin7Cores7
Primary7Differen6a6on7

•  ISA%
•  Security/Protec,on%
•  SIMD%Width%%
•  Thread%Divergence%
•  Cache%Coherence%
7

Are7these7the7only7possible7AMMs?7
&

NO:&this&is&just&a&reflecHon&of&what&is&seen&developing&in&industry.&&
SpecializaHon&&&other&architectures&possible.&&See&Sandia&XGC&Project&

17

Core Core

Core Core

Network-on-Chip

...

...
...

M
em

or
y

1/23/2013%

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Core

Core

Core

Core

Chip Boundary

Network

Core Acc.

MemMov MemMov

Network
Network-
on-Chip M

em
or

y

System
InterconnectNIC

AMMs7vs.7Proxy7Machine7Models7

18

Chapter 5

Proxy Architectures for Exascale
Computing

Proxy architecture models (PAMs) were introduced as a codesign counterpart to proxy applications in the DOE
ASCAC report on the Top Ten Exascale Research Challenges [?]. This Computer Architecture Laboratory
(CAL) AMM document separates the PAMl concept into AMM and proxy architectures, but the intent is still
to facilitate codesign and communication.

In this section we identify approximate estimates for key parameters of interest to application developers.
Many of these parameters can be used in conjunction with the AMM models described previously to obtain
rough estimates of full node performance. These parameters are intended to support design-space exploration
and should not be used for parameter- or hardware- specific optimization as, at this point in the development of
Exascale architectures, the estimates may have considerable error. In particular, hardware vendors might not
implement every entry in the tables provided in future systems; for example, some future processors may not
include a Level-3 cache.

5.1 Design Parameters

The following list of parameters allows application developers and hardware architects to tune any AMMs to
their desire. The list is not exhaustive and will continue to grow as needed. Since this list is for all AMMs
presented in this document, not all parameters are expected to be applicable to every AMM. In fact, we expect
that for each AMM only a subset of this list of parameters will be used for architecture tuning. Likewise, not
all parameters are useful for application developers, such as bandwidth of each level of the cache structure.

Processor Gflop/s per NoC BW per Processor Accelerator Acc Memory Acc Count TFLOP/s per Node
Cores Proc Core Proc Core (GB/s) SIMD Vectors Cores BW (GB/s) per Node Node1 Count

(Units x Width)

Homogeneous M.C. Opt1 256 64 8 8x16 None None None 16 62,500
Homogeneous M.C. Opt2 64 250 64 2x16 None None None 16 62,500
Discrete Acc. Opt1 32 250 64 2x16 O(1000) O(1000) 4 16C + 2A 55,000
Discrete Acc. Opt2 128 64 8 8x16 O(1000) O(1000) 16 8C + 16A 41,000
Integrated Acc. Opt1 32 64 64 2x16 O(1000) O(1000) Integrated 30 33,000
Integrated Acc. Opt2 128 16 8 8x16 O(1000) O(1000) Integrated 30 33,000
Heterogeneous M.C. Opt1 16 / 192 250 64 / 8 8x16 / 2x8 None None None 16 62,500
Heterogeneous M.C. Opt2 32 / 128 64 64 / 8 8x16 / 2x8 None None None 16 62,500
Concept Opt1 128 50 8 12x1 128 O(1000) Integrated 6 125,000
Concept Opt2 128 64 8 12x1 128 O(1000) Integrated 8 125,000

Table 5.1: Opt1 and Opt1 represent possible proxy options for the abstract machine model. M.C: multi-core,
Acc: Accelerator, BW : bandwidth, Proc: processor, For models with accelerators and cores, C denotes to
FLOP/s from the CPU cores and A denotes to FLOP/s from Accelerators.

18

AMM7is7the7topology7and7schema6c7for7future7machines7
7

The7Proxy7Machine7Model7fills7that7in7with7speeds7and7feeds7

7

•  Lightweight cores not fast enough to process complex
protocol stacks at line rate
•  Simplify MPI or add thread match/dispatch extensions
•  Or use the memory address for endpoint matching

•  Can no longer ignore locality (especially inside of node)
•  Its not just memory system NUMA issues anymore
•  On chip fabric is not infinitely fast (Topology as first class citizen)
•  Relaxed relaxed consistency (or no guaranteed HW coherence)

•  New Memory Classes & memory management
•  NVRAM, Fast/low-capacity, Slow/high-capacity
•  How to annotate & manage data for different classes of memory

•  Asynchrony/Heterogeneity
•  New potential sources of performance heterogeneity
•  Is BSP up to the task?

Programming Model Challenges
(why is MPI+X not sufficient?)

19

Click to edit Master title style

What are the big challenges
for Future Programming Systems

Implications for Future
Programming Models

20

•  Cost to move a bit on copper wire:
•  Power = Bitrate * Length / cross-section area

•  Wire data capacity constant as feature size shrinks
•  Cost to move bit proportional to distance
•  ~1TByte/sec max feasible off-chip BW (10GHz/pin)
•  Photonics reduces distance-dependence of bandwidth

The Problem with Wires:
Energy to move data proportional to distance

Copper requires to signal amplification
even for on-chip connections

Photonics requires no redrive
and passive switch little power

1"

10"

100"

1000"

10000"

DP
"FL
OP
"

Re
gis
ter
"

1m
m"
on
3ch
ip"

5m
m"
on
3ch
ip"

15
mm

"on
3ch
ip"

Off
3ch
ip/
DR
AM

"

loc
al"
int
erc
on
ne
ct"

Cro
ss"
sys
tem

"

2008"(45nm)"

2018"(11nm)"

Pi
co
jo
ul
es
*P
er
*6
4b

it*
op

er
a2

on
*

Cost of Data Movement Increasing Relative to Ops

FLOPs%will%cost%less%than%
onTchip%data%movement!%

(NUMA)%%

FLO
Ps%

Data Locality Management

Vertical Locality Management
(spatio-temporal optimization)

Horizontal Locality Management
(topology optimization)

23%

Coherence%
Domains%

Towards7a7Data7Centric7Compu6ng7Model7

•  Old7Model7(OpenMP)7
–  Describe%how%to%parallelize%loop%itera,ons%
–  Parallel%“DO”%divides%loop%itera,ons%evenly%among%processors%
–  .%.%.%but%where%is%the%data%located?%%

•  New7Model7(Data+Centric)7also'in'big'data'
–  Describe%how%data%is%laid%out%in%memory%
–  Change%applies%to%ALL%Loop%statements%operate%data%

where%it%is%located%(inTsitu)%
–  Similar%to%MapReduce,%but%need%more%sophis,cated%descrip,ons%of%

data%layout%for%scien,fic%codes%

forall_local_data(i=0;i<NX;i++;A) !
!C[j]+=A[j]*B[i][j]);!

24

Tiling7Formula6on:7abstracts&data&locality,&
topology,&cache&coherence,&and¶llelism&

•  Expose7massive7degrees7of7parallelism7through7domain7decomposi6on7

–  Represent%an%atomic%unit%of%work%
–  Task%scheduler%works%on%,les%%

•  Core7concept7for7data7locality7

–  Ver6cal7data7movement77

•  Hierarchical&parHHoning&
–  Horizontal7data7movement7

•  CoClocate&Hles&sharing&the&same&data&by&respecHng&Hle&topology&

•  Mul6+level7parallelism7

–  CoarseTgrain%parallelism:%across%,les%
–  FineTgrain%parallelism:%vectoriza,on,%instruc,on%ordering%within%,le7

•  Centralize'and'parameterize'8ling'informa8on'at'the'data'structures''
–  Direct%approach%for%memory%affinity%management%for%data%locality%
–  Expose%massive%degrees%of%parallelism%through%domain%decomposi,on%%
–  Overcomes&challenges&of&relaxed&coherency&&&coherence&domains!!!&

Box 2

Box 1

Box 2

Box 3

Box 4

Box 5

Tile (1,1) Tile (1,2)

Tile (2,1) Tile (2,2)

Tile (3,1) Tile (3,2)

Tiled Box 2

Data+Centric7Programming7Model7
(current&computeCcentric&models&are&mismatched&with&emerging&hardware)&

•  Building7up7a7hierarchical7layout7
–  Layout%block%coreblk%{blockx,blocky};%
–  Layout%block%nodeblk%{nnx,nny,nnz};%
–  Layout%hierarchy%myheirarchy%{coreblk,nodeblk};%
–  Shared%myhierarchy%double%a[nx][ny][nz];%

26

•  Then7use7data+localized7parallel7loop7

•  Foreach7(6le)7//7lambda7

7777do_local(i=0;i<nx;i++;a){7

77do_local(j=0;j<ny;j++;a){7

777777do_local(k=0;k<nz;k++;a){7

7 7a[i][j][k]=C*a[i+1]…>7

•  And'if'layout'changes,'this'loop'remains'the'
same'

Sa,sfies%the%request%of%the%applica,on%developers%
(Change%code%in%one%place…%affects%apply%globally%to%app.)%

Change as Few Lines of Code as
Possible for Each Machine

Model or Generation

SIAM&PP2008&

•  Support7different7layouts7for7various7cache7coherence7scenarios77
•  Require7minimum7code7modifica6on7when7the7memory7layout7is7changed77
•  Memory7layout7op6ons7

–  Specified%at%the%array%construc,on%thru%a%flag%or%
–  export DATA_LAYOUT={LOG | SEP | REG}!

•  The7solvers7remain7unchanged7!!!7 77

Abstrac6on7for7Memory7Layout7

27

a)%Logical%Tiles%%%%%%%%%%%%%%%%%%%%b)%Separated%Tiles%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%c)%Regional%Tiles%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cell%%%%%%%%%%%%,le%

Separated%,les%with%halos%

Didem%Unat%
Dan%Quinlan%

•  Many Examples in library and DSL form
•  HTA: Hierarchical Tiled Arrays
•  TiDA: Tiling as a Durable Abstraction
•  RAJA & KOKKOS: C++ Template Metaprogram Lib (many other examples!!)

•  All arrived at similar underlying concepts
•  Lamba functions to relax loop nest order
•  Abstracts data physical layout from logical layout

•  When many different projects independently arrive at the same or
very similar solutions

•  Perhaps they have found a reasonably optimal solution
•  Its time to talk about standardization (MPI forum)

•  For Tiling Abstractions, see PADAL
 (Programming Abstractions for Data Locality)
 http://www.padalworkshop.org/

Data Locality Abstractions
(is it time for standardization?)

1/23/
2013%
Computa,onal%Research%Division%|%Lawrence%Berkeley%
Na,onal%Laboratory%|%Department%of%Energy%

28

Heterogeneity7/7Inhomogeneity7
Async7Programming7Models?7

Assump6ons7of7Uniformity7is7Breaking7
(many'new'sources'of'heterogeneity)7

30

•  Heterogeneous compute engines
(hybrid/GPU computing)

•  Fine grained power mgmt. makes
homogeneous cores look
heterogeneous
•  thermal throttling – no longer guarantee

deterministic clock rate
•  Nonuniformities in process technology

creates non-uniform operating
characteristics for cores on a CMP
•  Near Threshold Voltage (NTV)

•  Fault resilience introduces inhomogeneity in
execution rates

•  error correction is not instantaneous
•  And this will get WAY worse if we move towards

software-based resilience

1/23/
2013%
Computa,onal%Research%Division%|%Lawrence%Berkeley%
Na,onal%Laboratory%|%Department%of%Energy%

Bulk Synchronous Execution

Assump6ons7of7Uniformity7is7Breaking7
(many'new'sources'of'heterogeneity)7

31

•  Heterogeneous compute engines
(hybrid/GPU computing)

•  Fine grained power mgmt. makes
homogeneous cores look
heterogeneous
•  thermal throttling – no longer guarantee

deterministic clock rate
•  Nonuniformities in process technology

creates non-uniform operating
characteristics for cores on a CMP
•  Near Threshold Voltage (NTV)

•  Fault resilience introduces inhomogeneity in
execution rates

•  error correction is not instantaneous
•  And this will get WAY worse if we move towards

software-based resilience

Computa,onal%Research%Division%|%Lawrence%Berkeley%
Na,onal%Laboratory%|%Department%of%Energy%

Bulk Synchronous Execution

Near7Threshold7Voltage7(NTV):7Shekhar&Borkar&(Intel)&
The&really&big&opportuniHes&for&energy&efficiency&require&codesign!&

32

•  Heterogeneous compute engines (hybrid/
GPU computing)

•  Fine grained power mgmt. makes
homogeneous cores look heterogeneous
•  thermal throttling – no longer guarantee deterministic

clock rate
•  Nonuniformities in process technology

creates non-uniform operating
characteristics for cores on a CMP
•  Near Threshold Voltage (NTV)

•  Fault resilience introduces inhomogeneity in
execution rates

•  error correction is not instantaneous
•  And this will get WAY worse if we move towards software-based

resilience

Computa,onal%Research%Division%|%Lawrence%Berkeley%
Na,onal%Laboratory%|%Department%of%Energy%

Bulk Synchronous Execution

f7

f7

f7 f7

f/27

f/27

f/27

f/27

f/47

f/47

f/47 f/47

f7

f7

f7 f7

f7

f7

f7

f7

f7

f7

f7 f7

Fig:%Shekhar%Borkar%

Conven,onal% NTV%

Near7Threshold7Voltage7(NTV):7Shekhar&Borkar&(Intel)&
The&really&big&opportuniHes&for&energy&efficiency&require&codesign!&

33

•  Improving energy efficiency or performance of
individual components doesn’t really need co-
design

•  Memory is faster, then odds are that the software will
run faster

•  if its better, that’s good!
•  The really *big* opportunities to improve energy

efficiency may require a shift in how we program
systems

•  This requires codesign to evalute the hardware and
new software together

•  HW/SW Interaction unknown (requires HW/SW
codesign)

•  If software CANNOT exploit these radical
hardware concepts (such as NTV), then it would
be better to not have done anything at all!

Computa,onal%Research%Division%|%Lawrence%Berkeley%
Na,onal%Laboratory%|%Department%of%Energy%

Bulk Synchronous Execution

f7

f7

f7 f7

f/27

f/27

f/27

f/27

f/47

f/47

f/47 f/47

f7

f7

f7 f7

f7

f7

f7

f7

f7

f7

f7 f7

Fig:%Shekhar%Borkar%

Assump6ons7of7Uniformity7is7Breaking7
(many'new'sources'of'heterogeneity)7

Computa,onal%Research%Division%|%Lawrence%Berkeley%
Na,onal%Laboratory%|%Department%of%Energy%

Bulk Synchronous Execution Asynchronous7Execu6on7Model7

•  Sources7of7performance7heterogeneity7increasing7
–  Heterogeneous%architectures%(accelerator)%
–  Thermal%throRling%
–  Performance%heterogeneity%due%to%transient%error%recovery%

7

•  Current7Bulk7Synchronous7Model7not7up7to7task7
–  Current%focus%is%on%removing%sources%of%performance%varia,on%
(jiRer),%is%increasingly%imprac,cal%

–  Huge%costs%in%power/complexity/performance%to%extend%the%life%
of%a%purely%bulk%synchronous%model'

Embrace'performance'heterogeneity:''Study'use'of'asynchronous'
computa8onal'models'(e.g.'SWARM,'HPX,'and'other'concepts'
from'1980s)'

Conclusions7on7Heterogeneity7

•  Programming7Models7are7a7Reflec6on7of7the7Underlying7Machine7
Architecture7
–  Express&what&is&important&for&performance&

–  Hide&complexity&that&is¬&consequenHal&to&performance&

•  Programming7Models7are7Increasingly7Mismatched7with7
Underlying7Hardware7Architecture7
–  Changes&in&computer&architecture&trends/costs&

–  Performance&and&programmability&consequences&

•  Technology7changes7have7deep7and7pervasive7effect7on7ALL7of7our7
somware7systems7(and'how'we'program'them)'

•  Change&in&costs&for&underlying&system&affect&what&we&expose'
•  What&to&virtualize'
•  What&to&make&more&expressive/visible'
•  What&to&ignore'

The7Programming7Systems7Challenge7

•  Emerging7hardware7constraints7are7increasingly7mismatched7with7our7
current7programming7paradigm7

–  Current%emphasis%is%on%preserving%FLOPs%
–  The%real%costs%now%are%not%FLOPs…%it%is%data%movement%
–  Requires%shiu%to%a%dataTlocality%centric%programming%paradigm%and%hardware%features%

to%support%it%

•  Technology7Changes7Fundamentally7Disrupt7our7Programming7

Environments7

–  The%programming%environment%and%associated%“abstract%machine%model”%is%a%
reflec,on%of%the%underlying%machine%architecture%%

–  Therefore,%design%decisions%can%have%deep%effect%your%en,re%programming%
paradigm%

–  The%BIGGEST%opportuni,es%in%energy%efficiency%and%
performance%improvements%require%HW%and%SW%considered%
together%(codesign)%

•  Performance7Portability7Should7be7Top+Tier7Metric7for7codesign7
–  Know%what%to%IGNORE,%what%to%ABSTRACT,%and%what%to%make%more%EXPRESSIVE7

Conclusions7

The7End7
For7more7informa6on7go7to7

7h"p://www.cal+design.org/7
7h"p://www.nersc.gov/7
7h"p://crd.lbl.gov/7

7

Abstract7Machine7Model77
(what7are7the7cri6cal7elements7for7spa6al7op6mizaitons?)7

•  The7number7of7cores7on7a7chip7
will7be7on7the7order7of71000s7

–  Expect&100x&concurrency&
•  Maintaining7cache7coherence7is7

NOT7scalable7

–  Expect&coherence&domains&&

•  Flat7and7infinitely7fast7on+chip7

interconnect7is7NO7longer7
prac6cal7

–  Expect&complex&NOCs&

•  Processing7elements7within7a7

node7are7NOT7equidistant.77

–  Expect&nonCuniformity&&

Latency
Optimized

Core
(Fat Cores)

Throughput Optimized Cores
(Thin Cores)

Massively Parallel,Simple

Core
Coherence

Domain

Move%away%from%computeTcentric%to%dataTcentric%programming%

41

Emerging7Fast7Forward7Exascale7Node7Architecture7
Abstract&Machine&Model&

Memory%
Stacks%

on&package&

Low%
Capacity%
High%

Bandwidth%

Fat7Core7
Latency&

OpHmized& Memory%
DRAM/DIMMS%

Memory%High%Capacity%Low%
Bandwidth%

NIC7on7Board7

NVRAM:%Burst%
Buffers%/%rackTlocal%

storage%

1/23/
2013%

42

Emerging7Fast7Forward7Exascale7Node7Architecture7
Abstract&Machine&Model7

Memory'
Stacks'

on#package#

Low'
Capacity'
High'

Bandwidth'

Fat Core
Latency
Optimized Memory'

DRAM/DIMMS'

Memory'High'Capacity'Low'
Bandwidth'

NIC on Board

NVRAM:'Burst'
Buffers'/'rackClocal'

storage'

