
int aFunction(int a, int b)
{

int c=b;
return a;

}

main()
{

int a,b,c,d,e;
int i=4;
for (i=0;i<10;i++)
{

int j=55;
c=i+j;
c=aFunction(i,c);
a=aFunction(a+1,b);

}
#pragma SliceTarget
a;
return 0;

}
0%

20%

40%

60%

80%

100%

1 6 12

DSL Technology for Exascale Computing (D-TEC)
2012 X-Stack: Programming Challenges, Runtime Systems, and Tools - LAB 12-619

Lead PI and DOE lab:
Daniel J. Quinlan

Lawrence Livermore National Laboratory
Co-PIs and Institutions

Saman Amarasinghe, Armando Solar-Lezama, Adam Chlipala, Srinivas Devadas,
Una-May O’Reilly, Nir Shavit, Youssef Marzouk @ Massachusetts Institute of Technology

John Mellor-Crummey & Vivek Sarkar @ Rice University
Vijay Saraswat & David Grove @ IBM Watson

P. Sadayappan & Atanas Rountev @ Ohio State University
Ras Bodik @ University of California at Berkeley

Craig Rasmussen @ University of Oregon
Phil Colella @ Lawrence Berkeley National Laboratory

Scott Baden @ University of California at San Diego

• There are different types of DSLs:
– Embedded DSLs: Have custom compiler support for high level abstractions defined in

a host language (abstractions defined via a library, for example)
– General DSLs (syntax extended): Have their own syntax and grammar; can be full

languages, but defined to address a narrowly defined domain
• DSL design is a responsibility shared between application domain and algorithm scientists
• Extraction of abstractions requires significant application and algorithm expertise
• We have an application team at 7.5% of the total funding

– provide expertise that will ground our DSL research
– ensure its relevance to DOE & enable impact by the end of three years

• Saman and Dan have decided to merge proposals to provide the strongest possible
proposal specific to DSLs; the merged effort will be led by Dan at LLNL

DSLs are a Transformational Technology

2X-Stack Review

Domain Specific Languages capture expert knowledge about application domains. For the domain
scientist, the DSL provides a view of the high-level programming model. The DSL compiler captures
expert knowledge about how to map high-level abstractions to different architectures. The DSL
compiler’s analysis and transformations are complemented by the general compiler analysis and
transformations shared by general purpose languages.

The D-TEC approach addresses the full Exascale workflow

Manual Refinement

Exec

Resilience

Domain
Algorithms

Expert

HPC
Programmer

DSL
Designer

Machine Learning
& Formal Methods

Parameterized
Abstract

Machine Model

Refinement/
Transformations

Refinement/
Lowering

Vendor
Compiler

Performance
Tools

X10/SEEC
Runtime

Scalable Data
Structures

Levels of ROSE AST

Specification
DSL 1 ..N

Specification

ROSE-based
DSL Compiler

Implementation
Expert

Semantic Analysis

DSL 1 ..N
Programs

DOE Apps

Rosebud
DSL Compiler Generator

Parser Generator

Rewrite system

Grammar system

Migration
Process

Compiler analysis &
Transformations

ROSE

Recording & Mapping

Front-end

Sketch-based
Transformations

LLVM

Runtime Optimizations

D-TEC Status

Manual Refinement

Exec

Resilience

Domain
Algorithms

Expert

HPC
Programmer

DSL
Designer

Machine Learning
& Formal Methods

Parameterized
Abstract

Machine Model

Refinement/
Transformations

Refinement/
Lowering

Vendor
Compiler

Performance
Tools

X10/SEEC
Runtime

Scalable Data
Structures

Levels of ROSE AST

Specification
DSL 1 ..N

Specification

ROSE-based
DSL Compiler

Implementation
Expert

Semantic Analysis

DSL 1 ..N
Programs

DOE Apps

Rosebud
DSL Compiler Generator

Parser Generator

Rewrite system

Grammar system

Migration
Process

Compiler analysis &
Transformations

ROSE

Recording & Mapping

Front-end

Sketch-based
Transformations

LLVM

Runtime Optimizations

CNS Miniapp
• An example app in BoxLib (block-structured AMR library) and a

proxy app for ExaCT.
• Compressible Navier Stokes equations with constant viscosity and

thermal conductivity.

• Three main computation-intensive functions:
– ctoprim: Computing Q (vector with components: p, u, v, w, p, T) with given U

(vector with components p, pu, pv, pw, pE).
– hypterm: Updating U according to the left-hand side of equations 1~3.
– diffterm: Computing the right-hand side of equations 1~3.

• 3rd order Runge-Kutta scheme is used for time advancing.

LULESH Miniapp
• Livermore Unstructured Lagrange Explicit Shock

Hydrodynamics
• Developed as a proxy application at LLNL under DARPA UHPC
• Representing computations and algorithms in LLNL-based ALE3D code

• Solving one octant of the spherical Sedov problem (blast wave)
using Lagrangian hydrodynamics for a single material.

• Equations are solved using a staggered mesh
approximation.
• Thermodynamic variables are approximated as piece-wise

constant functions within each element.
• Kinematic variables are defined at the element nodes.

• Lagrange Leapfrog Algorithm advances solution involving 3 parts
• Advance node quantities
• Advance element quantities
• Calculate time constraints

• Weak scaling study on Hopper
• 10 iterations
• Experimental configurations:
• MPI: 16 processes/node (4/socket of 6 cores), local domain = 923/process
• Bamboo: 16 worker threads/node (4/socket and 1/core), 8 tasks/worker
• Local domain = 463 per task

Lulesh: Compiler transformations can overlap communication
and computation for improved performance

7X-Stack Review

0

10

20

30

40

50

8 64 512 4096 32768

MPI Bamboo

int aFunction(int a, int b)
{

int c=b;
return a;

}

main()
{

int a,b,c,d,e;
int i=4;
for (i=0;i<10;i++)
{

int j=55;
c=i+j;
c=aFunction(i,c);
a=aFunction(a+1,b);

}
#pragma SliceTarget
a;
return 0;

}
0%

20%

40%

60%

80%

100%

1 6 12

DTEC Project

DSL examples

1) D-TEC Halide http://halide-lang.org Image processing algorithms Cloverleaf, miniGMG, boxlib Uses C++ Custom IR Stencil optimizations (fusion,
blocking, parallelization, vectorization) Schedules can produce all levels of locality, parallelism and redundant computation. OpenTuner for
automatic schedule generation. LLVM X86 multicores, Arm and GPU Working system. Demonstrated for DOE Miniapps; also used commercially
by Google and Adobe. Interfaces with the OpenTuner (http://opentuner.org) to automatically generate schedules. Working on
visualizing/debugging tool.

2) DTEC Shared Memory DSL http://rosecompiler.org MPI HPC applications on many core nodes Internal LLNL App Uses C (maybe C++ and Fortran
in future) ROSE IR Shared memory optimization for MPI processes on many core architectures permits sharing large data structures between
processes to reduce memory requirements per core. ROSE + any vendor compiler Many core architectures with local shared memory
Implementation released (4/28/2014) Being evaluated for production use at LLNL.

3) D-TEC X-GEN for heterogenous computing http://rosecompiler.org/ HPC applications running on NVIDIA GPUs boxlib, internal kernels Uses C
and C++ ROSE IR (AST) loop collapse to expose more parallelism, Hardware-aware thread/block configuration, data reuse to reduce data
transfer, round-robin loop scheduling to reduce memory footprint ROSE source-to-source + NVIDIA CUDA compiler NVIDIA GPUs
Implementation released with ROSE (4/29/2014) Matches or outperforms caparable compilers targeting GPUs. Generate event traces for
gpuplot to identify serial bottleneck

4) D-TEC NUMA DSL http://rosecompiler.org HPC applications on NUMA-support many core CPU internal LLNL App Uses C++ ROSE IR NUMA-
aware data distribution to enhance data locality and avoid long memory latency. Multiple halo exchanging schemes for stencil codes using
structured grid. ROSE + libnuma support Many core architecture with NUMA hierarchy implementation in progress. 1.7x performance
improvement compared to OpenMP implementation for 2D 2nd order stencil computation. PAPI is used for for performance profiling. libnuma
and internal debugging scheme are used to verify memory distribution among NUMA nodes.

5) D-TEC OpenACC https://github.com/tristanvdb/OpenACC-to-OpenCL-Compiler Accelerated computing Not yet. C (possible C++ and Fortran).
Pragma parser for ROSE. ROSE IR Uses on tiling to map parallel loops to OpenCL ROSE (with OpenCL kernel generation backend), OpenCL C
Compiler (LLVM) Any accelerator with OpenCL support (CPUs, GPUs, XeonPhi, ...) - Basic kernel generation - Directives parsing - Runtime tested
on Nividia GPUs, Intel CPUs, and Intel XeonPhi Reaches ~50 Gflops on Tesla M2070 on matrix multiply. (M2070: ~1Tflops peaks, ~200 to ~400
Gflops effective on linear algebra ; all floating point). A profiling interface collects OpenCL profiling information in a database.

6) D-TEC Rely http://groups.csail.mit.edu/pac/rely/ Reliability-aware computing and Approximate computing Internal kernels Subset of C with
additional reliability annotations. Custom IR A language and a static analysis framework for verifying reliability of programs given function-level
reliability specifications. Chisel, a code transformation tool built on top of Rely, automatically selects operations that can execute unreliably
with minimum resource consumption, while satisfying the reliability specification. Generates C source code. Binary code generator
Implementation in progress. Analysis of computational kernels from multimedia and scientific applications.

7) D-TEC Simit Computations on domains expressible as a graph Internal physics simulations, Lulesh, MiniFE, phdMesh, MiniGhost Uses C++
Custom IR Fusion, Blocking, Vectorization, Parallelization, Distribution, Graph Index Sets LLVM X86 multicores, GPU and later distributed
systems Design and implementation in progress Has a visual backend.

8) Maple based DSL to represent mathematical operators and automate construction of discretizations for cartesion and curvalinear coordinate
grids. Supports automated generation of higher order stencils for 2nd, 4th, 6th, and 8th order operators.

9) AMR Stencil DSL (specification and implementation design of DSL compiler in progress, but initial work on optimizations done by OSU)

Eight Example DSLs

9X-Stack Review

http://halide-lang.org
http://opentuner.org
http://rosecompiler.org
http://rosecompiler.org/
http://rosecompiler.org
https://github.com/tristanvdb/OpenACC-to-OpenCL-Compiler
http://groups.csail.mit.edu/pac/rely/

int aFunction(int a, int b)
{

int c=b;
return a;

}

main()
{

int a,b,c,d,e;
int i=4;
for (i=0;i<10;i++)
{

int j=55;
c=i+j;
c=aFunction(i,c);
a=aFunction(a+1,b);

}
#pragma SliceTarget
a;
return 0;

}
0%

20%

40%

60%

80%

100%

1 6 12

Scott Warren (Rice)

RoseBud

• Goal: make DSLs easier to build and to use
– reduce clerical effort, reinvention of wheels, manual coding
– improve robustness, composability, debugging & profiling

• Approach: “one stop shopping” system for DSL construction
– all aspects of DSL compilation

• parsing, ASTs, semantics, rewriting, optimization, runtime, tool integration
– all flavors of DSL, used with any ROSE host language

• host-syntax (“embedded”), custom-syntax, stand-alone
– rich compiler infrastructure via ROSE

• C++ / Fortran analysis & synthesis, abstractions, optimizations, runtime

• Expected impact:
– improve DSL availability, usability, and performance for HPC
– foster DSL adoption in HPC via community-wide development & sharing

Rosebud DSL Framework

11X-Stack Review

Host syntax (“embedded”)

while (priority (token) <= priority (operators . top ()))
{

operands . pop (a);
operands . pop (b)
operands . push (eval (operators .pop (), a, b));

}

Rosebud Example: Stacks DSL

12X-Stack Review

Custom syntax

while(priority (token) <= priority (top of operators))
{

with stack operands
{

pop to a; pop to b;
push eval (pop off operators, a, b);

}
}

a

eval

a

ROS
E

Call

ROS
E

Call

ROS
E

Call

ROS
E

Call

ROS
E

List

ROS
E

List

bROS
E

Call

ROS
E

Call

operators

eval

stack::
push

operands

stack::
pop

Rosebud

ROSE

Push

Stac
k

Push

Call

ROS
E

Call

List

ROS
E

List

b

Pop

Stac
k

Pop

operators

operands

Rosebud

• Detailed design is complete
– Rosebud Definition Language, plugin architecture, parsing & type checking, O-O structure

• Infrastructure & high level code are complete
– build system, common core, Generator, Translator, PlugUtil
– plugin database, host plugins for C++ and Fortran (preliminary)
– documentation, tests, example DSLs

• Generator can compile RDL files to plugins
– includes & imports, RDL parsing, symbol tables, plugin writing
– only handles concrete syntax sections so far

• Translator can load plugins and parse mixed-language source files
– Stacks example plugin, Stacks in C++, Stacks in Fortran

• PlugUtil can install, uninstall, list, and dump plugins

Rosebud Status

13X-Stack Review

RDL files

plugins

mix & match ROSE infrastructure

int aFunction(int a, int b)
{

int c=b;
return a;

}

main()
{

int a,b,c,d,e;
int i=4;
for (i=0;i<10;i++)
{

int j=55;
c=i+j;
c=aFunction(i,c);
a=aFunction(a+1,b);

}
#pragma SliceTarget
a;
return 0;

}
0%

20%

40%

60%

80%

100%

1 6 12

Armando Solar-Lezama (MIT)

Refinement

• Synthesis in support of the DTEC vision of pervasive DSLs

1) MSL Language for refinement based development of MPI code

2) Synthesis to aid migration from legacy code to DSL

3) Solver Aided DSLs with Rosette

Overview

15X-Stack Review

MSL: Synthesis Based Refinement for MPI

• Support experimentation with different approaches to
– Data-distribution
– Communication/Computation tradeoffs

SynthesizerHigh Level
Implementation in DSL

Implementation
Sketch

Distribution
Sketch

MPI
Implementation

Describes how data is
distributed and/or replicated

across different processes
Can leave details unspecified

Describes the distributed
implementation

Can leave details unspecified

Key Results

• Implemented 3 Kernels with the help of synthesis
– SPMV

‣ Important for many applications (Mantevo MiniFE miniapp)
‣ Demonstrates ability to reason about irregular computation

– Transpose
‣ Important part of BigFFT miniapp
‣ Requires support multiple communicators to

– Multigrid
‣ Non-trivial communication patterns

• Synthesized the details of looping and communication
code from a sequential reference implementation

• Scalability comparable to hand-written Fortran
– Scaled up to 16K processes.

Experiments

int aFunction(int a, int b)
{

int c=b;
return a;

}

main()
{

int a,b,c,d,e;
int i=4;
for (i=0;i<10;i++)
{

int j=55;
c=i+j;
c=aFunction(i,c);
a=aFunction(a+1,b);

}
#pragma SliceTarget
a;
return 0;

}
0%

20%

40%

60%

80%

100%

1 6 12

Dan Quinlan (LLNL)
LLNL, Rice, OSU, UO, UCLA

Compiler Research

Maple DSL Code Generation for
Stencils

20

• Exploiting Maple DSL to generate high order stencil
codes using Cartesian and curvilinear coordinates.

• Automatic mode analysis for stencil computation.

• Mode analysis reveals essential details about temporal stability for high order
discretization. (4th order 3D case shown in figure)

• Various stencil codes in different complexities generated for scientific computing and
compiler research purposes.

• Stencil code can be generated directly from mathematical equations expressed in
Maple language.

• Simplifying programming effort for stencil computation. ~ 10 lines of essential
Maple code can generate a 4th order wave equation using Cartesian (1165 lines
Fortran output) and curvilinear coordinates (3626 lines Fortran output).

• Mode analysis is automatically generated with stencil codes from Maple DSL.
• Providing complex stencil code variants (higher order or different coordinate) for

researches in performance tuning and compiler optimization.

Scientific Achievement

Significance and Impact

Scientific Achievement

D-TEC
Techniques for Building

Domain Specific Languages (DSLs)

ROSE X-Gen Accelerator Support

21

•Automated generation of accelerator support
•Competitive performance compared to other compilers
• Extensions to support multiple GPUs

• Directive-based programming models are representative
and popular DSLs
• Extending compiler support to effectively support
accelerators such as GPUs will significantly improve the
productivity of extreme-Scale computing

Scientific Achievement

Significance and Impact

Research Details

C. Liao, Y. Yan, B. R. de Supinski, D. J. Quinlan, and B. Chapman, “Early experiences with the accelerator model,” in the era of low power
devices and accelerators, Springer, 2013, pp. 84-98.

D-TEC
Techniques for Building

Domain Specific Languages (DSLs)

Shared storage

Host Device

Proc. Proc.

Target Device

Proc. Proc.… …

… …Runtime
Threads

Host Memory Device Memory

• Language extensions to represent semantics of GPU
computing: data /computing offloading, multiple GPUs, etc
• Compiler transformation to generate CUDA kernels from
input code annotated with directives
• Runtime support for kernel launch, data distribution,
memory management, scheduling, and reduction operations

Hardware Model : Host (CPU) and target (GPU) devices,
with separated memory spaces (could be shared also)

Matrix multiplication with directives for multiple GPUs:
computation/data offloading and data distribution

Domain-Specific Compiler Optimization (OSU)
• Code generation and optimization for stencil DSLs

– Goal: Translate stencil specifications to efficient code
– Multi-target code generation

• Multicore CPU – split tiling with data layout transformations (ICS'13);
GPU – overlapped tiling (ICS'12); FPGA (FPGA'13)

– State-of-the-art optimizations
• Enhanced vectorization via tiled codelets (PLDI'13)
• Optimization of high-order stencils (PLDI'14)

• Enhancements of polyhedral optimizer PolyOpt within ROSE
• Current Focus: DSL for Phil Colella’s AMR stencil calculus

– Abstractions for restricted subset of calculus (with help from LBNL)
– Develop domain-specific optimizations, plus multi-target code

generation and lower-level optimizations
• Extensions to handle multiple grids and interactions at their boundaries
• Extensions to multi-level grids and their interactions

Optimizing High-Order Stencils
• Higher order stencils have

higher arithmetic intensity ,
but performance is flat with
increasing order: register
saturation

• New approach: Use global
information about stencil
compute pattern over grid,
and exploit assoc. reordering
[Stock et al., PLDI ‘14]

• Demo at Technology
Marketplace

Towards DSL for AMR Stencil Calculus
• AMR-based PDE/ODE solvers

– High-level expressions for sweeps
over disjoint set of rectangular sub-
domains, at different levels of
refinement

– Operators are typically point-wise
applications or stencil operations
over a local neighborhood

• Library based framework (C++
classes) can implement semantics,
but very slow

• Many opportunities for domain-
specific compiler optimization
– Fusion of stencils along different

spatial dimensions
– Multi-level tiling
– Memory management for temporary

intermediates
– Preliminary results from manual

domain-specific optimization

C++ Class Library 0.1
Stencil -> C: Direct 100
Stencil -> C + Transform 350

Performance on quad-core
Intel Sandybridge i7-2600
(Mega-stencils per second)

Exp_CNS Proxy Application
• Compressible Navier Stokes Solver

– Finite-difference scheme using 8th order stencil along spatial
directions and 3rd order Runge Kutta scheme over time

– 11 3D arrays for fundamental variables advanced through
time, and many temporary intermediates

• Computation can be expressed using stencil calculus
• Currently explored optimizations improve performance,

but further enhancements possible
– Loop transformations enable significant reduction between

data traffic between DRAM and L3 cache
– Transformed code no longer limited by main-memory BW
– New kernel optimization approaches needed: reduce core

stall cycles
Mem Reads Mem Writes Performance

Reference 46.3 GB 15.4 GB 6.9 GFLOPs

Optimized 14.1 GB 7.6 GB 10.8 GFLOPs

Scientific Achievement

Polyhedral Transformation Verification

26

Verified semantic equivalence of
variants of polyhedral transformed
codes with constant loop bounds.

§ Verification is independent of floating point precision.
§ Static analysis determines a state transition graph.
§ Rewrite system normalizes code associated with each state transition.
§ Matching of each variant’s code in SSA Form determines equivalence.

We verified whether 1487 PolyOpt generated tiling and fusion variants
for the Polybench 3.2 benchmarks are semantics preserving. This work
allowed to detect a bug in the PolyOpt 0.2 code generator that is not
determined by any of the existing tests. Future work will involve this new
form of verification in the release process of PolyOpt.

Two state transition graphs determined
to represent equivalent programs.

Original Tiled (8,1,1)

Significance and Impact

Research Involved

Authors: M. Schordan, P. Lin, D. Quinlan (LLNL), L. Puchet (UCLA)

D-TEC
Techniques for Building

Domain Specific Languages (DSLs)

int aFunction(int a, int b)
{

int c=b;
return a;

}

main()
{

int a,b,c,d,e;
int i=4;
for (i=0;i<10;i++)
{

int j=55;
c=i+j;
c=aFunction(i,c);
a=aFunction(a+1,b);

}
#pragma SliceTarget
a;
return 0;

}
0%

20%

40%

60%

80%

100%

1 6 12

David Grove (IBM)

Runtime

• X10 implementations of three DoE proxy apps
– LULESH v2.0
– MCCK
– CoMD

• Objectives
– Drive development of APGAS runtime using DoE relevant

computation/communication workloads
– Foundation for exploring APGAS/X10 based libraries and

embedded DSLs that capture computational patterns
• Status

– Proxy applications available open source (see x10-lang.org)
– Comparable serial and small-scale performance
– Future: further refinement of app code; at-scale evaluation

X10/APGAS Proxy Applications

28

Initial Results (Power775)

29

MCCK (average of 3 runs)

0

5

10

15

20

25

1 8 16 24 32 40 48 56 64 72 80 88 96
104 112 120 128 136 144 152 160 168 176 184 192 200

Number of places

El
ap

se
d

tim
e

(s
)

Original (C & MPI) X10 (Native & PAMI)

0
50

100
150
200
250
300
350
400
450

0 100 200 300 400

W
ea

k
Sc

al
ab

ili
ty

Number of Places

CoMD Embedded-Atom Potentials

Original

X10

0
50

100
150
200
250
300
350
400

0 100 200 300 400

W
ak

 S
ca

la
bi

lit
y

Number of Places

CoMD Lennard-Jones Potentials

Original

X10

Proxy App X10 SLOC Ref SLOC

Lulesh 2300 5000

MCCK 750 900

CoMD 3000 3000

int aFunction(int a, int b)
{

int c=b;
return a;

}

main()
{

int a,b,c,d,e;
int i=4;
for (i=0;i<10;i++)
{

int j=55;
c=i+j;
c=aFunction(i,c);
a=aFunction(a+1,b);

}
#pragma SliceTarget
a;
return 0;

}
0%

20%

40%

60%

80%

100%

1 6 12

Chunhua Liao (LLNL)

Tools: IR – Mapping for Tools Support

IR-Mapping: motivation

• Problem: gap between high-level DSL and low-level
IRs (intermediate representation) after code
transformation
• Traditional compilers only save single-level source

location info.
• Benefits of tracking transformations and

maintaining multi-level IR mapping
• Program analysis:

o Propagate high-level semantics to low level IRs:
o e.g. readonly, ordered, continuous storage, etc.

o Attribute low-level performance metrics to high-level IRs
• Program transformation

o Optimizations, debugging

Transformation and IR mapping

32

Transformation

IR IR’

1

2 3

4 5

1

2 3

mapping

Trans_name (input_nodes, output_nodes)
e.g. add_children ((2), (2,4,5))

Model Transformations: Hierachical

• Atomic transformations
a. Creation: from scratch vs. copy-construction
b. Modification: self-contained changes
c. Attachment: insert into AST
d. Detachment: remove from AST
e. Destroy: deallocation

• Composite transformations
a. Replacement
b. Dead code elimination
c. Loop interchange, tiling, unrolling
d. Inlining, outlining
e. OpenMP Lowering

Example: variable renaming

a = a +c; --> b = b + c

=

a +

a c

=

b +

b c

variable_renaming_root, {(a,a),(b,b)}

variable_renaming, {(a), (b)} variable_renaming, {(a), (b)}

renaming variables within a
subtree

Composite transformation has
mapping relations aggregated
from atomic/leaf
transformations

int aFunction(int a, int b)
{

int c=b;
return a;

}

main()
{

int a,b,c,d,e;
int i=4;
for (i=0;i<10;i++)
{

int j=55;
c=i+j;
c=aFunction(i,c);
a=aFunction(a+1,b);

}
#pragma SliceTarget
a;
return 0;

}
0%

20%

40%

60%

80%

100%

1 6 12

Scott B. Baden
Dept. of Computer Science and Engineering

University of California, San Diego

Tools: Source-to-source transformation
of a legacy application to tolerate latency

on exascale systems

Experience with Bamboo on LULESH (1.0) Proxy App

36

• Experiments on Hopper @ NERSC
– Weak scaling study
– Bamboo translator restructured the code to hide communication

automatically (compiler available at bamboo.ucsd.edu)

• Reduced waits on communication
– Significant performance improvement:

20% on 8 cores ➞ 35% on 32K cores
– Communication cost of MPI variant is growing with the # cores
– Virtual processing helped improve overlap: 8 tasks per core
– Important on Exascale levels with many more cores

• Additional improvements
– The provided MPI restricts the # cores: P1/3 must be an integer
– Bamboo’s provision for virtual processing relaxes this restriction

• Weak scaling study on Hopper
• 10 iterations
• Experimental configurations:
• MPI: 16 processes/node (4/socket of 6 cores), local domain = 923/process
• Bamboo: 16 worker threads/node (4/socket and 1/core), 8 tasks/worker
• Local domain = 463 per task

Compiler transformations can overlap communication
and computation for improved performance

37X-Stack Review

0

10

20

30

40

50

8 64 512 4096 32768

MPI Bamboo

Hiding communication delays in legacy applications

38

• Problem
– Communication delays are continuing to grow, limiting scalability
– Intrusive recoding required to tolerate communication delays in legacy

MPI applications
– Many programmers lack the background to carry out the required

restructuring

• Solution
– Use a domain specific translator (Bamboo) to restructure the code
– Hide communication automatically
– Available at http://bamboo.ucsd.edu

• Impact
– Avoids the need to implement complicated split-phase code by hand
– Legacy applications re-engineered (almost) automatically
– Nearly all large-scale parallel scientific applications are

written either in MPI directly or via a library implemented in MPI

http://bamboo.ucsd.edu

int aFunction(int a, int b)
{

int c=b;
return a;

}

main()
{

int a,b,c,d,e;
int i=4;
for (i=0;i<10;i++)
{

int j=55;
c=i+j;
c=aFunction(i,c);
a=aFunction(a+1,b);

}
#pragma SliceTarget
a;
return 0;

}
0%

20%

40%

60%

80%

100%

1 6 12

Phil Colella (LBL)

Applications

Stencil Calculus on Rectangular Grids

Other operators that define set calculus, centering, interlevel operations,
pointwise application of functions:

Example: Coarse-fine interpolation
Want to interpolate from coarse grid centers to the region bounded by the
green box using a factor of 4 refinement ratio, and a tensor product of 1D
five-point interpolation operators.

Purple box bounds the cells needed
to perform the interpolation.

Interpolation in the x-direction

Interpolation in the y-direction

Example: Coarse-fine interpolation
// Implementation in Stencil DSL.

Stencil<double> interp[DIM];

// Interpolation stencils have already been defined, using the
// stencil expression on the previous slide.

MDArray<double> coarse; // Input coarse data.

Box bxDest; // input fine box.

// compute bxCoarse, coarse grid required for interpolation
Box bxCoarse = grow(coarsen(bxDest,N_REF),S_0);

MDArray<double> tmp = coarse on bxCoarse;

// “on” is a new keyword, restricting the RHS to a subdomain.

for (int dir = 0; dir < DIM ; dir++)
{

tmp = interp[dir](tmp);
}

MDArray<double> fine = tmp on bxDest;

