ETIl Technical Report 02

Legacy MPI Codes and its interoperability with fine
grain task-parallel runtime systems for Exascale

Sergio Pino
Guang R. Gao



Abstract

Exascale software will be unable to rely on minimally invasive system interfaces to provide an
execution environment. Instead, a task-parallel software runtime layer is necessary to mediate
between an application and the underlying hardware and software. Industry and academia have
years of effort developing MPI codes. For this reason, a progressive transition to the new
exascale execution models will require the interoperability with legacy MPI codes. Ideally this
interoperability should not degrade the current performance of legacy codes, but it may hinder
optimal performance and programmer intervention may be required to remove bottlenecks. In
this work, we focus on the codelet-based execution model called SWARM, and explore two
methods to provide this interoperability named MPI+SWARM and Codelet MPI. First,
MPI+SWARM takes an MPI program and add SWARM calls. Second, Codelet MPI creates an
MPI compatibility layer in SWARM which is used by applications. We show the feasibility of
these approaches by presenting some simple applications. These examples are attached as a
.zip file.

Introduction

The DynAX project needs to interoperate with legacy MPI codes. Because the codes are being
modified and recompiled to fit into a new exascale paradigm, we assume that the codes can be
recompiled through the XStack software. We also note that interoperability with MPI should not
degrade the current performance of legacy codes, but it may hinder optimal performance and
programmer intervention may be required to remove bottlenecks.

Legacy code can be parallelized between MPI calls rather straightforwardly. The main MPI
thread will be suspended while the parallel code is executed, then the main thread is resumed in
a manner similar to how OpenMP and MPI interoperate today. However, this method is limited
because only the main MPI thread may make MPI calls.

In this work, we focus on the codelet-based execution model called SWARM, and explore two
methods to provide this interoperability named MPI+SWARM and Codelet MPI. First,
MPI+SWARM takes an MPI program and add SWARM calls. Second, Codelet MPI creates an
MPI compatibility layer in SWARM which is used by applications. We show the feasibility of
these approaches by presenting some simple applications.

MPI+SWARM

The first approach for the MPI interoperability is called MPI+SWARM. Here, a developer takes a
base MPI program and add SWARM calls in a similar way as the hybrid model MPI+OpenMP.
In this approach, SWARM doesn’t perform MPI calls to communication routines (point to point
communication routines, such as MPI_Send) or Collective Communication Routines (such as
synchronization, data movement, or collective computation). The general code structure for this
approach is presented below. This can be considered as the first step in order to test the
interoperability between the two runtime systems, and doesn’t target real applications to use it.



#include <eti/swarm_convenience.h>
#include <mpi.h>

// Declare N codelets
CODELET_DECL(c0);

CODELET_DECL(cN-1);
int main(int argc, char *argv[]) {

/I Initialize MPI.
MPI_lInit(...); // parallel code begins

/l some MPI calls

/I using SWARM to exploit parallelism in each MPI process
swarm_posix_enterRuntime(NULL, &CODELET(...), ..., ...);

/I more MPI calls

/Il Terminate MPI environment
MPI_Finalize();

}

/I Codelet implementations

Fig 1: General structure of a MPI+SWARM application

It is important to notice that we assume a basic interaction as described below:
1. Perform MPI calls to communication routines (point to point communication routines,
such as MPI_Send) or Collective Communication routines (such as synchronization,
data movement, or collective computation).

2. Enter the swarm runtime system passing the necessary data to the first codelet.
3. Performing the intra-node parallel work with SWARM.
4. Exiting the SWARM runtime.
5. Perform MPI calls to communication routines or Collective Communication routines.
6. Go to 1 is needed, if not exit MPI environment.
Codelet MPI

The second approach for the MPI interoperability is called Codelet MPI. Codelet MPI creates an
MPI compatibility layer in SWARM which is used by applications. We addressed this in two
ways. First, at the user level code, we created codelets that perform blocking MPI send or recv,
each codelet schedules its continuation once the blocking call returns control to the codelet.
Second, It is basically a library that provides two general purpose codelets, one to perform



non-blocking MPI_Send and the other to perform non-blocking MPI_Recv, each codelet
schedules its continuation when the test for completion of the non-blocking MPI call is true. For
this first version, we assume that the application has data dependencies between codelets, so a
codelet that performs an MPI_recv operation will need to make sure the data has been received
before scheduling its continuation codelet, an example of this behavior is presented in fig 4 and
fig 5.

Creating a Codelet MPI that uses MPI blocking calls

By creating codelets that wrapped MPI blocking calls we created some simple applications that
demonstrate the possibility of performing MPI calls inside codelets, and it motivated us to
pursue the approach described in the next section. This straightforward approach uses a similar
basic interaction or code structure as the one defined in the section MPI+SWARM. However, in
this approach the step 3 assumes that SWARM codelets not just perform the intra-node parallel
but also can perform MPI calls.

An example of a codelet performing a blocking MPI_Send is shown below, it is part of a
modified version that uses SWARM and MPI of the mpi_ping.c example presented in [1]. The
drawback of this implementation comes from the restricted functionality that a codelet must
follow. In SWARM, codelets must not block, because it ties up the runtime thread indefinitely
and could stalls out program execution [2]. Thus, unless you can afford that cost, it is better to
find a way to define a codelet that interacts with MPI in a non-blocking approach, as presented
in the next section.

CODELET_IMPL_BEGIN_NOCANCEL(rank0_Send)
info* data = (info*) (swarm_natP_t) THIS;

int dest = 1, source =1, rc;
rc = MPI_Send(&data->outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

/I continuation
swarm_schedule(&CODELET(rank0_Recv), THIS, NULL, NULL, NULL);

CODELET_IMPL_END;

Fig 2: Excerpt of code for a codelet using MPI blocking calls.

Creating a Codelet MPI that uses MPI non-blocking calls

We implemented this functionality in a library called dynax_mpix.h. This library provides two
general purpose codelets, one for perform asynchronous MPI_lsend and the other to perform
asynchronous MPI_Irecv. We assume that the application has data dependencies between
codelets, so a codelet that performs an MPI non-blocking call will need to make sure the data
has been received before scheduling its continuation codelet. These codelets uses the
underlying MPI non-blocking calls and check (without tie up a runtime thread indefinitely)



whether or not the operation was successful. If it was successful, then the codelet calls the
continuation codelet defined by the user. If the non-blocking operation hasn’t complete then the
codelet yields its control in order to give room for another codelet to execute in the current
runtime thread.

The API exposes three components and it is presented in figure 3. First, there is a typedef struct
called mpix_str, which is used to pass the mpi required information as the THIS parameter in the
dynax_mpix codelets.

Second, the codelet to perform non-blocking MPI send is called mpix_send. It takes as its THIS
argument an instance of mpix_str. Third, the codelet to perform non-blocking MPI recv is called
mpix_recv. As mpix_send, it takes as its THIS argument an instance of mpix_str.

As presented in the code excerpt, the codelet perform an MPI_Isend/MPI_Irecv call and test
continuously if the non-blocking operation has finished. If it has not finished then execute
another codelet by calling swarm_yield(). With this simple approach SWARM is able to perform
MPI calls without tie up a SWARM runtime thread indefinitely.

/I Information: buffer, count, type, dest, tag, comm used to call the underlying MPI call
typedef struct {

int rank;

void* buf;

int count;

MPI_Datatype type;

int dest_src;

int tag;

MPI_Comm comm;
} mpix_str;

/I Codelet to manage non-blocking mpi sends
CODELET_DECL(mpix_send);

/I Codelet to manage non-blocking mpi recvs
CODELET_DECL(mpix_recv);

/I Uses MPI_Test to tests for the completion of a send or receive
bool mpix_mpiTest(MPI_Request* req);

CODELET_IMPL_BEGIN_NOCANCEL (mpix_send)

mpix_str data = *(mpix_str*) (swarm_natP_t) THIS;
MPI_Request req;

/I non-blocking sending the data




MPI_Isend(data.buf, data.count, data.type, data.dest_src, data.tag, data.comm, &req);

/I while "no finishing with non-blocking send" then execute another codelet
while(Impix_mpiTest(&req))
swarm_yield();

/I schedules the continuation
swarm_schedule(NEXT, NEXT_THIS, INPUT, NULL, NULL);

CODELET_IMPL_END;
CODELET_IMPL_BEGIN_NOCANCEL(mpix_recv)

mpix_str data = *(mpix_str*) (swarm_natP_t) THIS;
MPI_Request req;
/I non-blocking receiving the data
MPI_Irecv(data.buf, data.count, data.type, data.dest_src, data.tag, data.comm, &req);
/I while "no finishing with non-blocking recv" then execute another codelet
while(!'mpix_mpiTest(&req))
swarm_yield();
/I schedules the continuation
swarm_schedule(NEXT, NEXT_THIS, INPUT, NULL, NULL);

CODELET_IMPL_END;

Fig 3: Excerpt from the dynax_mpix.h library. This library encapsulates and offers codelets for MPI and
SWARM interoperability.

Results

In figure 4 and figure 5, we show the tracing for an synthetic application that the dynax_mpix
library. This application schedules send and recv operations using the codelets defined before
and also schedules a dummy codelet that consumes cpu without real work done. Figure 4,
shows that the the 8 workers mainly execute the dummy codelet (blue label).



Current item B dummy_run

Function: O Dep_satisfyOnce_run
Titme:
Duration: @ done_run

B mpix_recyv_run
B mpix_send_run
O testChar_run

Warkers: @

L L L L I
0.000e+00 1.515e-01 +1.515e-01 +1.515e-01 +1.51%e-01 +1.515e-01 +

Fig 4: Tracing of the program with all the codelets selected for visualization.

Current item m
Function: O
Time:

Duration: B

B mpix_recy_run
B mpix_send_run
@

Workers: §

1 I I L 1
0.000e+00 1.515e-01 +1.515e-01 +1.515e-01 +1.515e-01 +1.515e-01

Fig 5: Tracing of the program with just mpix_recv and mpix_send codelets selected for visualization.

In figure 5, we can see the same tracing of the program with just mpix_recv and mpix_send
codelets selected for visualization. In here, we can see that mpix_send ran in background the
check for completion and allows the runtime thread to schedule other codelets.



Conclusions and Future work

In conclusion, we have demonstrated that SWARM and MPI runtimes can interoperate in a
simple application. The examples presented in this work and attached as a .zip file, are simple
enough to evaluate the feasibility of the approach and serve as basis to the creation of a more
complex benchmarks in the following quarter. Our sample applications shown that MPI calls can
be used in a decentralized, continuation-based manner, to provide a fine-grained, low-overhead
framework for MPI interoperability with SWARM.

For the dynax_mpix library more work needs to be done to handle errors in the underlying MPI
send or recv. For instance, if the message is never sent or it is lost, the current implementation
will keep checking indefinitely for the non-blocking call to finish.

References

[1] Message Passing Interface (MPI). High Performance Computing Training. Lawrence
Livermore National Laboratory. Retrieved May 4, 2015, from
https://computing.linl.gov/tutorials/mpi

[2] Working with codelets. Programmer’s Guide to the SWARM API - SWARM documentation.
ET International Inc. Retrieved May 18, 2015, from
http://www.etinternational.com/downloads/swarm_docs/swarm/programmers-quide/index.htm



https://computing.llnl.gov/tutorials/mpi
http://www.etinternational.com/downloads/swarm_docs/swarm/programmers-guide/index.htm

